

Technical documentation

Support & training

SN74LV273A-Q1 SCLS905B - AUGUST 2022 - REVISED JANUARY 2023

SN74LV273A-Q1 Automotive Octal D-Type Flip-Flops With Clear

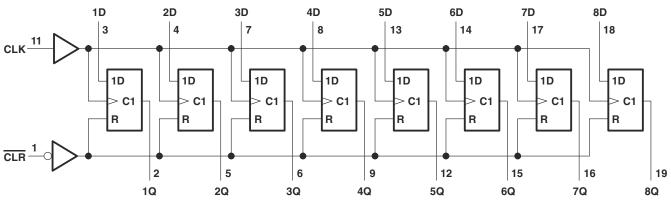
1 Features

- AEC-Q100 qualified for automotive applications:
 - Device temperature grade 1:
 - 40°C to + 125°C, T_A
 - Device HBM ESD Classifiaction Level 2 Device CDM ESD Classification Level C6
 - Available in wettable flank QFN (WRKS) package
- ٠ 2 V to 5.5 V V_{CC} operation
- Maximum t_{pd} of 10.5 ns at 5 V •
- Supports mixed-mode voltage operation on all ٠ ports
- I_{off} supports partial-power-down mode operation
- Latch-up performance exceeds 250 mA per JESD 17

2 Applications

- Synchronize digital signals to clock
- Use fewer inputs to monitor signals
- Convert a switch to a toggle

3 Description


The SN74LV273A-Q1 device is an octal positive-edge triggered D-type flip-flop with shared direct active low clear (CLR) input and clock (CLK).

Information at the data (D) inputs meeting the setup time requirements is transferred to the (Q) outputs on the positive-going edge of the clock (CLK) pulse. Clock triggering occurs at a particular voltage level and is not related directly to the transition time of the positive-going pulse. When CLK is at either the high or low level or transitioning from a high level to a low level, the D input has no effect at the output. Information at the data (Q) outputs can be asynchronously cleared with a low level input through the clear (\overline{CLR}) pin.

Package Information⁽¹⁾

	V	
PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN74LV273A-Q1	WRKS (WQFN, 20)	4.50 mm × 2.50 mm
3N74LV273A-Q1	DGS (VSSOP, 20)	5.10 mm × 3.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

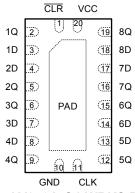
Logic Diagram (Positive Logic)

Table of Contents

1 Features 2 Applications 3 Description 4 Revision History	1 1
5 Pin Configuration and Functions	3
6 Specifications	4
6.1 Absolute Maximum Ratings	4
6.2 ESD Ratings	
6.3 Recommended Operating Conditions	
6.4 Thermal Information	5
6.5 Electrical Characteristics	6
6.6 Timing Requirements, V _{CC} = 2.5 V ± 0.2 V	
6.7 Timing Requirements, V _{CC} = 3.3 V ± 0.3 V	
6.8 Timing Requirements, V _{CC} = 5 V ± 0.5 V	6
6.9 Switching Characteristics, V _{CC} = 2.5 V ± 0.2 V	7
6.10 Switching Characteristics, V _{CC} = 3.3 V ± 0.3 V	7
6.11 Switching Characteristics, V _{CC} = 5 V ± 0.5 V	7
6.12 Operating Characteristics	
6.13 Noise Characteristics	
6.14 Typical Characteristics	8

7	Parameter Measurement Information	9
8	Detailed Description	10
	8.1 Overview	10
	8.2 Functional Block Diagram	
	8.3 Feature Description	10
	8.4 Device Functional Modes	
9	Application and Implementation	13
	9.1 Application Information	
	9.2 Typical Application	
	9.3 Power Supply Recommendations	
	9.4 Layout	15
1	0 Device and Documentation Support	
	10.1 Related Documentation	17
	10.2 Receiving Notification of Documentation Updates	17
	10.3 Support Resources	17
	10.4 Trademarks	17
	10.5 Electrostatic Discharge Caution	17
	10.6 Glossary	
1	1 Mechanical, Packaging, and Orderable	
	Information	17

4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	hanges from Revision A (October 2022) to Revision B (January 2023)	Page
•	Added DGS package information to the data sheet	1

Changes from Revision * (August 2022) to Revision A (October 2022) Page

5 Pin Configuration and Functions

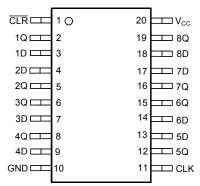


Figure 5-1. SN74LV273A-Q1 WRKS Package, 20-Pin WQFN (Top View) Figure 5-2. SN74LV273A-Q1 DGS Package, 20-Pin VSSOP (Top View)

