TIDUF73 September   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Design Theory
      2. 2.2.2 Resistor Selection
        1. 2.2.2.1 Transistor and Diode Selection
      3. 2.2.3 Overcurrent Detection – Short-Circuit Protection
    3. 2.3 Highlighted Products
      1. 2.3.1 TPSI3100-Q1
      2. 2.3.2 INA180-Q1
      3. 2.3.3 TPSI2140-Q1
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
      1. 3.1.1 External Hardware Requirements
    2. 3.2 Test Setup
    3. 3.3 Test Results
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author

Design Considerations

The precharge design process begins with the requirements as the requirements are the most consequential aspect in the choice of components. Table 2-1 lists the requirements.

Table 2-1 Precharge Design Requirements
REQUIREMENT NAME VALUE
Precharge Time 0.5 seconds
System Voltage 800V (1000V)
DC-Link Capacitance 2mF

This design must charge a 2mF DC-Link capacitor up to the system voltage of 800V in 0.5 seconds. However, 800V EVs can carry as much as 1000V at full charge, so the components in the design must be sized accordingly.