TIDUF67 April   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Terminology
    2. 1.2 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 AM263x Microcontrollers
        1. 2.2.1.1 TMDSCNCD263
        2. 2.2.1.2 LP-AM263
  9. 3System Design Theory
    1. 3.1 Three-Phase PMSM Drive
      1. 3.1.1 Mathematical Model and FOC Structure of PMSM
      2. 3.1.2 Field Oriented Control of PM Synchronous Motor
        1. 3.1.2.1 The ( a ,   b ) ⇒ ( α , β ) Clarke Transformation
        2. 3.1.2.2 The α , β ⇒ ( d ,   q ) Park Transformation
        3. 3.1.2.3 The Basic Scheme of FOC for AC Motor
        4. 3.1.2.4 Rotor Flux Position
      3. 3.1.3 Sensorless Control of PM Synchronous Motor
        1. 3.1.3.1 Enhanced Sliding Mode Observer With Phase Locked Loop
          1. 3.1.3.1.1 Design of ESMO for PMSM
          2. 3.1.3.1.2 Rotor Position and Speed Estimation with PLL
      4. 3.1.4 Hardware Prerequisites for Motor Drive
      5. 3.1.5 Additional Control Features
        1. 3.1.5.1 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
        2. 3.1.5.2 Flying Start
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Software Requirements
      1. 4.2.1 Importing and Configuring Project
      2. 4.2.2 Project Structure
      3. 4.2.3 Lab Software Overview
    3. 4.3 Test Setup
      1. 4.3.1 LP-AM263 Setup
      2. 4.3.2 BOOSTXL-3PHGANINV Setup
      3. 4.3.3 TMDSCNCD263 Setup
      4. 4.3.4 TMDSADAP180TO100 Setup
      5. 4.3.5 TMDSHVMTRINSPIN Setup
    4. 4.4 Test Results
      1. 4.4.1 Level 1 Incremental Build
        1. 4.4.1.1 Build and Load Project
        2. 4.4.1.2 Setup Debug Environment Windows
        3. 4.4.1.3 Run the Code
      2. 4.4.2 Level 2 Incremental Build
        1. 4.4.2.1 Build and Load Project
        2. 4.4.2.2 Setup Debug Environment Windows
        3. 4.4.2.3 Run the Code
      3. 4.4.3 Level 3 Incremental Build
        1. 4.4.3.1 Build and Load Project
        2. 4.4.3.2 Setup Debug Environment Windows
        3. 4.4.3.3 Run the Code
      4. 4.4.4 Level 4 Incremental Build
        1. 4.4.4.1 Build and Load Project
        2. 4.4.4.2 Setup Debug Environment Windows
        3. 4.4.4.3 Run the Code
    5. 4.5 Adding Additional Functionality to Motor Control Project
      1. 4.5.1 Using DATALOG Function
      2. 4.5.2 Using PWMDAC Function
      3. 4.5.3 Adding CAN Functionality
      4. 4.5.4 Adding SFRA Functionality
        1. 4.5.4.1 Principle of Operation
        2. 4.5.4.2 Object Definition
        3. 4.5.4.3 Module Interface Definition
        4. 4.5.4.4 Using SFRA
    6. 4.6 Building a Custom Board
      1. 4.6.1 Building a New Custom Board
        1. 4.6.1.1 Hardware Setup
        2. 4.6.1.2 Migrating Reference Code to a Custom Board
          1. 4.6.1.2.1 Setting Hardware Board Parameters
          2. 4.6.1.2.2 Modifying Motor Control Parameters
          3. 4.6.1.2.3 Changing Pin Assignment
          4. 4.6.1.2.4 Configuring the PWM Module
          5. 4.6.1.2.5 Configuring the ADC Module
          6. 4.6.1.2.6 Configuring the CMPSS Module
  11. 5General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines
  12. 6Design and Documentation Support
    1. 6.1 Design Files
      1. 6.1.1 Schematics
      2. 6.1.2 BOM
      3. 6.1.3 PCB Layout Recommendations
        1. 6.1.3.1 Layout Prints
    2. 6.2 Tools and Software
    3. 6.3 Documentation Support
    4. 6.4 Support Resources
    5. 6.5 Trademarks
  13. 7About the Author
Design of ESMO for PMSM

The conventional PLL integrated into the SMO is shown in Figure 3-8.

GUID-20211216-SS0I-T9PT-8LKN-5ZQCWMSQSQ4Z-low.svg Figure 3-8 Block Diagram of eSMO with PLL for a PMSM

The traditional reduced-order sliding mode observer is constructed, which mathematical model is shown in Equation 10 and the block diagram is shown in Figure 3-9.

Equation 10. i^˙αi^˙β=1Ld-Rs-ω^e(Ld-Lq)ω^e(Ld-Lq)-Rsi^αi^β+1LdVα-e^α+zαVβ-e^β+zβ

where z α and z β are sliding mode feedback components and are defined as:

Equation 11. zαzβ=kαsign(i^α-iα)kβsign(i^β-iβ)

Where k α and k β are the constant sliding mode gain designed by Lyapunov stability analysis. If k α and k β are positive and significant enough to maintain the stable operation of the SMO, the k α and k β are usually large enough to hold k α > m a x ( e α ) and k β > m a x ( e β ) .

GUID-20211216-SS0I-ZMPM-8JZR-NV3CT2MP2FCC-low.svg Figure 3-9 Block Diagram of Traditional Sliding Mode Observer

The estimated value of EEMF in α-β axes ( e ^ α , e ^ β ) can be obtained by low-pass filter from the discontinuous switching signals z α and z α :

Equation 12. e^αe^β=ωcs+ωczαzβ

Where ω c = 2 π f c is the cutoff angular frequency of the LPF, which is usually selected according to the fundamental frequency of the stator current.

Therefore, the rotor position can be directly calculated from arc-tangent the back EMF, defined as follow

Equation 13. θ^e=-tan-1e^αe^β

Low pass filter removes the high-frequency term of the sliding mode function, which leads to occur phase delay resulting. This can be compensated by the relationship between the cut-off frequency ω c and back EMF frequency ω e , which is defined as:

Equation 14. θe=-tan-1(ωeωc)

And then the estimated rotor position by using SMO method is:

Equation 15. θ^e=-tan-1e^αe^β+θe

In a digital control application, a time discrete equation of the SMO is needed. The Euler method is the appropriate way to transform to a time discrete observer. The time discrete system matrix of Equation 10 in α-β coordinates is given by Equation 16 as:

Equation 16. i˙^α(n+1)i˙^β(n+1)=FαFβi˙^α(n)i˙^β(n)+GαGβVα*(n)-e^α(n)+zα(n)Vβ*(n)-e^β(n)+zβ(n)

Where the matrix F and G are given by Equation 17 and Equation 18 as:

Equation 17. FαFβ=e-RsLde-RsLq
Equation 18. GαGβ=1Rs1-e-RsLd1-e-RsLq

The time discrete form of Equation 12 is given by Equation 19 as:

Equation 19. e^α(n+1)e^β(n+1)=e^α(n)e^β(n)+2πfczα(n)-e^α(n)zβ(n)-e^β(n)