TIDUF56 January   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Terminology
    2. 1.2 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 TMS320F28P65x-Q1
      2. 2.3.2 DRV3255-Q1
      3. 2.3.3 LM25184-Q1
      4. 2.3.4 TCAN1044A-Q1
  9. 3System Design Theory
    1. 3.1 Three-Phase PMSM Drive
      1. 3.1.1 Field-Oriented Control of PM Synchronous Motor
        1. 3.1.1.1 Space Vector Definition and Projection
          1. 3.1.1.1.1 ( a ,   b ) ⇒ ( α , β ) Clarke Transformation
          2. 3.1.1.1.2 α , β ⇒ ( d ,   q ) Park Transformation
        2. 3.1.1.2 Basic Scheme of FOC for AC Motor
        3. 3.1.1.3 Rotor Flux Position
    2. 3.2 Field Weakening (FW) Control
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
      1. 4.1.1 Hardware Board Overview
      2. 4.1.2 Test Conditions
      3. 4.1.3 Test Equipment Required for Board Validation
    2. 4.2 Test Setup
      1. 4.2.1 Hardware Setup
      2. 4.2.2 Software Setup
        1. 4.2.2.1 Code Composer Studio™ Project
        2. 4.2.2.2 Software Structure
    3. 4.3 Test Procedure
      1. 4.3.1 Project Setup
      2. 4.3.2 Running the Application
    4. 4.4 Test Results
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
      3. 5.1.3 PCB Layout Recommendations
        1. 5.1.3.1 Layout Prints
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
( a ,   b ) ( α , β ) Clarke Transformation

The space vector can be reported in another reference frame with only two orthogonal axis called (α, β). Assuming that the axis a and the axis αlpha are in the same direction yields the vector diagram shown in Figure 3-4.

GUID-20210322-CA0I-8DBL-PDWP-NTDCNNKJNVBL-low.svg Figure 3-4 Stator Current Space Vector in the Stationary Reference Frame

The projection that modifies the 3-phase system into the (α, β) 2-dimension orthogonal system is presented in Equation 4.

Equation 4. i s α = i a i s β = 1 3 i a + 2 3 i b

The two phase (α, β) currents are still dependent on time and speed.