Luis Chioye
The transimpedance amplifier (TIA) is one of the most common circuits in the world of precision analog circuits. The dynamic range required of a single TIA can be quite a challenge, often spanning many decades, such as picoamperes to microamperes.
Selecting a single resistor to accommodate such a wide dynamic range is a lose-lose situation, so circuit designers will often turn to an array of switches to select a few different resistor values, depending on the current level measured at the time. The switch on-resistance (RON), drift and nonlinearity do play a significant role in TIA accuracy, however, particularly at lower feedback resistor values.
Maximize accuracy in your transimpedance amplifier design | |
![]() |
Read our application report to learn how to build a low-noise, high-accuracy programmable gain TIA using the OPA3S328. |
TI’s OPA3S328 is a dual operational amplifier with integrated switches for transimpedance applications. It includes two wide-bandwidth (40 MHz) low-input bias current precision amplifiers with a multiplexer to select the different gains, and a second set of switches for Kelvin sensing. In this article, I’ll illustrate the advantages of Kelvin sense switching connections over traditional switched-gain TIA circuits.
This is the second installment in a four-part series discussing how to increase system accuracy and efficiency with operational amplifiers built on TI’s new, proprietary complementary metal-oxide semiconductor precision process technology.
It is possible to implement a TIA by cascading a single-gain TIA with a second programmable gain amplifier (PGA) stage. However, a better approach is to incorporate the programmable gain and TIA into a single stage. This approach provides a significant advantage from a noise performance perspective, since the sensor signal is gained on the first transimpedance stage, resulting in lower total output noise.
Figure 1 shows a programmable-gain TIA using the OPA3S328. The integrated 1-to-2 analog switch selects the different transimpedance feedback resistors.
The feedback resistor (RF) determines the gain of the transimpedance operational amplifier and converts the photodiode current (ID) to a voltage (VOUT) using Ohm’s law, VOUT = IDRF. For an accurate transimpedance current-to-voltage conversion, the amplifier’s input bias current and input offset voltage must be small. The OPA3S328 offers a low offset voltage of ±10 µV and a low-input bias current of ±0.2 pA. The gain resistors are typically decades apart to provide optimal resolution for different ranges of current.
Consider the electrical characteristics of the switches when designing the switched-gain TIA. The capacitances and resistances of the switch will affect the bandwidth and stability of the circuit. Furthermore, the RON of the switch can be a source of gain error.
The OPA3S328 incorporates two sets of low-leakage, low-capacitance switches useful for different circuit configurations, including programmable-gain transimpedance applications. The quad flat no-lead package version of the OPA3S328 features switch A in a 1-to-2 matrix configuration and switch B in a 1-to-3 matrix configuration.
Table 1 shows the critical data-sheet switch parameters.
Parameter | Test condition | Minimum | Typical | Maximum | Unit |
---|---|---|---|---|---|
CIN | Switch open, INSA/B = 2.5 V | 3 | pF | ||
COUT | Switch open, OUTSA/B/1/2/3 = 2.5 V | 0.7 | pF | ||
CINOUT | Switch closed, INSA/B = OUTSA/B/1/2/3 = 2.5 V | 6 | pF | ||
RON | Switch closed, V+ = 5 V, INSA/B = 2.5 V | 84 | 125 | Ω |
CIN and COUT represent the open switch parasitic switch capacitance, while CINOUT represents the total switch capacitance while the switch is closed. RON is the switch series resistance when the switch is closed. Figure 2 shows a simplified switch model.
On the programmable TIA, the voltage error across RON can be significant at the higher photodiode currents.
Figure 3 shows the calculation of the TIA output accounting for the RON voltage drop. In this example, the circuit is powered with a +5-V supply and uses a feedback resistor where RF2 = 2 kΩ, for a maximum photodiode current of 2 mA and a target TIA output of +4 V. The voltage drop across RON is 250 mV, however, and the TIA output has a significant error.
The RON will produce DC gain errors and distortion on the TIA. These gain errors are substantial at lower feedback resistor values. Furthermore, the RON changes with temperature and the switch voltage, producing gain error drift, nonlinearity and distortion. Figure 4 shows the change of RON vs. the voltage difference across the switch.
One way to virtually eliminate or significantly reduce the gain and non-linearity errors due to the switch series resistance is to build a multiplexer using the second integrated switch of the OPA3S328. The multiplexer input senses the TIA output connection for the selected gain right at the RF feedback resistor terminal. The second amplifier stage is configured in a high-impedance noninverting configuration, buffering the multiplexer and providing an accurate Kelvin sense connection of the TIA output for each gain. Since the input bias current of the operational amplifier is minimal, less than 10 pA, the voltage drop across the switch OUTSB2 RON is negligible.
Figure 5 shows the OPA3S328 circuit using switch B in a 3-to-1 matrix configuration to build the Kelvin sense connection multiplexer, buffered with a second-stage amplifier.
The Kelvin sense connections eliminate the gain error, drift and nonlinearity because of the switch RON through the high impedance second-stage amplifier. It is also possible to configure the second stage in a noninverting gain configuration, adding flexibility for higher gains while maintaining circuit bandwidth.
The OPA3S328 dual operational amplifier offers low-input bias current, high DC precision performance, low noise and high bandwidth, making it a good fit for TIA applications. The device incorporates two sets of low-leakage and low-capacitance analog switches useful for the configuration of PGAs in an integrated solution. The OPA3S328 programmable TIA, using analog switches and a Kelvin sense circuit topology, can help eliminate gain error, gain error drift and nonlinearity given the switch RON.
The next installment of this series will discuss how to achieve microvoltage-level precision in thermocouple and thermopile applications.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated