SLLS804D March 2009 – August 2016 SN65HVDA540-5-Q1 , SN65HVDA540-Q1 , SN65HVDA541-5-Q1 , SN65HVDA541-Q1 , SN65HVDA542-5-Q1 , SN65HVDA542-Q1
PRODUCTION DATA.
The SN65HVDA54x-Q1 and SN65HVDA54x-5-Q1 devices, known as the HVDA54x and HVDA54x-5 respectively, are designed and qualified for use in automotive applications and meets or exceeds the specifications of the ISO 11898 High Speed CAN (Controller Area Network) Physical Layer standard (transceiver).
PART NUMBER | PACKAGE | BODY SIZE (NOM) |
---|---|---|
SN65HVDA54x-Q1, SN65HVDA54x-5-Q1 | SOIC (8) | 4.90 mm × 3.91 mm |
Changes from C Revision (December 2012) to D Revision
Changes from B Revision (September 2010) to C Revision
PIN | TYPE | DESCRIPTION | ||
---|---|---|---|---|
NAME | HVDA54x | HVDA54x-5 | ||
CANH | 7 | 7 | I/O | High level CAN bus line |
CANL | 6 | 6 | I/O | Low level CAN bus line |
GND | 2 | 2 | GND | Ground connection |
NC | — | 5 | Supply | HVDA54x: Transceiver logic level (IO) supply voltage HVDA54x-5: No connect |
RXD | 4 | 4 | O | CAN receive data output (low in dominant bus state, high in recessive bus state) |
STB/S | 8 | 8 | I | Mode select: STB, Standby mode (HVDA540/541) select pin (active high) S, Silent mode (HVDA542) select pin (active high) |
TXD | 1 | 1 | I | CAN transmit data input (low for dominant bus state, high for recessive bus state) |
VCC | 3 | 3 | Supply | Transceiver 5V supply voltage |
VIO | 5 | — | Supply | HVDA54x: Transceiver logic level (IO) supply voltage HVDA54x-5: No connect |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VCC | Supply voltage | –0.3 | 6 | V | |
VIO | I/O supply voltage | –0.3 | 6 | V | |
Voltage at bus terminals (CANH, CANL) | –27 | 40 | V | ||
IO | Receiver output current (RXD) | 20 | mA | ||
VI | Voltage input (TXD, STB, S) | HVDA54x | –0.3 | 6 V and VI ≤ VIO + 0.3 | V |
HVDA54x-5 | –0.3 | 6 | V | ||
TJ | Operating virtual-junction temperature | –40 | 150 | °C | |
TLEAD | Lead temperature (soldering, 10 seconds) | 260 | °C | ||
Tstg | Storage temperature | °C |
VALUE | UNIT | ||||
---|---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per AEC Q100-002(1) | All pins except 6 and 7 | ±4000 | V |
Pins 6 and 7(2) | ±12000 | ||||
Charged-device model (CDM), per AEC Q100-011 | ±1000 | ||||
Machine model | ±7000 | ||||
IEC 61000-4-2 contact discharge(3) | Pins 6 and 7 to pin 2 | ±7000 |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VCC | Supply voltage | 4.68 | 5.33 | V | |
VIO | I/O supply voltage | 3 | 5.33 | V | |
VI or VIC | Voltage at any bus terminal (separately or common mode) | –12 | 12 | V | |
VIH | High-level input voltage | TXD, STB, S (for HVD54x-5: VIO = VCC) | 0.7 × VIO | VIO | V |
VIL | Low-level input voltage | TXD, STB, S (for HVD54x-5: VIO = VCC) | 0 | 0.3 × VIO | V |
VID | Differential input voltage, bus | Between CANH and CANL | –6 | 6 | V |
IOH | High-level output current | RXD | –2 | mA | |
IOL | Low-level output current | RXD | 2 | mA | |