PIN NAME NO.		TYPE ⁽¹⁾	DESCRIPTION		
			DESCRIPTION		
CLR	1	I	Clear for all channels, active low		
1Q	2	0	Output for channel 1		
1D	3	I	Input for channel 1		
2D	4	I	Input for channel 2		
2Q	5	0	Output for channel 2		
3Q	6	0	Output for channel 3		
3D	7	I	Input for channel 3		
4D	8	I	Input for channel 4		
4Q	9	0	Output for channel 4		
GND	10	G	Ground		
CLK	11	I	Clock for all channels, rising edge triggered		
5Q	12	0	Output for channel 5		
5D	13	I	Input for channel 5		
6D	14	I	Input for channel 6		
6Q	15	0	Output for channel 6		
7Q	16	0	Output for channel 7		
7D	17	I	Input for channel 7		
8D	18	I	Input for channel 8		
8Q	19	0	Output for channel 8		
V _{CC}	20	Р	Positive supply		
Thermal pad		_	Thermal Pad ⁽²⁾		

(1) I = Input, O = Output, I/O = Input or Output, G = Ground, P = Power.

(2) WRKS Package Only

6 Specifications 6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.5	7	V
VI	Input voltage ⁽²⁾		-0.5	7	V
Vo	Voltage range applied to any output in the high-impedance or power-off s	state ⁽²⁾	-0.5	7	V
Vo	Output voltage ^{(2) (3)}		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-20	mA
I _{ок}	Output clamp current	V ₀ < 0		-50	mA
Ι _Ο	Continuous output current	$V_{O} = 0$ to V_{CC}		±25	mA
	Continuous current through V _{CC} or GND			±50	mA
T _{stg}	Storage temperature		-65	150	°C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) This value is limited to 5.5 V maximum.

6.2 ESD Ratings

			VALUE	UNIT	
	Electrostatic	Human body model (HBM), per AEC Q100-002 HBM ESD Classification Level $2^{(1)}$	±4000		
V _(ESD)	discharge	Charged device model (CDM), per AEC Q100-011 CDM ESD Classification Level C4B	±2000	V	

(1) AEC Q100-002 indicate that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

			MIN	MAX	UNIT
V _{CC}	Supply voltage		2	5.5	V
VIH	High-level input voltage	V _{CC} = 2 V	1.5		V
۷IH		V _{CC} = 2.3 V to 5.5 V	V _{CC} × 0.7		v
V	Low-level input voltage	V _{CC} = 2 V		0.5	V
V _{IL}	Low-level input voltage	V _{CC} = 2.3 V to 5.5 V	V	′ _{CC} × 0.3	v
VI	Input voltage		0	5.5	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 2 V		-50	μA
	High-level output current	V _{CC} = 2.3 V to 2.7 V		-2	mA
I _{OH}		V _{CC} = 3 V to 3.6 V		-6	
		V _{CC} = 4.5 V to 5.5 V		-12	
		V _{CC} = 2 V		50	μA
		V _{CC} = 2.3 V to 2.7 V		2	
I _{OL}	Low-level output current	V _{CC} = 3 V to 3.6 V		6	mA
		V _{CC} = 4.5 V to 5.5 V		12	
		V _{CC} = 2.3 V to 2.7 V		200	
Δt/Δv	Input transition rise or fall rate	V _{CC} = 3 V to 3.6 V		100	ns/V
		V _{CC} = 4.5 V to 5.5 V		20	
T _A	Operating free-air temperature		-40	125	°C

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See *Implications of Slow or Floating* CMOS Inputs.

6.4 Thermal Information

		SN74LV		
THERMAL METRIC ⁽¹⁾		WRKS (WQFN)	DGS (VSSOP)	UNIT
		20 PINS	20 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	75.8	125.5	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	80.3	80.0	°C/W
R _{θJB}	Junction-to-board thermal resistance	50.5	63.8	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	16.0	8.4	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	50.4	79.9	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	32.3	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

