Augmented reality (AR) head-up displays (HUDs) will completely change the driving experience by overlaying critical driving information onto the real world. The best example of an AR display today is found in fighter jets, which places a wealth of critical information in the pilot’s direct line of sight.
In an automotive environment, instead of issuing basic warning tones or symbols, graphics placed directly in the driver’s line of sight will convey information and identify threats in their field of view, enabling them to take immediate action. The graphics appear as a natural, conformal extension of the real world; they are not just a secondary display of information as found in today’s HUDs.
As discussed in my previous blog post on solar loads, solar irradiance poses a significant challenge for AR HUD designs. Unlike traditional HUDs, AR HUDs have a very wide field of view and a long virtual image distance, and require real-time integration of the vehicle’s sensor data with the HUD display. The long virtual image distance (>7m) and to a lesser extent the wider field of view (at least a 10 degree angle horizontally by a 4 degree angle vertically) result in a significantly greater concentration of solar energy, and a corresponding heat rise at the imager panel. In order to prevent thermal damage from solar irradiance, you must carefully design your AR HUD and run detailed solar-load simulations to verify reliable operation.
Here are a few points to consider when modeling the effects of solar load on an AR HUD design.
While it may seem obvious, I can’t overstate the importance of accuracy in your model’s elements. AR HUD solar load simulations require an accurate sunlight source model with proper angular, spectral and irradiance characteristics, as well as accurate spectral transmission curves for optical elements in the car, including (but not limited to) the windshield, glare trap and hot/cold mirrors.
During everyday driving conditions, a wide range of sunlight angles enter the car as it turns and tilts up and down hills. Therefore, it is important to scan the incoming sunlight across an appropriate range of angles, as the example shows in Figure 1. TI found the off-axis peak solar irradiance to be 2.7 times worse than chief ray levels in our AR HUD prototype using TI DLP® technology, resulting in significantly more thermal loading. The peak solar irradiance from the simulation is shown in Figure 2. If you don’t design your system to handle the worst-case off-axis solar irradiance, you run the risk of unacceptable field failures from damaged imager panels.
Simulating peak solar irradiance is only the first step in predicting and avoiding thermal failure. Solar energy converts to heat based on the spectral absorption of the material onto which it falls. For example, in our testing, illustrated in Figure 3, the temperature rise of a thin-film transistor (TFT) panel due to solar load increased 6 times faster than the transmissive micro lens array diffuser screen used in DLP technology-based systems, making the TFT panel much more susceptive to damage from solar irradiance.
At an ambient temperature of 85°C, Kuraray diffuser screens found in HUD systems with DLP technology can withstand up to 82kW/m2 of solar irradiance, due to their low spectral absorption and high operating temperature. This thermal performance enables DLP technology to support the long virtual image distances found in AR HUDs.
The design challenges of an AR HUD are significantly different than the challenges found in designing today’s HUDs. The solar load is significantly higher in an AR HUD, and you must run detailed thermal simulations and account for off-axis solar irradiance in your design. For a more detailed discussion on solar load modeling, see the white paper, “DLP Technology: Solar loading in augmented reality head-up display systems.”
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated