Krushal
Intelligent integrated motor drivers and brushless DC (BLDC) motors can both help electric vehicles and next-generation automobiles become more attractive, viable, and reliable.
Integrated motor drivers combine everything required to drive a motor, such as field-effect transistors (FETs), gate drivers, and state machines, as shown in Figure 1. Integration prevents long routing of wires from the electronic control unit (ECU) to the motor and has additional advantages of smaller printed circuit board (PCB) size and overall system cost.
The advantages that BLDC motors provide in automotive applications include efficiency, compact size, longer motor and battery life, quieter in-cabin experience, and better electromagnetic interference (EMI) performance.
In this integrated intelligence blog series, I will describe the different performance requirements for BLDC motors and what makes TI integrated motor drivers “intelligent.” In this first installment, I will elaborate on EMI management in a BLDC system for automotive applications.
BLDC motors are driven at high switching frequency in the range of 10-100kHz. At this high frequency, the combination of high dv/dt and parasitic inductance causes high-frequency ringing on the switching node. This ringing emits high-frequency noise that can interfere with other components in the car.
Adjusting the slew rate of the applied voltage can help reduce interference caused by ringing, as shown in Figure 2 and Figure 3. In a discrete system, adjusting the gate-driver resistor modifies the slew rate of the voltage. You have to change the resistor value manually and select an optimal value based on the test results. The process of manually changing the resistor is tedious and requires multiple iterations of PCBs, which increase both overall size and complexity.
In the case of integrated drivers like the DRV10983-Q1, the gate resistor is not accessible and cannot be changed – and that’s not a bad thing. For example, slew-rate control is integrated in the DRV10983-Q1; you can easily change this slew rate by changing the register value, which speeds up the whole exercise of testing modules for EMI.
Another way to improve EMI performance is by changing the pulse-width modulation (PWM) switching frequency. The PWM switching frequency has an effect on ringing. In case of integrated drivers, this PWM frequency can be changed by configuring register. For example, the DRV10983-Q1 has two frequencies (25kHz and 50kHz) to choose from.
One common technique used to reduce EMI is dithering the main clock frequency. Dithering reduces the amplitude of peak frequency by spreading it across the spectrum.
By using motor drivers with fully integrated features such as slew-rate control, changeable PWM switching frequency and dithering, you can reduce the number of external components for filtering. This saves system costs, board space, and – most importantly – the amount of time it takes to figure out emission sources and the effort of having to redesign boards.
In future blogs, I will discuss startup reliability, initial position detection, anti-voltage surge, resynchronization while a motor is spinning in opposite or same direction, sinusoidal commutation and many other integrated features that make motor drivers intelligent.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated