SBOS745A May   2016  – June 2016 OPT3002

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Automatic Full-Scale Range Setting
      2. 7.3.2 Interrupt Operation, INT Pin, and Interrupt Reporting Mechanisms
      3. 7.3.3 I2C Bus Overview
        1. 7.3.3.1 Serial Bus Address
        2. 7.3.3.2 Serial Interface
    4. 7.4 Device Functional Modes
      1. 7.4.1 Automatic Full-Scale Setting Mode
      2. 7.4.2 Interrupt Reporting Mechanism Modes
        1. 7.4.2.1 Latched Window-Style Comparison Mode
        2. 7.4.2.2 Transparent Hysteresis-Style Comparison Mode
        3. 7.4.2.3 End-of-Conversion Mode
        4. 7.4.2.4 End-of-Conversion and Transparent Hysteresis-Style Comparison Mode
    5. 7.5 Programming
      1. 7.5.1 Writing and Reading
        1. 7.5.1.1 High-Speed I2C Mode
        2. 7.5.1.2 General-Call Reset Command
        3. 7.5.1.3 SMBus Alert Response
    6. 7.6 Register Maps
      1. 7.6.1 Internal Registers
        1. 7.6.1.1 Register Descriptions
          1. 7.6.1.1.1 Result Register (address = 00h)
          2. 7.6.1.1.2 Configuration Register (address = 01h) [reset = C810h]
          3. 7.6.1.1.3 Low-Limit Register (address = 02h) [reset = C0000h]
          4. 7.6.1.1.4 High-Limit Register (address = 03h) [reset = BFFFh]
          5. 7.6.1.1.5 Manufacturer ID Register (address = 7Eh) [reset = 5449h]
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Electrical Interface
      2. 8.1.2 Optical Interface
      3. 8.1.3 Compensation for the Spectral Response
    2. 8.2 Do's and Don'ts
  9. Power-Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Soldering and Handling Recommendations
    2. 12.2 DNP (S-PDSO-N6) Mechanical Drawings

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Features

  • Wide Optical Spectrum: 300 nm to 1000 nm
  • Automatic Full-Scale Setting Feature Simplifies Software and Configuration
  • Measurement Levels:
    • 1.2 nW/cm2 to 10 mW/cm2
  • 23-Bit Effective Dynamic Range With
    Automatic Gain Ranging
  • 12 Binary-Weighted, Full-Scale Range Settings:
    < 0.2% (typ) Matching Between Ranges
  • Low Operating Current: 1.8 µA (typ)
  • Operating Temperature: –40°C to +85°C
  • Wide Power-Supply: 1.6 V to 3.6 V
  • 5.5-V Tolerant I/O
  • Flexible Interrupt System
  • Small Form Factor: 2.0 mm × 2.0 mm × 0.65 mm

Applications

  • Intrusion and Door-Open Detection Systems
  • System Wake-Up Circuits
  • Medical and Scientific Instrumentation
  • Display Backlight Controls
  • Lighting Control Systems
  • Tablet and Notebook Computers
  • Thermostats and Home Automation Appliances
  • Outdoor Traffic and Street Lights

Description

The OPT3002 light-to-digital sensor provides the functionality of an optical power meter within a single device. This optical sensor greatly improves system performance over photodiodes and photoresistors. The OPT3002 has a wide spectral bandwidth, ranging from 300 nm to 1000 nm. Measurements can be made from 1.2 nW/cm2 up to 10 mW/cm2, without the need to manually select the full-scale ranges by using the built-in, full-scale setting feature. This capability allows light measurement over a 23-bit effective dynamic range. The results are compensated for dark-current effects, as well as other temperature variations.

Use the OPT3002 in optical spectral systems that require detection of a variety of wavelengths, such as optically-based diagnostic systems. The interrupt pin system can summarize the result of the measurement with one digital pin. Power consumption is very low, allowing the OPT3002 to be used as a low-power, battery-operated, wake-up sensor when an enclosed system is opened.

The OPT3002 is fully integrated and provides optical power reading directly from the I2C- and SMBus-compatible, two-wire, serial interface. Measurements are either continuous or single-shot. The OPT3002 fully-operational power consumption is as low as 0.8 µW at 0.8 SPS on a 1.8-V supply.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
OPT3002 USON (6) 2.00 mm x 2.00 mm
  1. For all available packages, see the package option addendum at the end of the datasheet.

Spectral Response

OPT3002 D001_SBOS745.gif

Block Diagram

OPT3002 ai_block_diag_sbos745.gif