TA | Operating ambient free-air temperature | See Thermal Information and Power Dissipation Ratings | –40 | 125 | °C |
THERMAL METRIC(1) | HVDA54x, HVDA54x-5-Q1 | UNIT | ||
---|---|---|---|---|
D (SOIC) | ||||
8 PINS | ||||
RθJA | Junction-to-ambient thermal resistance | Low-K thermal resistance | 140 | °C/W |
High-K thermal resistance | 112 | |||
RθJC(top) | Junction-to-case (top) thermal resistance | 56 | °C/W | |
RθJB | Junction-to-board thermal resistance | 50 | °C/W | |
ψJT | Junction-to-top characterization parameter | 13 | °C/W | |
ψJB | Junction-to-board characterization parameter | 55 | °C/W | |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | — | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
SUPPLY CHARACTERISTICS (HVDA54x) | |||||||
ICC | 5-V supply current | Standby mode (HVDA540/541 Only) | STB at VIO, VCC = 5.33 V, VIO = 3 V, TXD at VIO (2) | 5 | µA | ||
Normal mode (Dominant) | TXD at 0 V, 60-Ω load, STB / S at 0 V | 50 | 70 | mA | |||
Normal mode (Recessive) | TXD at VIO, No load, STB / S at 0 V or S at VIO | 5.5 | 10 | ||||
Silent Mode (HVDA542 only) | TXD at VIO, No load, STB / S at 0 V or S at VIO | 5.5 | 10 | ||||
IIO | I/O supply current | Standby mode (HVDA540/541 Only) | STB at VIO , VCC = 5.33 V or 0 V, RXD floating, TXD at VIO
TA = –40°C, 25°C, 125°C(3) |
7 | 15 | µA | |
Normal mode (recessive or dominant) and Silent Mode (HVDA542 Only) | VCC = 5.33 V, RXD floating, TXD at 0 V or VIO. Normal Mode: STB or S at 0 V. Silent Mode (HVDA542): S at VIO. | 75 | 300 | ||||
UVVCC | Undervoltage detection on VCC for forced standby mode | 3.2 | 3.6 | 4 | V | ||
VHYS(UVVCC) | Hysteresis voltage for undervoltage detection on UVVCC for standby mode | 200 | mV | ||||
UVVIO | Undervoltage detection on VIO for forced standby mode | 1.9 | 2.45 | 2.95 | V | ||
VHYS(UVVIO) | Hysteresis voltage for undervoltage detection on UVVIO for forced standby mode | 130 | mV | ||||
SUPPLY CHARACTERISTICS (HVDA54x-5) | |||||||
ICC | 5-V supply current | Standby mode (HVDA540-5/541-5 Only) | STB at VCC, VCC = 5.33 V, TXD at VCC (2) | 20 | µA | ||
Normal mode (Dominant) | TXD at 0 V, 60-Ω load, STB / S at 0 V | 50 | 70 | mA | |||
Normal mode (Recessive) | TXD at VIO, No load, STB / S at 0 V or S at VIO | 5.5 | 10 | ||||
Silent Mode (HVDA542 only) | TXD at VIO, No load, STB / S at 0 V or S at VIO | 5.5 | 10 | ||||
UVVCC | Undervoltage detection on VCC for forced standby mode | 3.2 | 3.6 | 4 | V | ||
VHYS(UVVCC) | Hysteresis voltage for undervoltage detection on UVVCC for standby mode | 240 | mV | ||||
DEVICE SWITCHING CHARACTERISTICS: PROPAGATION TIME (LOOP TIME TXD TO RXD) | |||||||
tPROP(LOOP1) | Total loop delay, driver input (TXD) to receiver output (RXD), recessive to dominant | Figure 9, STB at 0 V | 70 | 230 | ns | ||
tPROP(LOOP2) | Total loop delay, driver input (TXD) to receiver output (RXD), dominant to recessive | 70 | 230 | ||||
DRIVER ELECTRICAL CHARACTERISTICS | |||||||
