TIDUF83 September   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 DP83TC817S-Q1 (Automotive SPE PHY)
      2. 2.3.2 TPS629210-Q1 (3.3V Rail Buck Converter)
      3. 2.3.3 TPS7B8233-Q1 (3.3V VSLEEP Ultra-Low-IQ Low-Dropout Regulator)
      4. 2.3.4 TPS74701-Q1 (1.0V Rail Low-Dropout Regulator)
      5. 2.3.5 CDC6CE025000-Q1 (BAW Oscillator)
  9. 3System Design Theory
    1. 3.1 Ethernet PHY
      1. 3.1.1 Ethernet PHY Power Supply
      2. 3.1.2 Ethernet PHY Clock Source
    2. 3.2 Power Coupling Network
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Software Requirements
    3. 4.3 Test Setup
    4. 4.4 Test Results
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author

Ethernet PHY Power Supply

The DP83TC817S-Q1 is capable of operating with a wide range of I/O supply voltages (3.3V, 2.5V, or 1.8V). This board features an IO supply voltage of 3.3V to interface with various baseboards capable of 3.3V I/O voltage. The DP83TC817S-Q1 also requires a 1.0V rail. Figure 3-1 shows the implemented schematic that allows use of the DP83TC817S-Q1 integrated LDO to generate the required 1.0V. No power supply sequencing is required. Check and follow the DP83TC817-Q1 Precise and Secure 100BASE-T1 Automotive Ethernet with TC10, IEEE802.1AS and IEEE802.1AE MACsec data sheet for the latest power supply device recommendations.

TIDA-020072 Ethernet PHY 1.0V Rail
          Schematic Figure 3-1 Ethernet PHY 1.0V Rail Schematic