TIDUF61 May   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 TLV9002-Q1
      2. 2.2.2 TLV9034-Q1
      3. 2.2.3 TPS7B69-Q1
      4. 2.2.4 SN74HCS08-Q1
      5. 2.2.5 SN74HCS86-Q1
    3. 2.3 System Design Theory
      1. 2.3.1 TIDA-0020069 Operation
        1. 2.3.1.1 Constant Current Source
          1. 2.3.1.1.1 Design Goals
          2. 2.3.1.1.2 Design Description
          3. 2.3.1.1.3 Design Notes
          4. 2.3.1.1.4 Design Steps
        2. 2.3.1.2 Current Sensing
          1. 2.3.1.2.1 Design Goals
          2. 2.3.1.2.2 Design Description
          3. 2.3.1.2.3 Design Steps
        3. 2.3.1.3 Load Connections and Clamps
        4. 2.3.1.4 Modified Window Comparator
        5. 2.3.1.5 Digital Logic Gates
      2. 2.3.2 Status Indication
        1. 2.3.2.1 Normal Operation (Closed Connection) State
        2. 2.3.2.2 Open Connection State
        3. 2.3.2.3 Short-to-Battery State
        4. 2.3.2.4 Short-to-Ground State
  9. 3Hardware, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
    2. 3.2 Test Setup
    3. 3.3 Test Results
      1. 3.3.1 Normal Operation (Closed Connection) Test Results
      2. 3.3.2 Open Connection Test Results
      3. 3.3.3 Short-to-Battery Test Results
      4. 3.3.4 Short-to-Ground Test Results
      5. 3.3.5 Disable (Shutdown) Test Results
  10. 4Design Files
    1. 4.1 Schematics
    2. 4.2 Bill of Materials
    3. 4.3 PCB Layout Recommendations
      1. 4.3.1 Layout Prints
    4. 4.4 Altium Project
    5. 4.5 Gerber Files
    6. 4.6 Assembly Drawings
  11. 5Tools and Software
  12. 6Documentation Support
  13. 7Support Resources
  14. 8Trademarks
  15. 9About the Author

Constant Current Source

A key criteria of an automotive HVIL design is the generation of a constant current. This current is generated by the HVIL circuitry and flows through the interlock signal cables, through all of the high-voltage connectors, and returns back to the HVIL circuitry. Many automotive OEMs have varying requirements for the HVIL constant current, typically ranging from 5mA–30mA of constant current. A benefit to this reference design is the ability to adjust the current output based on discrete components.

The schematic in Figure 2-9 features the TLV9002-Q1, using one channel to generate a constant HVIL current. This circuit design is based on the Analog Engineer's Circuit: Voltage-to-current (V-I) converter circuit with BJT. Reference this analog circuit design for more details about the circuit, including downloadable simulation models.

TIDA-020069 Constant Current Source
                    Circuit Figure 2-9 Constant Current Source Circuit