VO(D) | Bus output voltage (dominant) | CANH | VI = 0 V, STB / S at 0 V, RL = 60 Ω, See Figure 2 and Figure 15 |
2.9 | 4.5 | V | |
CANL | 0.8 | 1.75 | |||||
VO(R) | Bus output voltage (recessive) | VI = VIO, VIO = 3 V, STB at 0 V or S at X(4), RL = 60 Ω, See Figure 2 and Figure 15 | 2 | 2.5 | 3 | V | |
VO(STBY) | Bus output voltage, standby mode (HVDA540, HVDA541 only) | STB / S at VIO, RL = 60 Ω, See Figure 2 and Figure 15 |
–0.1 | 0.1 | V | ||
VOD(D) | Differential output voltage (dominant) | VI = 0 V, RL = 60 Ω, STB / S at 0 V, See Figure 2, Figure 15, and Figure 3 |
1.5 | 3 | V | ||
VI = 0 V, RL = 45 Ω, STB / S at 0 V, See Figure 2, Figure 15, and Figure 3 |
1.4 | 3 | |||||
VOD(R) | Differential output voltage (recessive) | VI = 3 V, STB / S at 0 V, RL = 60 Ω, See Figure 2 and Figure 15 | –0.012 | 0.012 | V | ||
VI = 3 V, STB / S at 0 V, No load | –0.5 | 0.05 | |||||
VSYM | Output symmetry (dominant or recessive) (VO(CANH) + VO(CANL)) | STB / S at 0 V, RL = 60 Ω, See Figure 12 |
0.9 VCC | VCC | 1.1 VCC | V | |
VOC(SS) | Steady-state common-mode output voltage | STB / S at 0 V, RL = 60 Ω, See Figure 8 |
2 | 2.5 | 3 | V | |
ΔVOC(SS) | Change in steady-state common-mode output voltage | STB / S at 0 V, RL = 60 Ω, See Figure 8 |
40 | mV | |||
IOS(SS)_DOM | Short-circuit steady-state output current, Dominant | VCANH = 0 V, CANL open, TXD = low, See Figure 11 |
–100 | mA | |||
VCANL = 32 V, CANH open, TXD = low, See Figure 11 | 100 | ||||||
IOS(SS)_REC | Short-circuit steady-state output current, Recessive | –20 V ≤ VCANH ≤ 32 V, CANL open, TXD = high, See Figure 11 |
–10 | 10 | mA | ||
–20 V ≤ VCANL ≤ 32 V, CANH open, TXD = high, See Figure 11 |
–10 | 10 | |||||
CO | Output capacitance | See receiver input capacitance | |||||
DRIVER SWITCHING CHARACTERISTICS | |||||||
tPLH | Propagation delay time, low-to-high level output | STB / S at 0 V, See Figure 4 | 65 | ns | |||
tPHL | Propagation delay time, high-to-low level output | STB / S at 0 V, See Figure 4 | 50 | ns | |||
tR | Differential output signal rise time | STB / S at 0 V, See Figure 4 | 25 | ns | |||
tF | Differential output signal fall time | STB / S at 0 V, See Figure 4 | 55 | ns | |||
tEN | Enable time from standby or silent mode to normal mode dominant | See Figure 7 | 20 | µs | |||
t(DOM)(5) | Dominant time out | See Figure 10 | 300 | 400 | 700 | µs | |
RECEIVER ELECTRICAL CHARACTERISTICS | |||||||
VIT+ | Positive-going input threshold voltage, normal mode | STB / S at 0 V, See Table 1 | 800 | 900 | mV | ||
VIT– | Negative-going input threshold voltage, normal mode | STB / S at 0 V, See Table 1 | 500 | 650 | mV | ||
Vhys | Hysteresis voltage (VIT+ – VIT–) | 100 | 125 | mV | |||
VIT(STBY) | Input threshold voltage, standby mode (HVDA541 only) | STB at VIO | 400 | 1150 | mV | ||
II(OFF_LKG) | Power-off (unpowered) bus input leakage current | CANH = CANL = 5 V, VCC at 0 V, VIO at 0 V, TXD at 0 V |
3 | µA | |||
CI | Input capacitance to ground (CANH or CANL) | HVDA54x: TXD at VIO, VIO at 3.3 V. HVDA54x-5: TXD at VCC VI = 0.4 sin (4E6πt) + 2.5 V |
