TIDUF48B November   2023  – November 2024 THS6222 , THS6232

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 THVD8000DDF
      2. 2.2.2 THS6222RGTT
      3. 2.2.3 MSPM0G350x
      4. 2.2.4 TPS26624DRCR
      5. 2.2.5 LM5164QDDARQ1
      6. 2.2.6 TPS560430X3FDBVR
      7. 2.2.7 TMUX1204DGSR
    3. 2.3 Design Considerations
      1. 2.3.1 Modulator and Carrier Frequency Selection
      2. 2.3.2 Power Consumption and Gain of the THS6222 Line Driver
      3. 2.3.3 Front End and Discrete Filter
      4. 2.3.4 THVD8000 Schematic
      5. 2.3.5 Board Pinout
  9. 3Hardware, Software, Testing Requirements and Test Results
    1. 3.1 Test Setup
      1. 3.1.1 Powering the TIDA-010935
    2. 3.2 Test Results
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Documentation Support
    3. 4.3 Support Resources
    4. 4.4 Trademarks
  11. 5About the Author
  12. 6Revision History

Test Setup

In this project, the LP-MSPM0G3507 LaunchPad Development Kit was used to drive the TIDA-010935, the pin disposition was designed to superimpose the TIDA to the LaunchPad. Alternatively, jumpers can be used to connect TIDA pins to the GPIOs of a generic microcontroller using the information in Table 2-5.

The board is then connected to a power supply between 13.5 V and 50 V. Best design practice includes keeping the two boards isolated using different supplies. The 2 TIDA designs are connected to each other through jumpers J2 and J3 with two resistors that have the same value.

The connection between the two TIDA designs was made with two 15-Ω resistors, but also 20-Ω and 100-Ω were tried.