William Cooper
In 2013, the largest sporting event in the world experienced a 34-minute play delay due to a power outage. The delay time was caused by the use of older lighting technologies that required a cool-down period before being turned back on and a warm-up period to reach full output levels. This long delay could have been shortened with the use of low-power LED-based lighting solutions, like that from Ephesus Lighting Inc. These solutions offer wireless real-time control in the form of on/off, dimming, sequencing and other effects.
This type of implementation is relatively new to the market and enables a number of advantages in terms of energy efficiency and functionality over more traditional systems, but these systems do have some additional requirements to consider. The perception of hundreds of cameras flashing all over a stadium could be quite useful in highlighting an event, but this type of effect would require low latency for hundreds of wirelessly controlled fixtures to enable instant (to the human eye at least) on and off capabilities. Additionally, these systems can consume significantly less power than other solutions when on, but ultra-low power consumption when the lights are off can help contribute to meeting energy requirements. Security is another important requirement as well since these lights should only be controlled by a stadium’s operations team.
In the Ephesus system, Anaren Air modules (based on TI’s Sub-1 GHz CC1101 RF transceiver) are paired with an ultra-low-power MSP430FRxx FRAM microcontroller to enable low-power wireless lighting control. Mark Bowyer, Director of Wireless Business Development at Anaren, explained the use of an MSP in the system:
“It was the FRAM in the device that was a deciding factor in the selection. As power interruptions and inconsistent power cleanliness is a constant battle, we needed to be able to retain fundamental command and control code in more of an ‘e-ink’ style repository. This allows us to retain system reboot and scene command sets in a ROM-style storage medium with flash accessibility and speed characteristics while maintaining our demand for the lowest power consumption while in dormant mode.”
In a system like the one described above, there are several benefits enabled by FRAM. Combining the non-volatility, write speeds, and low power of our FRAM MCUs with the integration of AES modules and memory protection units are what make devices like the MSP430FR5969 MCU stand apart from competitive solutions.
Are you interested in creating a wireless system like this one?
Consider getting started with the new MSP-EXP430FR6989 LaunchPad and the 430BOOST-CC110L RF BoosterPack. Then why not try adding state restoration after power fail with the new Compute Through Power Loss (CTPL) FRAM utility.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated