SNIS159H August   1999  – December 2017 LM35

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: LM35A, LM35CA Limits
    6. 6.6 Electrical Characteristics: LM35A, LM35CA
    7. 6.7 Electrical Characteristics: LM35, LM35C, LM35D Limits
    8. 6.8 Electrical Characteristics: LM35, LM35C, LM35D
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 LM35 Transfer Function
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Capacitive Drive Capability
    2. 8.2 Typical Application
      1. 8.2.1 Basic Centigrade Temperature Sensor
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
    3. 8.3 System Examples
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
  • NDV|3
  • LP|3
  • NEB|3
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Features

  • Calibrated Directly in Celsius (Centigrade)
  • Linear + 10-mV/°C Scale Factor
  • 0.5°C Ensured Accuracy (at 25°C)
  • Rated for Full −55°C to 150°C Range
  • Suitable for Remote Applications
  • Low-Cost Due to Wafer-Level Trimming
  • Operates From 4 V to 30 V
  • Less Than 60-μA Current Drain
  • Low Self-Heating, 0.08°C in Still Air
  • Non-Linearity Only ±¼°C Typical
  • Low-Impedance Output, 0.1 Ω for 1-mA Load

Applications

  • Power Supplies
  • Battery Management
  • HVAC
  • Appliances

Description

The LM35 series are precision integrated-circuit temperature devices with an output voltage linearly-proportional to the Centigrade temperature. The LM35 device has an advantage over linear temperature sensors calibrated in Kelvin, as the user is not required to subtract a large constant voltage from the output to obtain convenient Centigrade scaling. The LM35 device does not require any external calibration or trimming to provide typical accuracies of ±¼°C at room temperature and ±¾°C over a full −55°C to 150°C temperature range. Lower cost is assured by trimming and calibration at the wafer level. The low-output impedance, linear output, and precise inherent calibration of the LM35 device makes interfacing to readout or control circuitry especially easy. The device is used with single power supplies, or with plus and minus supplies. As the LM35 device draws only 60 μA from the supply, it has very low self-heating of less than 0.1°C in still air. The LM35 device is rated to operate over a −55°C to 150°C temperature range, while the LM35C device is rated for a −40°C to 110°C range (−10° with improved accuracy). The LM35-series devices are available packaged in hermetic TO transistor packages, while the LM35C, LM35CA, and LM35D devices are available in the plastic TO-92 transistor package. The LM35D device is available in an 8-lead surface-mount small-outline package and a plastic TO-220 package.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
LM35 TO-CAN (3) 4.699 mm × 4.699 mm
TO-92 (3) 4.30 mm × 4.30 mm
SOIC (8) 4.90 mm × 3.91 mm
TO-220 (3) 14.986 mm × 10.16 mm
  1. For all available packages, see the orderable addendum at the end of the datasheet.

Basic Centigrade Temperature Sensor
(2°C to 150°C)

LM35 basic_sensor_snis159.gif

Full-Range Centigrade Temperature Sensor

LM35 full-range_sensor_snis159.gif
Choose R1 = –VS / 50 µA
VOUT = 1500 mV at 150°C
VOUT = 250 mV at 25°C
VOUT = –550 mV at –55°C