Brett Barr
Finally, we have arrived at the concluding entry in this "Understanding MOSFET Data Sheets" blog series attempting to demystify the power MOSFET data sheet. In this blog, we will take a look at some of the other miscellaneous switching parameters that appear in the MOSFET data sheet, and examine their relevance (or lack thereof) to overall device performance. Note that if you are more of a visual learner, you can watch the video "Understanding MOSFET data sheets - switching parameters".
On the one hand, switching parameters like output charge (QOSS) and the reverse recovery charge of the FET’s intrinsic body diode (Qrr) are crucial elements that are responsible for a great portion of the FET’s switching losses in many high frequency power supply applications. Sorry if it may be starting to sound like a broken record at this point, but designers need to be careful when comparing FETs based on these parameters, because as is so often the case, test conditions matter!
Figure 1 below shows the output charge and reverse recovery charge as two sides to the same coin, measured at two different rates of di/dt on TI’s CSD18531Q5A 60V MOSFET. On the left, Qrr was measured at 360A/µs to be 85nC, and on the right, it was measured at 2000A/µs to be 146nC. While there is no industry standard for di/dt to measure the part at, we have seen competitors rate all the way down to 100A/us, in order to give the appearance of extra low Qrr.
Qrr can have an even stronger dependence on the diode forward current (If) the test was conducted at. And even further complicating matters is that some vendors do not include QOSS as a separate parameter, but rather just absorb this into the specification of Qrr. Besides the test conditions listed on the data sheet, other considerations like parasitic board inductances and subjective measurement methodologies make it virtually impossible to compare these parameters from separate vendors’ data sheets. That is not to say they are not important parameters to consider and design around, but for reliable comparative data, the only effective solution is to collect it independently using a common methodology and board.
The last parameters I will mention in this series are switching times. These four parameters are defined generally by the waveform below in Figure 2 and appear on virtually every vendor’s data sheet. They are so dependent on board and test conditions that one veteran in the FET industry (and personal mentor) often cites these as “the most useless parameters on the FET data sheet.” Meant to give an indication of switching speed, the reality is these can be just as much a reflection of driver strength and drain current as they are the FET characteristics. TI includes these parameters as tested at the device’s rated current, while others will test these at only 1A ID, to give the appearance of a faster switching device. Much more indicative of the device’s actual switching speed are the gate charge parameters and the internal gate resistance of the device, Rg, both of which are significantly less susceptible to these specmanship games.
Thank you for taking the time to read this series on MOSFET data sheets. I hope you found this an enlightening read, and walk away with a more clear understanding of the value and ambiguities of the parameters that appear on the power MOSFET data sheet. Feel free to share the entire series with anyone who might benefit from this perspective on how to read a MOSFET data sheet. And don't forget to watch the video "NexFET™:Lowest Rdson 80 and 100V TO-220 MOSFETs in the World" and consider one of TI’s NexFET power MOSFET products for your next design.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated