TIDUF67 April   2024  – December 2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Terminology
    2. 1.2 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 AM263x Microcontrollers
        1. 2.2.1.1 TMDSCNCD263
        2. 2.2.1.2 LP-AM263
  9. 3System Design Theory
    1. 3.1 Three-Phase PMSM Drive
      1. 3.1.1 Mathematical Model and FOC Structure of PMSM
      2. 3.1.2 Field Oriented Control of PM Synchronous Motor
        1. 3.1.2.1 The (a, b) → (α, β) Clarke Transformation
        2. 3.1.2.2 The (α, β) → (d, q) Park Transformation
        3. 3.1.2.3 The Basic Scheme of FOC for AC Motor
        4. 3.1.2.4 Rotor Flux Position
      3. 3.1.3 Sensorless Control of PM Synchronous Motor
        1. 3.1.3.1 Enhanced Sliding Mode Observer With Phase Locked Loop
          1. 3.1.3.1.1 Design of ESMO for PMSM
          2. 3.1.3.1.2 Rotor Position and Speed Estimation with PLL
      4. 3.1.4 Hardware Prerequisites for Motor Drive
      5. 3.1.5 Additional Control Features
        1. 3.1.5.1 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
        2. 3.1.5.2 Flying Start
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Software Requirements
      1. 4.2.1 Importing and Configuring Project
      2. 4.2.2 Project Structure
      3. 4.2.3 Lab Software Overview
    3. 4.3 Test Setup
      1. 4.3.1 LP-AM263 Setup
      2. 4.3.2 BOOSTXL-3PHGANINV Setup
      3. 4.3.3 TMDSCNCD263 Setup
      4. 4.3.4 TMDSADAP180TO100 Setup
      5. 4.3.5 TMDSHVMTRINSPIN Setup
    4. 4.4 Test Results
      1. 4.4.1 Level 1 Incremental Build
        1. 4.4.1.1 Build and Load Project
        2. 4.4.1.2 Setup Debug Environment Windows
        3. 4.4.1.3 Run the Code
      2. 4.4.2 Level 2 Incremental Build
        1. 4.4.2.1 Build and Load Project
        2. 4.4.2.2 Setup Debug Environment Windows
        3. 4.4.2.3 Run the Code
      3. 4.4.3 Level 3 Incremental Build
        1. 4.4.3.1 Build and Load Project
        2. 4.4.3.2 Setup Debug Environment Windows
        3. 4.4.3.3 Run the Code
      4. 4.4.4 Level 4 Incremental Build
        1. 4.4.4.1 Build and Load Project
        2. 4.4.4.2 Setup Debug Environment Windows
        3. 4.4.4.3 Run the Code
    5. 4.5 Adding Additional Functionality to Motor Control Project
      1. 4.5.1 Using DATALOG Function
      2. 4.5.2 Using PWMDAC Function
      3. 4.5.3 Adding CAN Functionality
      4. 4.5.4 Adding SFRA Functionality
        1. 4.5.4.1 Principle of Operation
        2. 4.5.4.2 Object Definition
        3. 4.5.4.3 Module Interface Definition
        4. 4.5.4.4 Using SFRA
    6. 4.6 Building a Custom Board
      1. 4.6.1 Building a New Custom Board
        1. 4.6.1.1 Hardware Setup
        2. 4.6.1.2 Migrating Reference Code to a Custom Board
          1. 4.6.1.2.1 Setting Hardware Board Parameters
          2. 4.6.1.2.2 Modifying Motor Control Parameters
          3. 4.6.1.2.3 Changing Pin Assignment
          4. 4.6.1.2.4 Configuring the PWM Module
          5. 4.6.1.2.5 Configuring the ADC Module
          6. 4.6.1.2.6 Configuring the CMPSS Module
  11. 5General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines
  12. 6Design and Documentation Support
    1. 6.1 Design Files
      1. 6.1.1 Schematics
      2. 6.1.2 BOM
      3. 6.1.3 PCB Layout Recommendations
        1. 6.1.3.1 Layout Prints
    2. 6.2 Tools and Software
    3. 6.3 Documentation Support
    4. 6.4 Support Resources
    5. 6.5 Trademarks
  13. 7About the Author
Design of ESMO for PMSM

The conventional PLL integrated into the SMO is shown in Figure 3-8.

TIDM-02018 Block Diagram of eSMO with PLL for a PMSMFigure 3-8 Block Diagram of eSMO with PLL for a PMSM

The traditional reduced-order sliding mode observer is constructed, which mathematical model is shown in Equation 13 and the block diagram is shown in Figure 3-9.

Equation 13. i^˙αi^˙β=1Ld-Rs-ω^e(Ld-Lq)ω^e(Ld-Lq)-Rsi^αi^β+1LdVα-e^α+zαVβ-e^β+zβ

where zα and zβ are sliding mode feedback components and are defined as:

Equation 14. zαzβ=kαsign(i^α-iα)kβsign(i^β-iβ)

Where kα and kβ are the constant sliding mode gain designed by Lyapunov stability analysis. If kα and kβ are positive and significant enough to maintain the stable operation of the SMO, the kα and kβ are usually large enough to hold Equation 15 and Equation 16.

Equation 15. kα>max(eα)
Equation 16. kβ>max(eβ)
TIDM-02018 Block Diagram of Traditional Sliding Mode ObserverFigure 3-9 Block Diagram of Traditional Sliding Mode Observer

The estimated value of EEMF in α-β axes (Equation 18, Equation 19) can be obtained by low-pass filter from the discontinuous switching signals zα and zβ:

Equation 17. e^αe^β=ωcs+ωczαzβ
Equation 18. êα
Equation 19. êβ

Where Equation 20 is the cutoff angular frequency of the LPF, which is usually selected according to the fundamental frequency of the stator current.

Equation 20. ωc=2πfc

Therefore, the rotor position can be directly calculated from arc-tangent the back EMF, defined as follows

Equation 21. θ^e=-tan-1e^αe^β

Low pass filter removes the high-frequency term of the sliding mode function, which leads to occur phase delay resulting. This can be compensated by the relationship between the cut-off frequency ωc and back EMF frequency ωe, which is defined as:

Equation 22. θe=-tan-1(ωeωc)

And then the estimated rotor position by using SMO method is:

Equation 23. θ^e=-tan-1e^αe^β+θe

In a digital control application, a time discrete equation of the SMO is needed. The Euler method is the appropriate way to transform to a time discrete observer. The time discrete system matrix of Equation 13 in α-β coordinates is given by Equation 24 as:

Equation 24. i˙^α(n+1)i˙^β(n+1)=FαFβi˙^α(n)i˙^β(n)+GαGβVα*(n)-e^α(n)+zα(n)Vβ*(n)-e^β(n)+zβ(n)

Where the matrix [F] and [G] are given by Equation 25 and Equation 26 as:

Equation 25. FαFβ=e-RsLde-RsLq
Equation 26. GαGβ=1Rs1-e-RsLd1-e-RsLq

The time discrete form of Equation 17 is given by Equation 27 as:

Equation 27. e^α(n+1)e^β(n+1)=e^α(n)e^β(n)+2πfczα(n)-e^α(n)zβ(n)-e^β(n)