13 | pF | |||
CID | Differential input capacitance | HVDA54x: TXD at VIO, VIO at 3.3 V. HVDA54x-5: TXD at VCC VI = 0.4 sin(4E6πt) |
5 | pF | |||
RID | Differential input resistance | HVDA54x: TXD at VIO, VIO = 3.3 V, STB at 0 V HVDA54x-5: TXD at VCC, STB at 0 V |
29 | 80 | kΩ | ||
RIN | Input resistance (CANH or CANL) | 14.5 | 25 | 40 | kΩ | ||
RI(M) | Input resistance matching [1 – ®IN(CANH)/RIN(CANL))] × 100% |
V(CANH) = V(CANL) | –3 | 0 | 3 | % | |
RECEIVER SWITCHING CHARACTERISTICS | |||||||
tPLH | Propagation delay time, low-to-high-level output | STB / S at 0 V , See Figure 6 | 95 | ns | |||
tPHL | Propagation delay time, high-to-low-level output | STB / S at 0 V , See Figure 6 | 60 | ns | |||
tR | Output signal rise time | STB / S at 0 V , See Figure 6 | 13 | ns | |||
tF | Output signal fall time | STB / S at 0 V , See Figure 6 | 10 | ns | |||
tBUS | Dominant time required on bus for wake-up from standby (HVDA541 only) | STB at VIO, See Figure 17 and Figure 18 | 1.5 | 5 | µs | ||
tCLEAR | Recessive time on the bus to clear the standby mode receiver output (RXD) if standby mode is entered while bus is dominant (HVDA541 only) | 1.5 | 5 | µs | |||
TXD PIN CHARACTERISTICS | |||||||
VIH | High-level input voltage | HVD54x-5: VIO = VCC | 0.7 × VIO | V | |||
VIL | Low-level input voltage | HVD54x-5: VIO = VCC | 0.3 × VIO | V | |||
IIH | High-level input current | HVDA54x: TXD at VIO HVDA54x-5: TXD at VCC | –2 | 2 | µA | ||
IIL | Low-level input current | TXD at 0 V | –100 | –7 | µA | ||
RXD PIN CHARACTERISTICS | |||||||
VOH | High-level output voltage | IO = –2 mA, See Figure 6 HVD54x-5: VIO = VCC |
0.8 × VIO | V | |||
VOL | Low-level output voltage | IO = 2 mA, See Figure 6 HVD54x-5: VIO = VCC |
0.2 × VIO | V | |||
STB PIN CHARACTERISTICS (HVDA540 AND HVDA541 ONLY) | |||||||
VIH | High-level input voltage | HVD54x-5: VIO = VCC | 0.7 × VIO | V | |||
VIL | Low-level input voltage | HVD54x-5: VIO = VCC | 0.3 × VIO | V | |||
IIH | High-level input current | HVDA54x: STB at VIO HVDA54x-5: STB at VCC | –2 | 2 | µA | ||
IIL | Low-level input current | STB at 0 V | –20 | µA | |||
S PIN CHARACTERISTICS (HVDA542 ONLY) | |||||||
VIH | High-level input voltage | HVD54x-5: VIO = VCC | 0.7 × VIO | V | |||
VIL | Low-level input voltage | HVD54x-5: VIO = VCC | 0.3 × VIO | V | |||
IIH | High-level input current | HVDA54x: S at VIO HVDA54x-5: S at VCC | 30 | µA | |||
IIL | Low-level input current | S at 0 V | –2 | 2 | µA | ||
Thermal shutdown temperature | 185 | °C |
MIN | TYP | MAX | UNIT | |||
---|---|---|---|---|---|---|
PD | Average power dissipation | VCC = 5 V, VIO = VCC, TJ = 27°C, RL = 60 Ω, STB at 0 V, Input to TXD at 500 kHz, 50% duty cycle square wave, CL at RXD = 15 pF |
140 | mW | ||
VCC = 5.33 V, VIO = VCC, TJ = 130°C, RL = 60 Ω, STB at 0 V, Input to TXD at 500 kHz, 50% duty cycle square wave, CL at RXD = 15 pF |
215 |
STB = 0 V RL= 60 Ω CL= Open Rcm= open Temp = 25°C | ||