TIDUF67 April   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Terminology
    2. 1.2 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 AM263x Microcontrollers
        1. 2.2.1.1 TMDSCNCD263
        2. 2.2.1.2 LP-AM263
  9. 3System Design Theory
    1. 3.1 Three-Phase PMSM Drive
      1. 3.1.1 Mathematical Model and FOC Structure of PMSM
      2. 3.1.2 Field Oriented Control of PM Synchronous Motor
        1. 3.1.2.1 The ( a ,   b ) ⇒ ( α , β ) Clarke Transformation
        2. 3.1.2.2 The α , β ⇒ ( d ,   q ) Park Transformation
        3. 3.1.2.3 The Basic Scheme of FOC for AC Motor
        4. 3.1.2.4 Rotor Flux Position
      3. 3.1.3 Sensorless Control of PM Synchronous Motor
        1. 3.1.3.1 Enhanced Sliding Mode Observer With Phase Locked Loop
          1. 3.1.3.1.1 Design of ESMO for PMSM
          2. 3.1.3.1.2 Rotor Position and Speed Estimation with PLL
      4. 3.1.4 Hardware Prerequisites for Motor Drive
      5. 3.1.5 Additional Control Features
        1. 3.1.5.1 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
        2. 3.1.5.2 Flying Start
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Software Requirements
      1. 4.2.1 Importing and Configuring Project
      2. 4.2.2 Project Structure
      3. 4.2.3 Lab Software Overview
    3. 4.3 Test Setup
      1. 4.3.1 LP-AM263 Setup
      2. 4.3.2 BOOSTXL-3PHGANINV Setup
      3. 4.3.3 TMDSCNCD263 Setup
      4. 4.3.4 TMDSADAP180TO100 Setup
      5. 4.3.5 TMDSHVMTRINSPIN Setup
    4. 4.4 Test Results
      1. 4.4.1 Level 1 Incremental Build
        1. 4.4.1.1 Build and Load Project
        2. 4.4.1.2 Setup Debug Environment Windows
        3. 4.4.1.3 Run the Code
      2. 4.4.2 Level 2 Incremental Build
        1. 4.4.2.1 Build and Load Project
        2. 4.4.2.2 Setup Debug Environment Windows
        3. 4.4.2.3 Run the Code
      3. 4.4.3 Level 3 Incremental Build
        1. 4.4.3.1 Build and Load Project
        2. 4.4.3.2 Setup Debug Environment Windows
        3. 4.4.3.3 Run the Code
      4. 4.4.4 Level 4 Incremental Build
        1. 4.4.4.1 Build and Load Project
        2. 4.4.4.2 Setup Debug Environment Windows
        3. 4.4.4.3 Run the Code
    5. 4.5 Adding Additional Functionality to Motor Control Project
      1. 4.5.1 Using DATALOG Function
      2. 4.5.2 Using PWMDAC Function
      3. 4.5.3 Adding CAN Functionality
      4. 4.5.4 Adding SFRA Functionality
        1. 4.5.4.1 Principle of Operation
        2. 4.5.4.2 Object Definition
        3. 4.5.4.3 Module Interface Definition
        4. 4.5.4.4 Using SFRA
    6. 4.6 Building a Custom Board
      1. 4.6.1 Building a New Custom Board
        1. 4.6.1.1 Hardware Setup
        2. 4.6.1.2 Migrating Reference Code to a Custom Board
          1. 4.6.1.2.1 Setting Hardware Board Parameters
          2. 4.6.1.2.2 Modifying Motor Control Parameters
          3. 4.6.1.2.3 Changing Pin Assignment
          4. 4.6.1.2.4 Configuring the PWM Module
          5. 4.6.1.2.5 Configuring the ADC Module
          6. 4.6.1.2.6 Configuring the CMPSS Module
  11. 5General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines
  12. 6Design and Documentation Support
    1. 6.1 Design Files
      1. 6.1.1 Schematics
      2. 6.1.2 BOM
      3. 6.1.3 PCB Layout Recommendations
        1. 6.1.3.1 Layout Prints
    2. 6.2 Tools and Software
    3. 6.3 Documentation Support
    4. 6.4 Support Resources
    5. 6.5 Trademarks
  13. 7About the Author

Enhanced Sliding Mode Observer With Phase Locked Loop

Model-based method is used to achieve position sensorless control of the IPMSM drive system when the motor runs at middle or high speed. The model method estimates the rotor position by the back-EMF or the flux linkage model. The sliding mode observer is an observer-design method based on sliding mode control. The structure of the system is not fixed but purposefully changed according to the current state of the system, forcing the system to move according to the predetermined sliding mode trajectory. The advantages include fast response, strong robustness, and insensitivity to both parameter changes and disturbances.