TIDUF84 June   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 UCC28810
      2. 2.3.2 MCF8315
      3. 2.3.3 MSPM0L
      4. 2.3.4 MSPM0C
  9. 3System Design Theory
    1. 3.1 MCF8315 Design
      1. 3.1.1 Power section
      2. 3.1.2 GPIO section
    2. 3.2 ACDC Design: Single Stage PFC
    3. 3.3 Host MCU Design
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
      1. 4.1.1 Hardware Overview
      2. 4.1.2 TIDA-010951 PCB
    2. 4.2 Software Requirements
    3. 4.3 Testing requirements
    4. 4.4 Test Setup
    5. 4.5 Test Results
      1. 4.5.1 Power Management in TIDA-010951
      2. 4.5.2 UCC28810 Based Single Stage PFC
      3. 4.5.3 BLDC Residential Fan Operation Using MCF8315C
        1. 4.5.3.1 Power-Up Sequence
        2. 4.5.3.2 Forward Windmilling (ISD Forward Resync)
        3. 4.5.3.3 Reverse Windmilling (ISD Reverse Resync)
        4. 4.5.3.4 Direction Reversal
        5. 4.5.3.5 Fan Acceleration/Deceleration
      4. 4.5.4 Thermal Performance
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author
  13. 7Recognition

Fan Acceleration/Deceleration

Figure 4-10 and Figure 4-11 show the acceleration and deceleration performance of MCF8315C-Q1 when changing fan speed from 100->30% and 30->100%. The acceleration rate is as set in the EEPROM while the deceleration rate is lower of the following two values - determined by AVS (to prevent voltage spike on 24V rail) and EEPROM configured value. During acceleration/deceleration, the maximum current limit is set by EEPROM configured value to prevent over current condition.

TIDA-010951 Acceleration Figure 4-10 Acceleration
TIDA-010951 Deceleration Figure 4-11 Deceleration