TIDUF72 August   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
    2. 1.2 End Equipment
    3. 1.3 Electricity Meter
    4. 1.4 Power Quality Meter, Power Quality Analyzer
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Magnetic Tamper Detection With TMAG5273 Linear 3D Hall-Effect Sensor
      2. 2.2.2 Analog Inputs of Standalone ADCs
      3. 2.2.3 Voltage Measurement Analog Front End
      4. 2.2.4 Analog Front End for Current Measurement
    3. 2.3 Highlighted Products
      1. 2.3.1 AMC131M03
      2. 2.3.2 ADS131M02
      3. 2.3.3 MSPM0G1106
      4. 2.3.4 TMAG5273
      5. 2.3.5 ISO6731
      6. 2.3.6 TRS3232E
      7. 2.3.7 TPS709
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
      1. 3.1.1  Software Requirements
      2. 3.1.2  UART for PC GUI Communication
      3. 3.1.3  Direct Memory Access (DMA)
      4. 3.1.4  ADC Setup
      5. 3.1.5  Foreground Process
      6. 3.1.6  Formulas
        1. 3.1.6.1 Standard Metrology Parameters
        2. 3.1.6.2 Power Quality Formulas
      7. 3.1.7  Background Process
      8. 3.1.8  Software Function per_sample_dsp()
      9. 3.1.9  Voltage and Current Signals
      10. 3.1.10 Pure Waveform Samples
      11. 3.1.11 Frequency Measurement and Cycle Tracking
      12. 3.1.12 LED Pulse Generation
      13. 3.1.13 Phase Compensation
    2. 3.2 Test Setup
      1. 3.2.1 Power Supply Options and Jumper Setting
      2. 3.2.2 Electricity Meter Metrology Accuracy Testing
      3. 3.2.3 Viewing Metrology Readings and Calibration
        1. 3.2.3.1 Calibrating and Viewing Results From PC
      4. 3.2.4 Calibration and FLASH Settings for MSPM0+ MCU
      5. 3.2.5 Gain Calibration
      6. 3.2.6 Voltage and Current Gain Calibration
      7. 3.2.7 Active Power Gain Calibration
      8. 3.2.8 Offset Calibration
      9. 3.2.9 Phase Calibration
    3. 3.3 Test Results
      1. 3.3.1 Energy Metrology Accuracy Results
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
      3. 4.1.3 PCB Layout Recommendations
      4. 4.1.4 Layout Prints
      5. 4.1.5 Altium Project
      6. 4.1.6 Gerber Files
      7. 4.1.7 Assembly Drawings
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Authors

LED Pulse Generation

In electricity meters, the energy consumption of the load is normally measured in a fraction of kilowatt-hour (kWh) pulses. This information can be used to accurately calibrate any meter for accuracy measurement. Typically, the measuring element (the MSPM0+ microcontroller) is responsible for generating pulses proportional to the energy consumed. To serve both these tasks efficiently, the pulse generation must be accurate with relatively little jitter. Although time jitters are not an indication of bad accuracy, time jitters give a negative indication of the overall accuracy of the meter. The jitter must be averaged out due to this negative indication of accuracy.

This application uses average power to generate these energy pulses. The average power accumulates at every DRDY port ISR interrupt, thereby spreading the accumulated energy from the previous one-second time frame evenly for each interrupt in the current one-second time frame. This accumulation process is equivalent to converting power to energy. When the accumulated energy crosses a threshold, a pulse is generated. The amount of energy above this threshold is kept and a new energy value is added on top of the threshold in the next interrupt cycle. Because the average power tends to be a stable value, this way of generating energy pulses is very steady and free of jitter.

The threshold determines the energy tick specified by meter manufacturers and is a constant. The tick is usually defined in pulses-per-kWh or just in kWh. One pulse must be generated for every energy tick. For example, in this application, the number of pulses generated per kWh is set to 6400 for active and reactive energies. The energy tick in this case is 1kWh / 6400. Energy pulses are generated and available on the ACT and REACT pins headers and also through light-emitting diodes (LEDs) on the board. GPIO pins are used to produce the ACT and REACT energy pulses.

In the reference design, the LED that is labeled Active corresponds to the active energy consumption for the single-phase or split-phase sum. Reactive corresponds to the cumulative split-phase reactive energy sum.

Figure 3-8 shows the flow diagram for pulse generation with a pulse constant of 6400, though TI recommends reducing this value to 3600 or even lower if the energy meter supports currents beyond 80A.

TIDA-010944 Pulse
                    Generation for Energy Indication Figure 3-8 Pulse Generation for Energy Indication

The average power is in units of 0.001W and a 1kWh threshold is defined in Equation 24.

Equation 24. 1kWh threshold = 1 0.001 × 1   k W × ( N u m b e r   o f   i n t e r r u p t s   p e r   s e c o n d ) × ( N u m b e r   o f   s e c o n d s   i n   o n e   h o u r ) = 1000000 × 8000 × 3600 = 0 x 1 A 3185 C 50000