TIDUF67 April   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Terminology
    2. 1.2 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 AM263x Microcontrollers
        1. 2.2.1.1 TMDSCNCD263
        2. 2.2.1.2 LP-AM263
  9. 3System Design Theory
    1. 3.1 Three-Phase PMSM Drive
      1. 3.1.1 Mathematical Model and FOC Structure of PMSM
      2. 3.1.2 Field Oriented Control of PM Synchronous Motor
        1. 3.1.2.1 The ( a ,   b ) ⇒ ( α , β ) Clarke Transformation
        2. 3.1.2.2 The α , β ⇒ ( d ,   q ) Park Transformation
        3. 3.1.2.3 The Basic Scheme of FOC for AC Motor
        4. 3.1.2.4 Rotor Flux Position
      3. 3.1.3 Sensorless Control of PM Synchronous Motor
        1. 3.1.3.1 Enhanced Sliding Mode Observer With Phase Locked Loop
          1. 3.1.3.1.1 Design of ESMO for PMSM
          2. 3.1.3.1.2 Rotor Position and Speed Estimation with PLL
      4. 3.1.4 Hardware Prerequisites for Motor Drive
      5. 3.1.5 Additional Control Features
        1. 3.1.5.1 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
        2. 3.1.5.2 Flying Start
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Software Requirements
      1. 4.2.1 Importing and Configuring Project
      2. 4.2.2 Project Structure
      3. 4.2.3 Lab Software Overview
    3. 4.3 Test Setup
      1. 4.3.1 LP-AM263 Setup
      2. 4.3.2 BOOSTXL-3PHGANINV Setup
      3. 4.3.3 TMDSCNCD263 Setup
      4. 4.3.4 TMDSADAP180TO100 Setup
      5. 4.3.5 TMDSHVMTRINSPIN Setup
    4. 4.4 Test Results
      1. 4.4.1 Level 1 Incremental Build
        1. 4.4.1.1 Build and Load Project
        2. 4.4.1.2 Setup Debug Environment Windows
        3. 4.4.1.3 Run the Code
      2. 4.4.2 Level 2 Incremental Build
        1. 4.4.2.1 Build and Load Project
        2. 4.4.2.2 Setup Debug Environment Windows
        3. 4.4.2.3 Run the Code
      3. 4.4.3 Level 3 Incremental Build
        1. 4.4.3.1 Build and Load Project
        2. 4.4.3.2 Setup Debug Environment Windows
        3. 4.4.3.3 Run the Code
      4. 4.4.4 Level 4 Incremental Build
        1. 4.4.4.1 Build and Load Project
        2. 4.4.4.2 Setup Debug Environment Windows
        3. 4.4.4.3 Run the Code
    5. 4.5 Adding Additional Functionality to Motor Control Project
      1. 4.5.1 Using DATALOG Function
      2. 4.5.2 Using PWMDAC Function
      3. 4.5.3 Adding CAN Functionality
      4. 4.5.4 Adding SFRA Functionality
        1. 4.5.4.1 Principle of Operation
        2. 4.5.4.2 Object Definition
        3. 4.5.4.3 Module Interface Definition
        4. 4.5.4.4 Using SFRA
    6. 4.6 Building a Custom Board
      1. 4.6.1 Building a New Custom Board
        1. 4.6.1.1 Hardware Setup
        2. 4.6.1.2 Migrating Reference Code to a Custom Board
          1. 4.6.1.2.1 Setting Hardware Board Parameters
          2. 4.6.1.2.2 Modifying Motor Control Parameters
          3. 4.6.1.2.3 Changing Pin Assignment
          4. 4.6.1.2.4 Configuring the PWM Module
          5. 4.6.1.2.5 Configuring the ADC Module
          6. 4.6.1.2.6 Configuring the CMPSS Module
  11. 5General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines
  12. 6Design and Documentation Support
    1. 6.1 Design Files
      1. 6.1.1 Schematics
      2. 6.1.2 BOM
      3. 6.1.3 PCB Layout Recommendations
        1. 6.1.3.1 Layout Prints
    2. 6.2 Tools and Software
    3. 6.3 Documentation Support
    4. 6.4 Support Resources
    5. 6.5 Trademarks
  13. 7About the Author

Build and Load Project

  1. Set up the motor driver hardware board and the TI LaunchPad or controlCARD as described in Section 4.3, except the motor does NOT need to be connected to the motor driver board in this build level.
  2. Connect a USB cable from the computer to the onboard USB connector on the TI LaunchPad or controlCARD to enable isolation JTAG emulation to the MCU.
  3. Power on the motor driver board by applying the appropriate voltage to the bus voltage input terminal as described in Section 4.3.
  4. Import the universal motor control project into CCS and select the correct build configuration as described in Section 4.2.1. Open the sys_settings.h file and set DMC_BUILDLEVEL to DMC_LEVEL_1. This can make sure the project is configured to run the first incremental build.
  5. In the Project Explorer window, make sure the correct target configuration file is set as Active by right-clicking on the desired target configuration file name and selecting Set as Active Target Configuration. The recommendation is to also set the desired target configuration file as default by right-clicking on the file name and selecting Set as Default Target Configuration. One reason for doing this is because there is no visible indicator to show which file is active, but if the file is set to default then the [default] indicator appears next to the file name in the project explorer window. Setting the file as default can also cause the file to be used by default unless a different configuration file is specifically set to Active. You can also link a target configuration to a project in the workspace by going to View > Target Configurations and right-clicking on the target configuration name in the Target Configurations view and selecting Link to Project.
  6. Right-click the project name and click Rebuild Project. Watch the Console window. Any errors in the project are displayed in the Console window.
  7. On successful completion of the build, click the Debug button or click RunDebug. The IDE now automatically connects to the target, load the output file into the device, and change to the Debug perspective. The CCS Debug icon appears in the upper right corner, indicating that the user is now in the Debug Perspective view. The program needs to be halted at the start of main().