TIDUF64A December   2023  – August 2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
    2. 1.2 PV Input with Boost Converter
    3. 1.3 Bidirectional DC/DC Converter
    4. 1.4 DC/AC Converter
  8. 2System Design Theory
    1. 2.1 Boost Converter
      1. 2.1.1 Inductor Design
      2. 2.1.2 Rectifier Diode Selection
      3. 2.1.3 MPPT Operation
    2. 2.2 Bidirectional DC/DC Converter
      1. 2.2.1 Inductor Design
      2. 2.2.2 Low-Voltage Side Capacitor
      3. 2.2.3 High-Voltage Side Capacitor
    3. 2.3 DC/AC Converter
      1. 2.3.1 Boost Inductor Design
      2. 2.3.2 DC-Link Capacitor
  9. 3System Overview
    1. 3.1 Block Diagram
    2. 3.2 Design Considerations
      1. 3.2.1 Boost Converter
        1. 3.2.1.1 High-Frequency FETs
        2. 3.2.1.2 Input Voltage and Current Sense
      2. 3.2.2 Bidirectional DC/DC Converter
        1. 3.2.2.1 High-Frequency FETs
        2. 3.2.2.2 Current and Voltage Measurement
        3. 3.2.2.3 Input Relay
      3. 3.2.3 DC/AC Converter
        1. 3.2.3.1 High-Frequency FETs
        2. 3.2.3.2 Current Measurements
        3. 3.2.3.3 Voltage Measurements
        4. 3.2.3.4 Auxiliary Power Supply
        5. 3.2.3.5 Passive Components Selection
    3. 3.3 Highlighted Products
      1. 3.3.1  TMDSCNCD280039C - TMS320F280039C Evaluation Module C2000™ MCU controlCARD™
      2. 3.3.2  LMG3522R030 650-V 30-mΩ GaN FET With Integrated Driver, Protection and Temperature Reporting
      3. 3.3.3  TMCS1123 - Precision Hall-Effect Current Sensor
      4. 3.3.4  AMC1302 - Precision, ±50-mV Input, Reinforced Isolated Amplifier
      5. 3.3.5  ISO7741 Robust EMC, Quad-channel, 3 Forward, 1 Reverse, Reinforced Digital Isolator
      6. 3.3.6  ISO7762 Robust EMC, Six-Channel, 4 Forward, 2 Reverse, Reinforced Digital Isolator
      7. 3.3.7  UCC14131-Q1 Automotive, 1.5-W, 12-V to 15-V VIN, 12-V to 15-V VOUT, High-Density > 5-kVRMS Isolated DC/DC Module
      8. 3.3.8  ISOW1044 Low-Emissions, 5-kVRMS Isolated CAN FD Transceiver With Integrated DC/DC Power
      9. 3.3.9  ISOW1412 Low-Emissions, 500kbps, Reinforced Isolated RS-485, RS-422 Transceiver With Integrated Power
      10. 3.3.10 OPA4388 Quad, 10-MHz, CMOS, Zero-Drift, Zero-Crossover, True RRIO Precision Operational Amplifier
      11. 3.3.11 OPA2388 Dual, 10-MHz, CMOS, Zero-Drift, Zero-Crossover, True RRIO Precision Operational Amplifier
      12. 3.3.12 INA181 26-V Bidirectional 350-kHz Current-Sense Amplifier
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Note
    3. 4.3 Test Setup
      1. 4.3.1 Boost Stage
      2. 4.3.2 Bidirectional DC/DC Stage - Buck-Mode
      3. 4.3.3 DC/AC Stage
    4. 4.4 Test Results
      1. 4.4.1 Boost Converter
      2. 4.4.2 Bidirectional DC/DC Converter
        1. 4.4.2.1 Buck Mode
        2. 4.4.2.2 Boost Mode
      3. 4.4.3 DC/AC Converter
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Authors
  13. 7Revision History

About the Authors

VEDATROYEE GHOSH is a Systems Engineer at Texas Instruments Germany, where she focuses on solar energy within the Energy Infrastructure team. Vedatroyee has earned her master's degree in Power Engineering from the Technical University of Munich, Germany, in 2023.

RICCARDO RUFFO received his Ph.D. degree in Electric, Electronics, and Communication Engineering from Politecnico di Torino, Turin, Italy, in 2019. He is currently working at Texas Instruments Germany as a System Engineer in the area of Energy Infrastructure, Renewable Energy. His main work includes EV charging, inductive wireless power transfer, photovoltaic, renewable energy, and energy storage applications.

ANDREAS LECHNER is a Systems Engineer for Energy Infrastructure working in Texas Instruments. Andreas is supporting customers within the Energy Infrastructure sector worldwide. Andreas earned his master's degree from the University of Applied Sciences in Landshut, Germany.

VSEVOLOD ELANTSEV is a Systems Engineer for Energy Infrastructure in Texas Instruments Germany. Vsevolod is focusing on power conversion systems. Vsevolod graduated from the South Russian State Technical University, Novocherkassk, Russia, in 2011.