Kelvin Odom
In my blog, Designing with integrated DC/DC power modules: do I still need external capacitors?, I discussed how it’s critical to go beyond just the front page of the data sheet to get the full story about a power module’s integration and solution size. In this installment, I’ll talk about similar issues with power module transient response and efficiency.
Transient response is one of the most challenging module features to condense into a front-page bullet list. This difficulty often causes manufacturers to claim that their device has something like “ultra-fast transient response,” which comes dangerously close to not meaning anything. For sensitive digital loads, knowing that a device’s transient response is ultra-fast is not sufficient. It’s important to know how far your output voltage will overshoot and undershoot, and how long it will take to recover. By making sure that the test conditions in the data sheet line up closely with your real application, you can easily evaluate how the device will perform in your system.
A module’s load transient performance is also closely tied to the device’s output capacitance. That is where the module integration question arises again. Even modules with integrated capacitors may have transient data pulled under “ideal” conditions, with lots of additional output capacitance. Piling on bulk capacitance can make for a nice-looking transient plot, but it can also make for an unwieldy power supply. Don’t assume that the plots in the data sheet are derived under “typical application conditions” unless this is explicitly stated.
Discussing efficiency in a concise way can be similarly challenging. One advantage that efficiency has over other data-sheet parameters is that there’s often an efficiency curve. It’s a lot less likely that module manufacturers will attempt to inflate the performance of their device with so many data points readily available, but there are still a few places you can get tripped up.
For converters with variable switching frequencies, the frequency at which the device is operating has a major impact on efficiency performance – make sure that data is available for the condition at which you’ll be operating. Similarly, efficiency can vary widely across the module’s input and output voltage ranges. Only the most appealing efficiency curve will make it to the front page, so looking at the device’s performance under a variety of conditions is key to getting the whole picture.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated