Bahram Mirshab
Flow meter manufacturers are responding to the needs of utility companies by rapidly adopting advanced ultrasonic flow measurement technology. Like most companies, utilities generally are in business to generate revenue from the service they provide, and they are keen to drive revenue without simply increasing rates. One of the best ways to do this is to more accurately monitor their customers’ usage of water and gas.
The majority of traditional utility meters are mechanical: inside the meter, there’s a mechanical wheel that measures water and gas usage by counting the number of times the wheel completes a full revolution. This sounds simple, but it’s not difficult to identify some flaws. The mechanical wheel spins most effortlessly when it is originally placed in the field. From that point forward, build-up of contaminants from the water and gas on the moving components will slow wheel rotation, which will shorten the operating life and degrade accuracy. In short, the degrading accuracy of a mechanical meter causes the utility company to lose money.
Unlike mechanical meters, ultrasonic flow meters have no moving parts. There is nothing to break down or degrade performance over time. In addition to being robust, ultrasonic meters are extremely accurate at measuring low flow rates, which means that utility companies can get paid for every drop of water and puff of gas that their customers use. Plus, they are virtually tamperproof.
Figure 1 shows the inner components of an ultrasonic flow meter. The flow sensor consists of a pipe with a nominal diameter, D, and two piezoelectric transducers placed at fixed distance, L, from each other. The transducers are mounted in a protective housing. The housing and the transducers are inserted into holes in the pipe, exposing the inner covers of the transducers to the fluid in the pipe. Two acoustic reflectors in the pipe direct the ultrasonic signals from one transducer to the other.
The technique of measuring flow with ultrasonic sensing is called delta time of flight (TOF). A measurement sequence begins by applying a burst of pulses to transducer A. Transducer A generates ultrasonic-pressure pulses that are directed toward transducer B through the acoustic reflectors in the pipe. As shown in Figure 2, when the first pulse is applied to transducer A, a start signal marks the beginning of the TOF measurement. On the receiver side, transducer B and the related signal processing electronics detect the incoming wave and generate a stop pulse to mark the time when an ultrasonic pulse is received. The time taken for the ultrasound wave to travel from A to B (the time between the start and the first stop pulse) is the TOF.
A precision timer measures the TOF from transducer A to B (TOFAB). After receiving the signal, transducer B switches to transmitting a set of ultrasonic-pressure pulses, which are then received by transducer A, thus creating a TOF measurement from B to A (TOFBA). The difference, or delta, between TOFAB and TOFBA is proportional to the velocity of the flow of the water or gas in the pipe.
These measurements can be accurate to within picoseconds with ultrasonic flow meters based on sensing products like TI’s TDC1000 ultrasonic analog front-end and TDC7200 time-to-digital converter. That’s why utility companies are making the switch to ultrasound.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated