TIDUF60 December   2023

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Terminology
    2. 1.2 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 TMS320F2800137
      2. 2.3.2 MSPM0G1507
      3. 2.3.3 TMP6131
      4. 2.3.4 UCC28881
      5. 2.3.5 TPS54202
      6. 2.3.6 TLV9062
      7. 2.3.7 TLV74033
    4. 2.4 System Design Theory
      1. 2.4.1 Hardware Design
        1. 2.4.1.1 Modular Design
        2. 2.4.1.2 High-Voltage Buck Auxiliary Power Supply
        3. 2.4.1.3 DC Link Voltage Sensing
        4. 2.4.1.4 Motor Phase Voltage Sensing
        5. 2.4.1.5 Motor Phase Current Sensing
        6. 2.4.1.6 External Overcurrent Protection
        7. 2.4.1.7 Internal Overcurrent Protection for TMS320F2800F137
      2. 2.4.2 Three-Phase PMSM Drive
        1. 2.4.2.1 Field-Oriented Control of PM Synchronous Motor
          1. 2.4.2.1.1 Space Vector Definition and Projection
            1. 2.4.2.1.1.1 ( a ,   b ) ⇒ ( α , β ) Clarke Transformation
            2. 2.4.2.1.1.2 α , β ⇒ ( d ,   q ) Park Transformation
          2. 2.4.2.1.2 Basic Scheme of FOC for AC Motor
          3. 2.4.2.1.3 Rotor Flux Position
        2. 2.4.2.2 Sensorless Control of PM Synchronous Motor
          1. 2.4.2.2.1 Enhanced Sliding Mode Observer With Phase-Locked Loop
            1. 2.4.2.2.1.1 Mathematical Model and FOC Structure of an IPMSM
            2. 2.4.2.2.1.2 Design of ESMO for the IPMSM
            3. 2.4.2.2.1.3 Rotor Position and Speed Estimation With PLL
        3. 2.4.2.3 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
        4. 2.4.2.4 Hardware Prerequisites for Motor Drive
          1. 2.4.2.4.1 Motor Current Feedback
            1. 2.4.2.4.1.1 Three-Shunt Current Sensing
            2. 2.4.2.4.1.2 Single-Shunt Current Sensing
          2. 2.4.2.4.2 Motor Voltage Feedback
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Getting Started Hardware
      1. 3.1.1 Hardware Board Overview
      2. 3.1.2 Test Conditions
      3. 3.1.3 Test Equipment Required for Board Validation
    2. 3.2 Getting Started GUI
      1. 3.2.1 Test Setup
      2. 3.2.2 Overview of GUI Software
      3. 3.2.3 Setup Serial Port
      4. 3.2.4 Motor Identification
      5. 3.2.5 Spin Motor
      6. 3.2.6 Motor Fault Status
      7. 3.2.7 Tune Control Parameters
      8. 3.2.8 Virtual Oscilloscope
    3. 3.3 Getting Started C2000 Firmware
      1. 3.3.1 Download and Install Software Required for Board Test
      2. 3.3.2 Opening Project Inside CCS
      3. 3.3.3 Project Structure
      4. 3.3.4 Test Procedure
        1. 3.3.4.1 Build Level 1: CPU and Board Setup
          1. 3.3.4.1.1 Start CCS and Open Project
          2. 3.3.4.1.2 Build and Load Project
          3. 3.3.4.1.3 Setup Debug Environment Windows
          4. 3.3.4.1.4 Run the Code
        2. 3.3.4.2 Build Level 2: Open-Loop Check With ADC Feedback
          1. 3.3.4.2.1 Start CCS and Open Project
          2. 3.3.4.2.2 Build and Load Project
          3. 3.3.4.2.3 Setup Debug Environment Windows
          4. 3.3.4.2.4 Run the Code
        3. 3.3.4.3 Build Level 3: Closed Current Loop Check
          1. 3.3.4.3.1 Start CCS and Open Project
          2. 3.3.4.3.2 Build and Load Project
          3. 3.3.4.3.3 Setup Debug Environment Windows
          4. 3.3.4.3.4 Run the Code
        4. 3.3.4.4 Build Level 4: Full Motor Drive Control
          1. 3.3.4.4.1 Start CCS and Open Project
          2. 3.3.4.4.2 Build and Load Project
          3. 3.3.4.4.3 Setup Debug Environment Windows
          4. 3.3.4.4.4 Run the Code
          5. 3.3.4.4.5 Tuning Motor Drive FOC Parameters
          6. 3.3.4.4.6 Tuning Field Weakening and MTPA Control Parameters
          7. 3.3.4.4.7 Tuning Current Sensing Parameters
    4. 3.4 Test Results
      1. 3.4.1 Load and Thermal Test
      2. 3.4.2 Overcurrent Protection by External Comparator
      3. 3.4.3 Overcurrent Protection by Internal CMPSS
    5. 3.5 Migrate Firmware to a New Hardware Board
      1. 3.5.1 Configure the PWM, CMPSS, and ADC Modules
      2. 3.5.2 Setup Hardware Board Parameters
      3. 3.5.3 Configure Faults Protection Parameters
      4. 3.5.4 Setup Motor Electrical Parameters
    6. 3.6 Getting Started MSPM0 Firmware
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 Bill of Materials
      3. 4.1.3 PCB Layout Recommendations
      4. 4.1.4 Altium Project
      5. 4.1.5 Gerber Files
    2. 4.2 Software Files
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author
Design of ESMO for the IPMSM

