John Griffith
As my colleague Bart Stiller mentioned in the first installment of this series, RS-485 is a multipoint differential bus, shown in Figure 1. This means that all of the nodes on the bus share one common transmission medium, and therefore every node placed onto the bus adds a load in parallel to all of the existing network transceivers and termination resistors. As the total number of nodes increases, the loading on each and every driver increases as well.
To set practical and measureable limits for RS-485 output drivers, the Telecommunications Industry Association (TIA)/Electronic Industries Alliance (EIA)-485 standard created a hypothetical “unit load,” and then limited the maximum number of unit loads that can be presented to any driver on an RS-485 bus to 32. The standard states that a driver must be able to drive a minimum 1.5 differential signal across a maximum of 32 unit loads in parallel with two 120-Ω termination resistors.
You can determine the unit-load parameter by sweeping the input voltage from -7 to +12 V on one bus pin, with the other bus pin held at ground, and then measuring the input leakage current. You will measure both bus pins individually, with the transceiver both in a powered and unpowered state. As you can imagine, the input leakage current depends on the input voltage; thus, when calculating the unit load, Equation 1 uses the worst-case ratio of input voltage to leakage current:
where VIN {-7 … + 12 V}.
In Figure 2, the bounds of -7 and +12 V in the standard are meant to allow up to ±7 V of ground-potential difference (GPD) between a driver output and a receiver, with the driver’s output voltage varying between GND and 5 V. Therefore, -7 V represents a receiver seeing a respective driver pin driving the bus low with a -7 V GPD, while +12 V represents a receiver seeing a respective driver pin driving the bus high with a +7 V GPD.
One unit load is equivalent to 1 mA of input leakage current at +12 V. This load represents a single-ended load with respect to ground. Another easy way to think of the unit load is the equivalent of a 12 kΩ resistance from either the A or B bus pins (and the Y and Z pins for full-duplex transceivers) to ground.
Once you’ve found the maximum ratio of input voltage to leakage current, you can calculate the equivalent unit load by dividing that ratio by 12 kΩ, expressing the result in terms of a fraction of the unit load.
Using this unit-load ratio, you can then easily calculate the maximum number of any variety of transceivers that the network can handle. For example, if you were looking at the THVD1520 RS-485 transceiver, which has a one-eighth unit-load input impedance, you would be able to place a theoretical maximum of 256 nodes on the network, as shown in Equation 2:
Table 1 shows the relationship between unit load, bus leakage current, equivalent input resistance and the maximum number of devices that can be on the network for a few typical unit loads.
If you recall from the second installment in this series, the common-mode load for an RS-485 driver-output test circuit is 375 Ω; see Figure 3. That is because it is the equivalent of 32 unit loads (12 kΩ) in parallel.
Moreover, if you are trying to figure out how many transceivers you can place on your network, this data sheet will have a unit-load parameter or a maximum input leakage current that can be used for calculating the unit load. The smaller the unit load, the more devices you can place onto the network.
In the next installment of this series about RS-485 basics, I’ll discuss standard terminations and how to use receiver fail-safe terminations.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated