TIDUF67 April   2024  – December 2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Terminology
    2. 1.2 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 AM263x Microcontrollers
        1. 2.2.1.1 TMDSCNCD263
        2. 2.2.1.2 LP-AM263
  9. 3System Design Theory
    1. 3.1 Three-Phase PMSM Drive
      1. 3.1.1 Mathematical Model and FOC Structure of PMSM
      2. 3.1.2 Field Oriented Control of PM Synchronous Motor
        1. 3.1.2.1 The (a, b) → (α, β) Clarke Transformation
        2. 3.1.2.2 The (α, β) → (d, q) Park Transformation
        3. 3.1.2.3 The Basic Scheme of FOC for AC Motor
        4. 3.1.2.4 Rotor Flux Position
      3. 3.1.3 Sensorless Control of PM Synchronous Motor
        1. 3.1.3.1 Enhanced Sliding Mode Observer With Phase Locked Loop
          1. 3.1.3.1.1 Design of ESMO for PMSM
          2. 3.1.3.1.2 Rotor Position and Speed Estimation with PLL
      4. 3.1.4 Hardware Prerequisites for Motor Drive
      5. 3.1.5 Additional Control Features
        1. 3.1.5.1 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
        2. 3.1.5.2 Flying Start
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Software Requirements
      1. 4.2.1 Importing and Configuring Project
      2. 4.2.2 Project Structure
      3. 4.2.3 Lab Software Overview
    3. 4.3 Test Setup
      1. 4.3.1 LP-AM263 Setup
      2. 4.3.2 BOOSTXL-3PHGANINV Setup
      3. 4.3.3 TMDSCNCD263 Setup
      4. 4.3.4 TMDSADAP180TO100 Setup
      5. 4.3.5 TMDSHVMTRINSPIN Setup
    4. 4.4 Test Results
      1. 4.4.1 Level 1 Incremental Build
        1. 4.4.1.1 Build and Load Project
        2. 4.4.1.2 Setup Debug Environment Windows
        3. 4.4.1.3 Run the Code
      2. 4.4.2 Level 2 Incremental Build
        1. 4.4.2.1 Build and Load Project
        2. 4.4.2.2 Setup Debug Environment Windows
        3. 4.4.2.3 Run the Code
      3. 4.4.3 Level 3 Incremental Build
        1. 4.4.3.1 Build and Load Project
        2. 4.4.3.2 Setup Debug Environment Windows
        3. 4.4.3.3 Run the Code
      4. 4.4.4 Level 4 Incremental Build
        1. 4.4.4.1 Build and Load Project
        2. 4.4.4.2 Setup Debug Environment Windows
        3. 4.4.4.3 Run the Code
    5. 4.5 Adding Additional Functionality to Motor Control Project
      1. 4.5.1 Using DATALOG Function
      2. 4.5.2 Using PWMDAC Function
      3. 4.5.3 Adding CAN Functionality
      4. 4.5.4 Adding SFRA Functionality
        1. 4.5.4.1 Principle of Operation
        2. 4.5.4.2 Object Definition
        3. 4.5.4.3 Module Interface Definition
        4. 4.5.4.4 Using SFRA
    6. 4.6 Building a Custom Board
      1. 4.6.1 Building a New Custom Board
        1. 4.6.1.1 Hardware Setup
        2. 4.6.1.2 Migrating Reference Code to a Custom Board
          1. 4.6.1.2.1 Setting Hardware Board Parameters
          2. 4.6.1.2.2 Modifying Motor Control Parameters
          3. 4.6.1.2.3 Changing Pin Assignment
          4. 4.6.1.2.4 Configuring the PWM Module
          5. 4.6.1.2.5 Configuring the ADC Module
          6. 4.6.1.2.6 Configuring the CMPSS Module
  11. 5General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines
  12. 6Design and Documentation Support
    1. 6.1 Design Files
      1. 6.1.1 Schematics
      2. 6.1.2 BOM
      3. 6.1.3 PCB Layout Recommendations
        1. 6.1.3.1 Layout Prints
    2. 6.2 Tools and Software
    3. 6.3 Documentation Support
    4. 6.4 Support Resources
    5. 6.5 Trademarks
  13. 7About the Author

Three-Phase PMSM Drive

Permanent Magnet Synchronous Motor (PMSM) has a wound stator, a permanent magnet rotor assembly and internal or external devices to sense rotor position. The sensing devices provide position feedback for adjusting frequency and amplitude of stator voltage reference properly to maintain rotation of the magnet assembly. The combination of an inner permanent magnet rotor and outer windings offers the advantages of low rotor inertia, efficient heat dissipation, and reduction of the motor size.

  • Synchronous motor construction: Permanent magnets are rigidly fixed to the rotating axis to create a constant rotor flux. This rotor flux usually has a constant magnitude. The stator windings when energized create a rotating electromagnetic field. To control the rotating magnetic field, control the stator currents.
  • The actual structure of the rotor varies depending on the power range and rated speed of the machine. Permanent magnets are an excellent choice for synchronous machines ranging up-to a few Kilowatts. For higher power ratings the rotor usually consists of windings in which a DC current circulates. The mechanical structure of the rotor is designed for number of poles desired, and the desired flux gradients desired.
  • The interaction between the stator and rotor fluxes produces a torque. Since the stator is firmly mounted to the frame, and the rotor is free to rotate, the rotor rotates, producing a useful mechanical output as shown in Figure 3-1.
  • The angle between the rotor magnetic field and stator field must be carefully controlled to produce maximum torque and achieve high electromechanical conversion efficiency. For this purpose a fine tuning is needed after closing the speed loop using sensorless algorithm to draw minimum amount of current under the same speed and torque conditions.
  • The rotating stator field must rotate at the same frequency as the rotor permanent magnetic field; otherwise the rotor experiences rapidly alternating positive and negative torque. This results in less than optimal torque production, and excessive mechanical vibration, noise, and mechanical stresses on the machine parts. In addition, if the rotor inertia prevents the rotor from being able to respond to these oscillations, the rotor stops rotating at the synchronous frequency, and respond to the average torque as seen by the stationary rotor: Zero. This means that the machine experiences a phenomenon known as pull-out. This is also the reason why the synchronous machine is not self starting.
  • The angle between the rotor field and the stator field must be equal to 90ºC to obtain the highest mutual torque production. This synchronization requires knowing the rotor position to generate the right stator field.
  • The stator magnetic field can be made to have any direction and magnitude by combining the contribution of different stator phases to produce the resulting stator flux.
TIDM-02018 Interaction Between the Rotating Stator Flux
                                        and the Rotor Flux Produces a TorqueFigure 3-1 Interaction Between the Rotating Stator Flux and the Rotor Flux Produces a Torque