Jim Catt
Ethernet adoption and adaptation by original equipment manufacturers (OEMs) and Tier-1 companies has been underway for several years now. Automotive-oriented amendments to the Institute of Electrical and Electronics Engineers (IEEE) 802.3 standard include IEEE 802.3bw (100BASE-T1, 100Mbps, copper) and IEEE 802.3bp (1000BASE-T1, 1Gbps, copper).
These amendments are important because they incorporated additional requirements and features specific to automotive that have been enabled the explosion of in-vehicle infotainment, advanced driver assistance systems, on-board diagnostics and connectivity to the outside world (5G, V2X).
The amendments primarily address the physical layer (PHY). The affected PHY interface is the electrical interface to the network, also known as the medium dependent interface (MDI). One of the key aspects of automotive-unique PHY specifications is MDI signaling, which addresses (EMI)/electromagnetic compatibility (EMC) and enables the use of unshielded single twisted-pair cabling on the network. This reduces cabling weight and cost – important factors in automotive.
Reduced weight and cost are not the only advantages for a connected vehicle. Ethernet facilitates a switched network, enabling improved bandwidth and higher data rates not possible in other shared bus topologies (Controller Area Network, Local Interconnect Network, FlexRay and Media Oriented Systems Transport).
The adoption of a switched network approach to in-vehicle communications brings many of the same constraints imposed on previous shared bus topologies, such as reliability, EMI/EMC, compliance with electrical interface specifications and functional compliance. The latter two items affect interoperability with other devices connected to the network. The number of network-connected in-vehicle sensors is growing and may be acquired from different suppliers, each using a different PHY (see Figure 1).
Early on, several members of the automotive industry recognized the need to establish formal collaboration to address EMC/EMI and interoperability issues. The One-Pair Ether-Net (OPEN) Alliance (OA) special interest group (SIG) was established in 2011 and now includes over 300 members, including OEMs, suppliers and technology providers. The OA has guided both the development of the automotive-oriented amendments to Ethernet standards as well as PHY-oriented compliance test specifications to ensure threshold functionality and performance across components from different vendors, enabling the necessary reliability and ease of system integration that the automotive industry requires.
The OA compliance test specifications for PHYs cover three domains: EMC/EMI performance, functional and electrical conformance to the IEEE standard, and interoperability between PHYs from different vendors. The specific test specifications are:
Collectively known as interoperability and compliance tests for 100BASE-T1 PHYs, these test specifications were developed by OA Technical Committee No. 1 (TC1). Together, they constitute the primary compliance tests technology suppliers must pass in order to demonstrate the threshold capability and performance that the standards require. They also give OEMs and suppliers tools for comparing PHYs.
TC1 commissioned a trio of independent labs to provide test services for the industry, each addressing one of the three domains. As a member of the OA, TI participates in this testing. For example, TI’s DP83TC811R-Q1 and DP83TC811S-Q1 have successfully passed each of the compliance tests at the independent labs, including interoperability. Interoperability testing assesses the device under test’s (DUT) compatibility with other link partners (LPs) under various operating scenarios, where the DUT may assume either a master or slave role in the system.
The functionality tested includes:
Having successfully passed independent interoperability testing as well as EMI/EMC and PHY functionality testing, the DP83TC811R-Q1 and DP83TC811S-Q1 are fully qualified Automotive Electronics Council (AEC) Q-100 PHY for 100BASE-T1 (IEEE 802.3bw, BroadR-Reach) networks. These devices are fully supported by evaluation modules, an input/output buffer information specification (IBIS) model and software drivers.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated