TIDUF77 June   2024  – December 2024 MSPM0G1507

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Terminology
    2. 1.2 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 TMS320F2800137
      2. 2.3.2 MSPM0G1507
      3. 2.3.3 DRV7308
      4. 2.3.4 UCC28911
      5. 2.3.5 TLV9062
      6. 2.3.6 TLV74033
      7. 2.3.7 ISO6721B
      8. 2.3.8 TMP6131
    4. 2.4 System Design Theory
      1. 2.4.1 Hardware Design
        1. 2.4.1.1 Modular Design
        2. 2.4.1.2 Auxiliary Flyback Power Supply
        3. 2.4.1.3 DC Link Voltage Sensing
        4. 2.4.1.4 Inrush Current Protection
        5. 2.4.1.5 Motor Phase Voltage Sensing
        6. 2.4.1.6 Motor Phase Current Sensing
        7. 2.4.1.7 Over Current Protection of DRV7308
        8. 2.4.1.8 Internal Overcurrent Protection for TMS320F2800F137
      2. 2.4.2 Three-Phase PMSM Drive
        1. 2.4.2.1 Field-Oriented Control of PM Synchronous Motor
          1. 2.4.2.1.1 Space Vector Definition and Projection
            1. 2.4.2.1.1.1 (a, b) → (α, β) Clarke Transformation
            2. 2.4.2.1.1.2 (α, β) → (d, q) Park Transformation
          2. 2.4.2.1.2 Basic Scheme of FOC for AC Motor
          3. 2.4.2.1.3 Rotor Flux Position
        2. 2.4.2.2 Sensorless Control of PM Synchronous Motor
          1. 2.4.2.2.1 Enhanced Sliding Mode Observer With Phase-Locked Loop
            1. 2.4.2.2.1.1 Mathematical Model and FOC Structure of an IPMSM
            2. 2.4.2.2.1.2 Design of ESMO for the IPMSM
            3. 2.4.2.2.1.3 Rotor Position and Speed Estimation With PLL
        3. 2.4.2.3 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
        4. 2.4.2.4 Hardware Prerequisites for Motor Drive
          1. 2.4.2.4.1 Motor Current Feedback
            1. 2.4.2.4.1.1 Three-Shunt Current Sensing
            2. 2.4.2.4.1.2 Single-Shunt Current Sensing
          2. 2.4.2.4.2 Motor Voltage Feedback
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Getting Started Hardware
      1. 3.1.1 Hardware Board Overview
      2. 3.1.2 Test Conditions
      3. 3.1.3 Test Equipment Required for Board Validation
    2. 3.2 Getting Started GUI
      1. 3.2.1 Test Setup
      2. 3.2.2 Overview of GUI Software
      3. 3.2.3 Setup Serial Port
      4. 3.2.4 Motor Identification
      5. 3.2.5 Spin Motor
      6. 3.2.6 Motor Fault Status
      7. 3.2.7 Tune Control Parameters
      8. 3.2.8 Virtual Oscilloscope
    3. 3.3 Getting Started C2000 Firmware
      1. 3.3.1 Download and Install Software Required for Board Test
      2. 3.3.2 Opening Project Inside CCS
      3. 3.3.3 Project Structure
      4. 3.3.4 Test Procedure
        1. 3.3.4.1 Build Level 1: CPU and Board Setup
          1. 3.3.4.1.1 Start CCS and Open Project
          2. 3.3.4.1.2 Build and Load Project
          3. 3.3.4.1.3 Setup Debug Environment Windows
          4. 3.3.4.1.4 Run the Code
        2. 3.3.4.2 Build Level 2: Open-Loop Check With ADC Feedback
          1. 3.3.4.2.1 Start CCS and Open Project
          2. 3.3.4.2.2 Build and Load Project
          3. 3.3.4.2.3 Setup Debug Environment Windows
          4. 3.3.4.2.4 Run the Code
        3. 3.3.4.3 Build Level 3: Closed Current Loop Check
          1. 3.3.4.3.1 Start CCS and Open Project
          2. 3.3.4.3.2 Build and Load Project
          3. 3.3.4.3.3 Setup Debug Environment Windows
          4. 3.3.4.3.4 Run the Code
        4. 3.3.4.4 Build Level 4: Full Motor Drive Control
          1. 3.3.4.4.1 Start CCS and Open Project
          2. 3.3.4.4.2 Build and Load Project
          3. 3.3.4.4.3 Setup Debug Environment Windows
          4. 3.3.4.4.4 Run the Code
          5. 3.3.4.4.5 Tuning Motor Drive FOC Parameters
          6. 3.3.4.4.6 Tuning Field Weakening and MTPA Control Parameters
          7. 3.3.4.4.7 Tuning Current Sensing Parameters
    4. 3.4 Test Results
      1. 3.4.1  Fast and clean Rising/Falling Edge
      2. 3.4.2  Inrush Current Protection
      3. 3.4.3  Thermal performance under 300VDC
      4. 3.4.4  Thermal performance under 220VAC
      5. 3.4.5  Overcurrent Protection by Internal CMPSS
      6. 3.4.6  IPM Efficiency with External Bias Supply under 300VDC
      7. 3.4.7  Board Efficiency with Onboard Bias Supply under 300VDC
      8. 3.4.8  Board Efficiency with External Bias Supply under 220VAC
      9. 3.4.9  Board Efficiency with Onboard Bias Supply under 220VAC
      10. 3.4.10 iTHD Test of Motor Phase Current
      11. 3.4.11 Standby Power Test
    5. 3.5 Migrate Firmware to a New Hardware Board
      1. 3.5.1 Configure the PWM, CMPSS, and ADC Modules
      2. 3.5.2 Setup Hardware Board Parameters
      3. 3.5.3 Configure Faults Protection Parameters
      4. 3.5.4 Setup Motor Electrical Parameters
    6. 3.6 Getting Started MSPM0 Firmware
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 Bill of Materials
      3. 4.1.3 PCB Layout Recommendations
      4. 4.1.4 Altium Project
      5. 4.1.5 Gerber Files
    2. 4.2 Software Files
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author
Design of ESMO for the IPMSM

Figure 2-21 shows the conventional PLL integrated into the SMO.

TIDA-010273 Block Diagram of eSMO With PLL for a PMSMFigure 2-21 Block Diagram of eSMO With PLL for a PMSM

The traditional reduced-order sliding-mode observer is constructed, with the mathematical model shown in Equation 21 and the block diagram shown in Figure 2-22.

Equation 21. i^˙αi^˙β=1Ld-Rs-ω^e(Ld-Lq)ω^e(Ld-Lq)-Rsi^αi^β+1LdVα-e^α+zαVβ-e^β+zβ

where

  • zα and zβ are sliding-mode feedback components and are defined as shown in Equation 22:
Equation 22. zαzβ=kαsign(i^α-iα)kβsign(i^β-iβ)

where

  • kα and kβ are the constant sliding-mode gain designed by Lyapunov stability analysis

If kα and kβ are positive and significant enough to provide the stable operation of the SMO, then kα and kβ are large enough to hold

Equation 23. kα>max(eα)

and

Equation 24. kβ>max(eβ)
TIDA-010273 Block Diagram of Traditional Sliding-Mode ObserverFigure 2-22 Block Diagram of Traditional Sliding-Mode Observer

The estimated value of EEMF in α-β axes (Equation 25, Equation 26) can be obtained by low-pass filter from the discontinuous switching signals zα and zα:

Equation 25. e^α
Equation 26. e^β
Equation 27. e^αe^β=ωcs+ωczαzβ

where

Equation 28. ωc=2πfc

is the cutoff angular frequency of the LPF, which is usually selected according to the fundamental frequency of the stator current

Therefore, the rotor position can be directly calculated from arc-tangent the back EMF, as Equation 29 defines:

Equation 29. θ^e=-tan-1e^αe^β

Low-pass filters remove the high-frequency term of the sliding-mode function, which results in phase delay. The delay can be compensated by the relationship between the cut-off frequency ωc and back EMF frequency ωe, which is defined as shown in Equation 30:

Equation 30. θe=-tan-1(ωeωc)

Then the estimated rotor position by using SMO method is found with Equation 31:

Equation 31. θ^e=-tan-1e^αe^β+θe

In a digital control application, a time-discrete equation of the SMO is needed. The Euler method is the appropriate way to transform to a time-discrete observer. The time-discrete system matrix of Equation 21 in α-β coordinates is given by Equation 32 as:

Equation 32. i˙^α(n+1)i˙^β(n+1)=FαFβi˙^α(n)i˙^β(n)+GαGβVα*(n)-e^α(n)+zα(n)Vβ*(n)-e^β(n)+zβ(n)

where

Equation 33. FαFβ=e-RsLde-RsLq
Equation 34. GαGβ=1Rs1-e-RsLd1-e-RsLq

The time-discrete form of Equation 27 is given by Equation 35 as:

Equation 35. e^α(n+1)e^β(n+1)=e^α(n)e^β(n)+2πfczα(n)-e^α(n)zβ(n)-e^β(n)