TIDUF63A December   2023  – June 2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 PV or Battery Input With DC/DC Converter
    2. 1.2 Isolation and CLLLC Converter
    3. 1.3 DC/AC Converter
    4. 1.4 Key System Specifications
  8. 2System Design Theory
    1. 2.1 Boost Converter Design
    2. 2.2 MPPT Operation
    3. 2.3 CLLLC Converter Design
      1. 2.3.1 Achieving Zero Voltage Switching (ZVS)
      2. 2.3.2 Resonant Tank Design
    4. 2.4 DC/AC Converter Design
  9. 3System Overview
    1. 3.1 Block Diagram
    2. 3.2 Design Considerations
      1. 3.2.1 DC/DC Converter
        1. 3.2.1.1 Input Current and Voltage Senses and MPPT
        2. 3.2.1.2 Inrush Current Limit
      2. 3.2.2 CLLLC Converter
        1. 3.2.2.1 Low-Voltage Side
        2. 3.2.2.2 High-Voltage Side
        3. 3.2.2.3 Modulation scheme
      3. 3.2.3 DC/AC Converter
        1. 3.2.3.1 Active Components Selection
          1. 3.2.3.1.1 High-Frequency FETs: GaN FETs
          2. 3.2.3.1.2 Isolated Power Supply
          3. 3.2.3.1.3 Low-Frequency FETs
        2. 3.2.3.2 Passive Components Selection
          1. 3.2.3.2.1 Boost Inductor Selection
          2. 3.2.3.2.2 Cx Capacitance Selection
          3. 3.2.3.2.3 EMI Filter Design
          4. 3.2.3.2.4 DC-Link Output Capacitance
        3. 3.2.3.3 Voltage and Current Measurements
    3. 3.3 Highlighted Products
      1. 3.3.1  TMDSCNCD280039C - TMS320F280039C Evaluation Module C2000™ MCU controlCARD™
      2. 3.3.2  LMG3522R050 - 650-V 50-mΩ GaN FET With Integrated Driver
      3. 3.3.3  LMG2100R044 - 100-V, 35-A GaN Half-Bridge Power Stage
      4. 3.3.4  TMCS1123 - Precision Hall-Effect Current Sensor
      5. 3.3.5  AMC1302 - Precision, ±50-mV Input, Reinforced Isolated Amplifier
      6. 3.3.6  AMC3330 - Precision, ±1-V Input, Reinforced Isolated Amplifier With Integrated DC/DC Converter
      7. 3.3.7  AMC1311 - High-Impedance, 2-V Input, Reinforced Isolated Amplifier
      8. 3.3.8  ISO6741 - General-Purpose Reinforced Quad-Channel Digital Isolators with Robust EMC
      9. 3.3.9  UCC21540 - Reinforced Isolation Dual-Channel Gate Driver
      10. 3.3.10 LM5164 - 100-V Input, 1-A Synchronous Buck DC/DC Converter with Ultra-low IQ
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Test Setup
      1. 4.2.1 DC/DC Test
      2. 4.2.2 DC/AC Test
    3. 4.3 Test Results
      1. 4.3.1 Input DC/DC Boost Results
      2. 4.3.2 CLLLC Results
      3. 4.3.3 DC/AC Results
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author
  13. 7Revision History

Input Current and Voltage Senses and MPPT

The PV panel requires a special control of the voltage and current to achieve maximum power (MPPT). MPPT is described in Section 2.2.

To enable MPPT operation, the design has voltage and current measurements of each input channel. Input channels are placed in the same potential as the MCU and do not need to be isolated. This enables the use of cost competitive non-isolated shunt-based current-sensing design based on the INA181 amplifier. INA181 is a bidirectional voltage output current-sense amplifier. The device has reference voltage input that is used to measure negative current during battery charging. INA181A3 has an internal gain set up to 100 V/V and a bandwidth of 150 kHz.

TIDA-010933 Input Current and Current SensingFigure 3-4 Input Current and Current Sensing

Voltage sense is implemented with a resistive divider and the low-voltage general purpose operation amplifier LM321LV configured as a voltage follower. The voltage follower circuit needs to decrease impedance of the sense line, increase noise immunity, and mitigate error from ADC input impedance.