Kelvin Odom
I’m sure at some point or another, we’ve all agreed to terms and conditions that we haven’t really read. Why bother spending so much time reading fine print? Like any important document, data sheets also have fine print – one page of flashy specs, but upwards of 20 pages of fine print. This is especially true for power modules, where integration can mask key details about the device. There are a few common stumbling blocks in evaluating power modules based on the front page of their data sheet that I’ll discuss in this blog series.
It can be challenging to evaluate how integrated a module is. At its most basic level, a power module is just a small component with a converter and inductor inside, essentially replacing some amount of the board design that a power engineer would have to put time and effort into creating. However, not all modules are created equal: just because you’re using a power module doesn’t mean that you won’t also need external components (in some cases, like in Figure 1, a lot of them).
The greatest variance among modules has to do with whether the input and output capacitors are integrated or whether you have to add them externally. Even in modules with integrated capacitors, it’s critical to delve further into the data sheet to identify just what capacitance is inside your module. In some cases, the output capacitors included in the module are like a “donut” spare tire: while technically functional, they’re not really designed to work full time. A good way to identify whether you’ll need more capacitance is to look at the performance curves in the data sheet: if the manufacturer wasn’t able to achieve those results without adding external capacitors to the circuit, it’s likely you won’t be able to either. Modules like TI’s TPSM84A22 are good options, because even the specs on the front page are pulled without using external components.
External components also play heavily into the size of a power module solution. Module manufacturers all want to tout “the smallest footprint” or “lowest profile,” but you need the whole story for these claims to be meaningful. For example, a module with a 9mm-by-15mm footprint sounds considerably worse than a module with a 10mm-by-10mm footprint, but once you add the necessary capacitors to the 10mm-by-10 mm module, you may find it takes up much more space on the board. This principle is illustrated in Figure 2 below. For this reason, it’s important to look beyond just the module package size to determine what’s the best fit for your system.
Be sure to read my other installment of this series, Designing with integrated DC/DC power modules: how to check switching frequency, transient performance and output capacitance, where I discuss evaluating module efficiency and transient response. Read more about power modules and learn more about TI’s power module offerings.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated