TIDUF76 June   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Why use Radar?
    2. 1.2 TI Corner Radar Design
    3. 1.3 Key System Specification
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 AWRL1432 Single-Chip Radar Solution
      2. 2.3.2 AWRL1432BOOST-BSD Evaluation Module
      3. 2.3.3 TCAN4550-Q1 Integrated CAN-FD Controller and Transceiver
    4. 2.4 System Design Theory
      1. 2.4.1  Antenna Configuration
      2. 2.4.2  Chirp Configuration and System Performance
      3. 2.4.3  Data Path
      4. 2.4.4  Chirp Timing
      5. 2.4.5  Memory Allocation
      6. 2.4.6  Frame Reconfiguration
      7. 2.4.7  Vmax Extension
      8. 2.4.8  Group Tracker
      9. 2.4.9  Dynamic Clutter Removal
      10. 2.4.10 CAN-FD Transceiver
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Required Hardware and Software
      1. 3.1.1 Hardware
      2. 3.1.2 Software and GUI
    2. 3.2 Test Setup
    3. 3.3 Test Results
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks

Why use Radar?

Frequency-modulated continuous-wave (FMCW) radars allow the accurate measurement of distances and relative velocities of obstacles and other vehicles; therefore, radars are useful for autonomous vehicular applications (such as lane change assist (LCA) and rear cross traffic alert (RCTA)) and car safety applications (autonomous braking and collision avoidance). An important advantage of radars over camera and light-detection and ranging (LIDAR)-based systems is that radars are relatively immune to environmental conditions such as the effects of rain, dust, and smoke. Because FMCW radars transmit a specific signal (called a chirp) and process the reflections, FMCW radars work in complete darkness and also bright daylight (radars are not affected by glare). When compared with ultrasound, radars typically have a much longer range and much faster signal transit times.