Brett Colteaux
Designers have several topologies to choose from when designing 51-W isolated DC/DC power over Ethernet (PoE) systems. In a perfect world, each topology would cost nothing, have 100% efficiency and be smaller than a grain of sand. But since that isn’t possible, system designers are forced to choose the topology that closest meets their needs. In this article, I’ll discuss three of the most commonly used 51-W power topologies for isolated DC/DC PoE subsystems – active clamp forward (ACF), synchronous flyback and nonsynchronous flyback – and the trade-offs of each.
The ACF topology enables the highest efficiency. This advantage is important when maximizing the power available to the load, especially when bumping up against class or type power-level limits in PoE systems. End equipment with small form factors or enclosures tends to have ACF topologies to reduce heat and avoid the need for a fan. ACF requires the most components, however; it’s also the most expensive and takes up the most space compared to the two other topologies. Figure 1 is an schematic from the Type 3 IEEE 802.3bt-Ready Active Clamp Forward Converter PoE Powered Device Reference Design.
Synchronous flybacks only require two metal-oxide semiconductor field-effect transistors (MOSFETs) (instead of the four required by the ACF topology), which leads to reduced cost and size, comparatively. In addition, it is possible to reduce the number of components and board space further through primary-side regulation (PSR). PSR eliminates the need for the optocoupler and feedback circuitry, which helps cut down the cost and size of the PoE design. Both PSR and non-PSR synchronous flybacks cost less than ACF, but typically reduce efficiency by approximately 2% to 3% compared to ACF. Figure 2 illustrates a synchronous flyback topology.
Nonsynchronous flyback topologies are the least expensive and have the lowest efficiency of the three topologies. The main difference between the synchronous and the nonsynchronous flyback is that the synchronous flyback uses a FET on the output, whereas the nonsynchronous uses a diode on the output. Since diodes are less efficient than FETs, the nonsynchronous flyback will be 1% to 2% less efficient than the synchronous flyback – but will be less costly. Figure 3 shows an example of this topology.
The TPS23730 works in all three topologies. Given its system-level flexibility, the TPS23730 is recommended for any Type 3, <51-W isolated PoE design. When choosing a PoE PD for your next design, consider using TI’s PoE PD selection flowchart (Figure 4) as part of your decision-making process.
Isolated 51-W PoE designs have several common topologies. Each topology has its advantages and disadvantages, and the topology that you ultimately choose will depend on your individual priorities.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated