TIDUF98 October   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 End Equipment
      1. 1.1.1 Electricity Meter
    2. 1.2 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 ADS131M03
      2. 2.2.2 MSPM0L2228
      3. 2.2.3 THVD1400
      4. 2.2.4 ISO6731
      5. 2.2.5 DRV5032
    3. 2.3 Design Considerations
      1. 2.3.1 Design Hardware Implementation
        1. 2.3.1.1 Analog Inputs
          1. 2.3.1.1.1 Voltage Measurement Analog Front End
          2. 2.3.1.1.2 Current Measurement Analog Front End
      2. 2.3.2 Energy Metrology Software
        1. 2.3.2.1 Software Architecture
        2. 2.3.2.2 Setup
          1. 2.3.2.2.1 Clocking Scheme
          2. 2.3.2.2.2 SPI
          3. 2.3.2.2.3 UART Setup for GUI Communication
          4. 2.3.2.2.4 Real-Time Clock
          5. 2.3.2.2.5 LCD Controller
          6. 2.3.2.2.6 Direct Memory Access
    4. 2.4 Hardware, Software, Testing Requirements, and Test Results
      1. 2.4.1 Required Hardware and Software
        1. 2.4.1.1 Cautions and Warnings
        2. 2.4.1.2 Hardware
          1. 2.4.1.2.1 Connections to the Test Setup
          2. 2.4.1.2.2 Power Supply Options and Jumper Settings
        3. 2.4.1.3 Calibration
      2. 2.4.2 Testing and Results
        1. 2.4.2.1 Test Setup
          1. 2.4.2.1.1 Viewing Metrology Readings and Calibration
            1. 2.4.2.1.1.1 Viewing Results From LCD
            2. 2.4.2.1.1.2 Viewing Results From PC GUI
        2. 2.4.2.2 Electricity Meter Metrology Accuracy Testing
        3. 2.4.2.3 Electricity Meter Metrology Accuracy Results
  9. 3Design Files
    1. 3.1 Schematics
    2. 3.2 Bill of Materials
    3. 3.3 PCB Layout Recommendations
      1. 3.3.1 Layout Prints
    4. 3.4 Altium Project
    5. 3.5 Gerber Files
    6. 3.6 Assembly Drawings
  10. 4Related Documentation
    1. 4.1 Trademarks
  11. 5About the Authors

ISO6731

The isolated RS-485 portion of this reference design uses capacitive galvanic isolation, which has an inherent life span advantage over an opto-isolator. In particular, industrial devices are usually pressed into service for much longer periods of time than consumer electronics; therefore, the maintenance of effective isolation over a period of 15 years or longer is important.

The variant of the ISO6731 device used in the RS-485 circuitry of this reference design provides galvanic isolation up to 5kVRMS for one minute per UL. This digital isolator has three isolated channels where two channels are forward channels and the other is a reverse channel. In this design, two isolation channels are used for the TX and RX. If RS-485 is selected for communication, the third isolation channel is used for the control signal to enable the receiver or driver. Each isolation channel has a logic input and output buffer separated by a double capacitive silicon dioxide (SiO2) insulation barrier. This chip supports a signaling rate of 50 Mbps and operates from a 2.5V, 3.3V, and 5V supply and logic levels and is characterized from –40°C to 125°C.