Figure 2-20 shows the conventional PLL integrated into the SMO.

GUID-20211216-SS0I-T9PT-8LKN-5ZQCWMSQSQ4Z-low.svg Figure 2-20 Block Diagram of eSMO With PLL for a PMSM

The traditional reduced-order sliding-mode observer is constructed, with the mathematical model shown in Equation 14 and the block diagram shown in Figure 2-21.

Equation 14. i ^ ˙ α i ^ ˙ β = 1 L d - R s - ω ^ e ( L d - L q ) ω ^ e ( L d - L q ) - R s i ^ α i ^ β + 1 L d V α - e ^ α + z α V β - e ^ β + z β

where

  • z α and z β are sliding-mode feedback components and are defined as shown in Equation 15:
Equation 15. z α z β = k α s i g n ( i ^ α - i α ) k β s i g n ( i ^ β - i β )

where

  • k α and k β are the constant sliding-mode gain designed by Lyapunov stability analysis

If k α and k β are positive and significant enough to provide the stable operation of the SMO, then k α and k β are large enough to hold k α > m a x ( e α ) and k β > m a x ( e β ) .

GUID-20211216-SS0I-ZMPM-8JZR-NV3CT2MP2FCC-low.svg Figure 2-21 Block Diagram of Traditional Sliding-Mode Observer

The estimated value of EEMF in α-β axes ( e ^ α , e ^ β ) can be obtained by low-pass filter from the discontinuous switching signals z α and z α :

Equation 16. e ^ α e ^ β = ω c s + ω c z α z β

where

  • ω c = 2 π f c is the cutoff angular frequency of the LPF, which is usually selected according to the fundamental frequency of the stator current

Therefore, the rotor position can be directly calculated from arc-tangent the back EMF, as Equation 17 defines:

Equation 17. θ ^ e = - tan - 1 e ^ α e ^ β

Low-pass filters remove the high-frequency term of the sliding-mode function, which results in phase delay. The delay can be compensated by the relationship between the cut-off frequency ω c and back EMF frequency ω e , which is defined as shown in Equation 18:

Equation 18. θ e = - tan - 1 ( ω e ω c )

Then the estimated rotor position by using SMO method is found with Equation 19:

Equation 19. θ ^ e = - tan - 1 e ^ α e ^ β + θ e

In a digital control application, a time-discrete equation of the SMO is needed. The Euler method is the appropriate way to transform to a time-discrete observer. The time-discrete system matrix of Equation 14 in α-β coordinates is given by Equation 20 as:

Equation 20. i ˙ ^ α ( n + 1 ) i ˙ ^ β ( n + 1 ) = F α F β i ˙ ^ α ( n ) i ˙ ^ β ( n ) + G α G β V α * ( n ) - e ^ α ( n ) + z α ( n ) V β * ( n ) - e ^ β ( n ) + z β ( n )

where

Equation 21. F α F β = e - R s L d e - R s L q
Equation 22. G α G β = 1 R s 1 - e - R s L d 1 - e - R s L q

The time-discrete form of Equation 16 is given by Equation 23 as:

Equation 23. e ^ α ( n + 1 ) e ^ β ( n + 1 ) = e ^ α ( n ) e ^ β ( n ) + 2 π f c z α ( n ) - e ^ α ( n ) z β ( n ) - e ^ β ( n )