TIDUF51 November   2023

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 mmWave Sensor Application
      2. 2.2.2 IWR6432 UART Communication
      3. 2.2.3 LAUNCHXLCC1352R1 Communication
      4. 2.2.4 Sensors Application
      5. 2.2.5 Power Supply Design
      6. 2.2.6 IWRL6432 Power Supply Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 IWRL6432
      2. 2.3.2 CC1352R
      3. 2.3.3 BQ25616
      4. 2.3.4 TPS62850
      5. 2.3.5 HDC3020
      6. 2.3.6 OPT3005
      7. 2.3.7 DRV5032
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
      1. 3.1.1 Getting Started Hardware
        1. 3.1.1.1 IWRL6432FSPEVM Initialization: IWRL6432 Programming
        2. 3.1.1.2 Base Board Initialization: CC1352R Programming
    2. 3.2 Software Requirements
    3. 3.3 Test Setup
      1. 3.3.1 Demonstration Setup
    4. 3.4 Test Results
      1. 3.4.1 Radar Detect Distance Measurement
      2. 3.4.2 People Counting Test Results
      3. 3.4.3 Wireless Range Test Results
      4. 3.4.4 Power Consumption Test Results
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
      3. 4.1.3 PCB Layout Recommendations
        1. 4.1.3.1 Layout Prints
      4. 4.1.4 Altium Project
      5. 4.1.5 Gerber Files
      6. 4.1.6 Assembly Drawings
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author

TPS62850

The TPS62850x is a family of pin-to-pin 1-A, 2-A (continuous), and 3-A (peak) high efficiency, easy-to-use synchronous step-down DC/DC converters. The devices are based on a peak current mode control topology. Low resistive switches allow up to 2-A continuous output current and 3-A peak current. The switching frequency is externally adjustable from 1.8 MHz to 4 MHz and can also be synchronized to an external clock in the same frequency range. In PWM and PFM mode, the TPS62850x automatically enters power save mode at light loads to maintain high efficiency across the whole load range. The TPS62850x provides a 1% output voltage accuracy in PWM mode, which helps design a power supply with high output voltage accuracy, fulfilling tight supply voltage requirements of digital processors and FPGA.

The TPS62850x is available in an 8-pin 1.60-mm × 2.10-mm SOT583 package.