Sarmad Abedin
In part 1 of this blog, I discussed the necessity of interleaving the four phases of a synchronous buck to minimize input/output voltage ripple and improve thermal performance. You can further enhance thermal performance by following some key layout guidelines to ensure that the power is dissipated evenly across all four phases.
All four phases must have the same exact L-C output filter; you should select these filters to minimize the DC resistance (DCR) (inductor) and equivalent series resistance (ESR) (capacitor) losses. The LM5119 will share current between the four phases evenly, provided that both the shared traces between the controllers and the feedback traces are noise-free. The four switch nodes are the noisiest on the board, and to avoid noise coupling must be avoided. You can accomplish this by routing noise-sensitive traces along the edge of the board. Figure 1 highlights how the compensation pins of both ICs are tied together using an internal layer (shown in yellow) along the edge of the board.
Figure 2 shows the VOUT trace being carefully routed along the edge of the board to avoid the switch nodes. If possible, you should route this trace on the same internal layer as the COMP pins and surround the trace with GND copper pours to ensure noise immunity.
The power stage must be laid out to ensure that the noise is contained while having enough copper to withstand the power requirement. Make sure that the input capacitors are as close as possible to the drain of the high-side MOSFET and the source of the low-side FET. This will minimize switch-node ringing. Next, minimize the switch node so that it is only as big as necessary to carry the high currents. Keep all of the power-stage components on the top side of the board to contain noise to one side, so that it is not communicated to other layers.
Figure 3 shows the top-layer power stage for one of the phases of the automotive multi-phase synchronous buck power module reference design (PMP10979). The power flow starts from the bottom with input capacitors (C6, C7), then to the high-side and low-side FETs (Q1, Q3), followed by the inductor (L1) and ending with the output capacitors(C17, C18).
I used four layers for this design, with 2oz of copper to ensure good heat transfer. The customer requirements entailed that I only mount components on the top side of the board. To reduce board size further, you can place the ICs on the bottom layer, directly under the two phases they control. This will also help to reduce the length of key traces such as feedback and COMP. The top layer should have most of your IC signals, as well as copper pours for switch nodes, input and output voltages, and GND. Reserve the second layer for GND only and run multiple vias to dissipate the low-side FET heat quickly and efficiently. Reserve the third layer for VIN, VOUT and any other IC signals. The fourth layer is all GND.
The overall benefit of interleaving the four phases and having an optimized layout is that it will increase the efficiency of the power supply. Figure 4 shows the high efficiency measured from PMP10979, with various input voltages.
The automotive and industrial industries are booming, and demands on the non-isolated synchronous bucks are becoming more strenuous. Using a multiphase design in order to reduce the losses will also reduce part counts, decrease the board size and provide better thermal performance.
Read more Power Tips blogs
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated