The LM26LV and LM26LV-Q1 are low-voltage, precision, dual-output, low-power temperature switches and temperature sensors. The temperature trip point (TTRIP) can be preset at the factory to any temperature in the range of 0°C to 150°C in 1°C increments. Built-in temperature hysteresis (THYST) keeps the output stable in an environment of temperature instability.
In normal operation the LM26LV or LM26LV-Q1 temperature switch outputs assert when the die temperature exceeds TTRIP. The temperature switch outputs will reset when the temperature falls below a temperature equal to (TTRIP – THYST). The OVERTEMP digital output, is active-high with a push-pull structure, while the OVERTEMP digital output, is active-low with an open-drain structure.
The analog output, VTEMP, delivers an analog output voltage with Negative Temperature Coefficient (NTC).
Driving the TRIP_TEST input high causes the digital outputs to be asserted for in-situ verification and causes the threshold voltage to appear at the VTEMP output pin, which could be used to verify the temperature trip point.
The LM26LV's and LM26LV-Q1's low minimum supply voltage makes them ideal for 1.8-V system designs. The wide operating range, low supply current, and excellent accuracy provide a temperature switch solution for a wide range of commercial and industrial applications.
PART NUMBER | PACKAGE | BODY SIZE (NOM) |
---|---|---|
LM26LV, LM26LV-Q1 | WSON (6) | 2.20 mm × 2.50 mm |
Changes from F Revision (February 2013) to G Revision
Changes from E Revision (February 2013) to F Revision
PIN | TYPE | DESCRIPTION | EQUIVALENT CIRCUIT | |
---|---|---|---|---|
NAME | NO. | |||
GND | 2 | GND | Power supply ground | — |
OVERTEMP | 5 | O | Overtemperature switch output. Active high, push-pull. Asserted when the measured temperature exceeds the trip point temperature or if TRIP_TEST = 1. This pin may be left open if not used. |
![]() |
OVERTEMP | 3 | O | Overtemperature switch output. Active low, open-drain (See Determining the Pullup Resistor Value). Asserted when the measured temperature exceeds the trip point temperature or if TRIP_TEST = 1. This pin may be left open if not used. |
![]() |
TRIP_TEST | 1 | I | TRIP_TEST pin. Active high input. If TRIP_TEST = 0 (Default) then: VTEMP = VTS, temperature sensor output voltage. If TRIP_TEST = 1 then: OVERTEMP and OVERTEMP outputs are asserted and VTEMP = VTRIP, temperature trip voltage. This pin may be left open if not used. |
![]() |
VDD | 4 | PWR | Positive supply voltage | — |
VTEMP | 6 | O | VTEMP analog voltage output. If TRIP_TEST = 0 then: VTEMP = VTS, temperature sensor output voltage. If TRIP_TEST = 1 then: VTEMP = VTRIP, temperature trip voltage. This pin may be left open if not used. |
![]() |
Thermal Pad | — | — | The best thermal conductivity between the device and the PCB is achieved by soldering the DAP of the package to the thermal pad on the PCB. The thermal pad can be a floating node. However, for improved noise immunity the thermal pad must be connected to the circuit GND node, preferably directly to pin 2 (GND) of the device. | — |
MIN | MAX | UNIT | |
---|---|---|---|
Supply voltage | –0.3 | 6 | V |
Voltage at OVERTEMP pin | –0.3 | 6 | V |
Voltage at OVERTEMP and VTEMP pins | –0.3 | VDD + 0.5 | V |
TRIP_TEST input voltage | –0.3 | VDD + 0.5 | V |
Output current, any output pin | –7 | 7 | mA |
Input current at any pin(2) | 5 | mA | |
Maximum junction temperature, TJ(MAX) | 155 | °C | |
Storage temperature, Tstg | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±4500 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±1000 | |||
Machine model (MM)(3) | ±300 |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per AEC Q100-002(1) | ±4500 | V |
Charged-device model (CDM), per AEC Q100-011 | ±1000 | |||
Machine model (MM) | ±300 |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
VDD | Supply voltage | 1.6 | 5.5 | V | |
Supply current | 8 | µA | |||
TA | Specified ambient temperature | –50 | 150 | °C |
THERMAL METRIC(1) | LM26LV and LM26LV-Q1 | UNIT | |
---|---|---|---|
NGF (WSON) | |||
6 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 100.7 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 121.7 | °C/W |
RθJB | Junction-to-board thermal resistance | 70 | °C/W |
ψJT | Junction-to-top characterization parameter | 7.1 | °C/W |
ψJB | Junction-to-board characterization parameter | 70.3 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | 15.9 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
GENERAL SPECIFICATIONS | |||||||
IS | Quiescent power supply current | 8 | 16 | µA | |||
Hysteresis | 4.5 | 5 | 5.5 | °C | |||
OVERTEMP DIGITAL OUTPUT—ACTIVE HIGH, PUSH-PULL | |||||||
VOH | Logic High output voltage | VDD ≥ 1.6 V, Source ≤ 340 µA | VDD – 0.2 | V | |||
VDD ≥ 2 V, Source ≤ 498 µA | VDD – 0.2 | ||||||
VDD ≥ 3.3 V, Source ≤ 780 µA | VDD – 0.2 | ||||||
VDD ≥ 1.6 V, Source ≤ 600 µA | VDD – 0.45 | ||||||
VDD ≥ 2 V, Source ≤ 980 µA | VDD – 0.45 | ||||||
VDD ≥ 3.3 V, Source ≤ 1.6 mA | VDD – 0.45 | ||||||
BOTH OVERTEMP AND OVERTEMP DIGITAL OUTPUTS | |||||||
VOL | Logic Low output voltage | VDD ≥ 1.6 V, Source ≤ 385 µA | 0.2 | V | |||
VDD ≥ 2 V, Source ≤ 500 µA | 0.2 | ||||||
VDD ≥ 3.3 V, Source ≤ 730 µA | 0.2 | ||||||
VDD ≥ 1.6 V, Source ≤ 690 µA | 0.45 | ||||||
VDD ≥ 2 V, Source ≤ 1.05 mA | 0.45 | ||||||
VDD ≥ 3.3 V, Source ≤ 1.62 mA | 0.45 | ||||||
OVERTEMP DIGITAL OUTPUT—ACTIVE LOW, OPEN DRAIN | |||||||
IOH | Logic High output leakage current(3) | TA = 30°C | 0.001 | 1 | µA | ||
TA = 150°C | 0.025 | 1 | |||||
VTEMP ANALOG TEMPERATURE SENSOR OUTPUT | |||||||
VTEMP sensor gain | Gain 1 (trip point = 0°C to 69°C) | –5.1 | mV/°C | ||||
Gain 2 (trip point = 70°C to 109°C) | –7.7 | ||||||
Gain 3 (trip point = 110°C to 129°C) | –10.3 | ||||||
Gain 4 (trip point = 130°C to 150°C) | –12.8 | ||||||
VTEMP load regulation(4) | 1.6 V ≤ VDD < 1.8 V | Source ≤ 90 µA, VDD – VTEMP ≥ 200 mV |
–1 | –0.1 | mV | ||
Sink ≤ 100 µA, VTEMP ≥ 260 mV | 0.1 | 1 | |||||
VDD ≥ 1.8 V | Source ≤ 120 µA, VDD – VTEMP ≥ 200 mV |
–1 | –0.1 | ||||
Sink ≤ 200 µA, VTEMP ≥ 260 mV | 0.1 | 1 | |||||
Source or sink = 100 µA | 1 | Ω | |||||
Supply to VTEMP DC line regulation(5) | VDD = 1.6 V to 5.5 V | 0.29 | mV | ||||
74 | µV/V | ||||||
–82 | dB | ||||||
CL | VTEMP output load capacitance | Without series resistor. See Capacitive Loads. | 1100 | pF | |||
TRIP_TEST DIGITAL INPUT | |||||||
VIH | Logic High threshold voltage | VDD – 0.5 | V | ||||
VIL | Logic Low threshold voltage | 0.5 | |||||
IIH | Logic High input current | 1.5 | 2.5 | µA | |||
IIL | Logic Low input current(3) | 0.001 | 1 | µA |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
tEN | Time from power ON to digital output enabled(1) | 1.1 | 2.3 | ms | ||
tVTEMP | Time from power ON to analog temperature valid(1) | CL = 0 pF to 1100 pF | 1 | 2.9 | ms |
PARAMETER | TEST CONDITIONS | MIN | MAX | UNIT | |
---|---|---|---|---|---|
TRIP POINT ACCURACY | |||||
Trip point accuracy(2) | TA = 0°C to 150°C, VDD = 5 V | –2.2 | 2.2 | °C | |
VTEMP ANALOG TEMPERATURE SENSOR OUTPUT ACCURACY(3) | |||||
VTEMP temperature accuracy(2) | Gain 1 trip point = 0°C to 69°C |
TA = 20°C to 40°C, VDD = 1.6 V to 5.5 V | –1.8 | 1.8 | °C |
TA = 0°C to 70°C, VDD = 1.6 V to 5.5 V | –2 | 2 | |||
TA = 0°C to 90°C, VDD = 1.6 V to 5.5 V | –2.1 | 2.1 | |||
TA = 0°C to 120°C, VDD = 1.6 V to 5.5 V | –2.2 | 2.2 | |||
TA = 0°C to 150°C, VDD = 1.6 V to 5.5 V | –2.3 | 2.3 | |||
TA = –50°C to 0°C, VDD = 1.7 V to 5.5 V | –1.7 | 1.7 | |||
Gain 2 trip point = 70°C to 109°C |
TA = 20°C to 40°C, VDD = 1.8 V to 5.5 V | –1.8 | 1.8 | ||
TA = 0°C to 70°C, VDD = 1.9 V to 5.5 V | –2 | 2 | |||
TA = 0°C to 90°C, VDD = 1.9 V to 5.5 V | –2.1 | 2.1 | |||
TA = 0°C to 120°C, VDD = 1.9 V to 5.5 V | –2.2 | 2.2 | |||
TA = 0°C to 150°C, VDD = 1.9 V to 5.5 V | –2.3 | 2.3 | |||
TA = –50°C to 0°C, VDD = 2.3 V to 5.5 V | –1.7 | 1.7 | |||
Gain 3 trip point = 110°C to 129°C |
TA = 20°C to 40°C, VDD = 2.3 V to 5.5 V | –1.8 | 1.8 | ||
TA = 0°C to 70°C, VDD = 2.5 V to 5.5 V | –2 | 2 | |||
TA = 0°C to 90°C, VDD = 2.5 V to 5.5 V | –2.1 | 2.1 | |||
TA = 0°C to 120°C, VDD = 2.5 V to 5.5 V | –2.2 | 2.2 | |||
TA = 0°C to 150°C, VDD = 2.5 V to 5.5 V | –2.3 | 2.3 | |||
TA = –50°C to 0°C, VDD = 3 V to 5.5 V | –1.7 | 1.7 | |||
Gain 4 trip point = 130°C to 150°C |
TA = 20°C to 40°C, VDD = 2.7 V to 5.5 V | –1.8 | 1.8 | ||
TA = 0°C to 70°C, VDD = 3 V to 5.5 V | –2 | 2 | |||
TA = 0°C to 90°C, VDD = 3 V to 5.5 V | –2.1 | 2.1 | |||
TA = 0°C to 120°C, VDD = 3 V to 5.5 V | –2.2 | 2.2 | |||
TA = 0°C to 150°C, VDD = 3 V to 5.5 V | –2.3 | 2.3 | |||
TA = –50°C to 0°C, VDD = 3.6 V to 5.5 V | –1.7 | 1.7 |
100-mV overhead | TA = 80°C | Sourcing current |
VDD = 1.6 V | Sinking Current |
VDD = 2.4 V | Sinking Current |
Gain 2 (Trip Points = 70°C to 109°C) |
Gain 4 (Trip Points = 130°C to 150°C) |
200-mV overhead | TA = 80°C | Sourcing Current |
1.72-V overhead TA = 150°C | VDD = 2.4 V Sourcing current |
VDD = 1.8 V | Sinking Current |
Gain 1 (Trip Points = 0°C tp 69°C) |
Gain 3 (Trip Points = 110°C to 129°C) |