TIDUF64 December   2023

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 DC-DC Boost Converter
      2. 2.2.2 Bidirectional DC-DC Converter
      3. 2.2.3 DC-AC Converter
    3. 2.3 Highlighted Products
      1. 2.3.1  TMDSCNCD280039C - TMS320F280039C Evaluation Module C2000™ MCU controlCARD™
      2. 2.3.2  LMG3522R030 650-V 30-mΩ GaN FET With Integrated Driver, Protection and Temperature Reporting
      3. 2.3.3  TMCS1123 - Precision Hall-Effect Current Sensor
      4. 2.3.4  AMC1302 - Precision, ±50-mV Input, Reinforced Isolated Amplifier
      5. 2.3.5  ISO7741 Robust EMC, Quad-channel, 3 Forward, 1 Reverse, Reinforced Digital Isolator
      6. 2.3.6  ISO7762 Robust EMC, Six-Channel, 4 Forward, 2 Reverse, Reinforced Digital Isolator
      7. 2.3.7  UCC14131-Q1 Automotive, 1.5-W, 12-V to 15-V VIN, 12-V to 15-V VOUT, High-Density > 5-kVRMS Isolated DC/DC Module
      8. 2.3.8  ISOW1044 Low-Emissions, 5-kVRMS Isolated CAN FD Transceiver With Integrated DC/DC Power
      9. 2.3.9  ISOW1412 Low-Emissions, 500kbps, Reinforced Isolated RS-485, RS-422 Transceiver With Integrated Power
      10. 2.3.10 OPA4388 Quad, 10-MHz, CMOS, Zero-Drift, Zero-Crossover, True RRIO Precision Operational Amplifier
      11. 2.3.11 OPA2388 Dual, 10-MHz, CMOS, Zero-Drift, Zero-Crossover, True RRIO Precision Operational Amplifier
      12. 2.3.12 INA181 26-V Bidirectional 350-kHz Current-Sense Amplifier
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
    2. 3.2 Test Setup
      1. 3.2.1 DC-DC Boost Stage
      2. 3.2.2 Bidirectional DC-DC Stage
    3. 3.3 Test Results
      1. 3.3.1 DC-DC Boost Converter
      2. 3.3.2 Bidirectional DC-DC Converter
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author

DC-DC Boost Converter

Figure 3-3 and Table 3-1 show the efficiency of input DC-DC converter at 450-V DC bus output. The input voltages considered are 225 V, 350 V, and 400 V. For 225-V input, the peak efficiency achieved is 98.8%, where the boost converter demonstrates the worst-case ripple conditions for a duty cycle of 0.5. The table shows that the converter achieves a peak efficiency of 99.3% at full load.

GUID-20231206-SS0I-D0XK-L502-S28BNZDQZ9R6-low.svg Figure 3-3 DC-DC Boost Efficiency vs Output Power at 450-V DC-Link
Table 3-1 DC-DC Boost Efficiency
OUTPUT POWER EFFICIENCY AT VIN = 225 V OUTPUT POWER EFFICIENCY AT VIN = 350 V OUTPUT POWER EFFICIENCY AT VIN = 400 V
0.9 kW 98.5% 1.4 kW 99.0% 1.6 kW 99.2%
1.1 kW 98.6% 1.7 kW 99.1% 2.0 kW 99.3%
1.3 kW 98.7% 2.1 kW 99.2% 2.4 kW 99.3%
1.6 kW 98.8% 2.4 kW 99.2% 2.8 kW 99.3%
1.8 kW 98.8% 2.8 kW 99.2% 3.2 kW 99.3%
2.0 kW 98.8% 3.1 kW 99.2% 3.6 kW 99.3%
2.2 kW 98.8% 3.5 kW 99.1% 4.0 kW 99.3%