6.5 Electrical Characteristics

	PARAMETER		V _{cc}	MIN	TYP	MAX	UNIT
		I _{OH} = -50 mA	2 V to 5.5 V	V _{CC} – 0.1			
	High level output voltage	I _{OH} = -2 mA	2.3 V	2			V
V _{OH}	nigh level output voltage	I _{OH} = –6 mA	3 V	2.48			v
		I _{OH} = -12 mA	4.5 V	3.8			
		I _{OL} = 50 mA	2 V to 5.5 V			0.1	0.4 V
		I _{OL} = 2 mA	2.3 V			0.4	
V _{OL}	Low level output voltage	I _{OL} = 6 mA	3 V			0.44	
		I _{OL} = 12 mA	4.5 V			0.55	
l _l	Input leakage current	V _I = 5.5 V or GND	0 V to 5.5 V			±1	μA
I _{CC}	Supply current	$V_{I} = V_{CC} \text{ or GND, } I_{O}$ = 0	5.5 V			20	μA
I _{off}	Input/Output Power-Off Leakage Current	$V_{\rm I}$ or $V_{\rm O}$ = 0 to 5.5 V	0 V			5	μA
Ci	Input Capacitance	$V_{I} = V_{CC}$ or GND	3.3 V		2		pF

over operating free-air temperature range (unless otherwise noted).

6.6 Timing Requirements, V_{CC} = 2.5 V ± 0.2 V

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 7-1)

PARAMETER		TEST CONDITION	25°C		–40°C to 125°C		UNIT	
	FARAMETER	TEST CONDITION	MIN	MAX	MIN	MAX	UNIT	
tw Pulse duration		CLR low	6.5		7.5		ns	
ľ		CLK high or low	7		9		115	
	Cotum times	Data before CLK↑	8.5		12		20	
ľ	su Setup time	CLR inactive before CLK↑	4		4.5		ns	
t	h Hold time	Data after CLK↑	0.5		2.5		ns	

6.7 Timing Requirements, V_{CC} = 3.3 V ± 0.3 V

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 7-1)

	PARAMETER	TEST CONDITION	25°	с	–40°C to	UNIT	
	FARAMETER	TEST CONDITION	MIN	MAX	MIN	MAX	UNIT
+	Pulse duration	CLR low	5		6.5		ns
w	Fuise duration	CLK high or low	5		7		ns
+	Setup time	Data before CLK↑	5.5		8		20
Lsu	Setup time	CLR inactive before CLK†2.5	2.5		3		ns
t _h	Hold time	Data after CLK↑	1		2.5		ns

6.8 Timing Requirements, V_{CC} = 5 V ± 0.5 V

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 7-1)

	PARAMETER	TEST CONDITION	25°	с	–40°C to	125°C	UNIT
		TEST CONDITION	MIN	MAX	MIN	MAX	ONT
+	Pulse duration	CLR low	5		5.5		ne
L.W.	Fuise duration	CLK high or low	5		5.5		ns
+	Setup time	Data before CLK↑	4.5		6		ns
su	Setup time	CLR inactive before CLK↑	2		2.5		115
t _h	Hold time	Data after CLK↑	1		2		ns

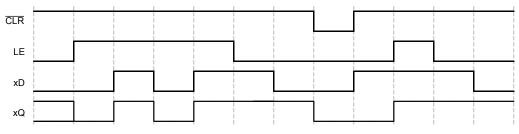


Figure 6-1. Typical Clock, Load, and Clear Sequences

6.9 Switching Characteristics, V_{CC} = 2.5 V \pm 0.2 V

over operating free-air temperature range (unless otherwise noted), (see Figure 7-1)

PARAMETE	FROM	то	LOAD		25°C		-40	°C	UNIT	
R	(INPUT)	(OUTPUT)	САР	MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT
f			C _L = 15 pF	55	95		45			MHz
f _{max}			C _L = 50 pF	45	75		40			
+	CLK	Q	C _L = 15 pF		10.4	18.3	1		22.5	
t _{pd}	CLR	Q	С_ – 15 рг		10.3	19	1		23	ns
+	CLK	Q			12.9	22.1	1		27	
t _{pd}	CLR	Q	C _L = 50 pF		13.1	22.8	1		27.5	ns
t _{sk(o)}						2			2	

6.10 Switching Characteristics, V_{CC} = 3.3 V \pm 0.3 V

over operating free-air temperature range (unless otherwise noted), (see Figure 7-1)

PARAMETE	FROM	то	LOAD		25°C		-40	°C to 125	°C	UNIT
R	(INPUT)	(OUTPUT)	САР	MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT
f			C _L = 15 pF	75	140		65			MHz
f _{max}			C _L = 50 pF	50	110		45			MILITZ
+ .	CLK	Q	C _L = 15 pF		7.1	13.6	1		17.5	ns
t _{pd}	CLR		С <u>[</u> = 15 рг		6.9	13.6	1		17.5	115
+	CLK	Q			9.1	17.1	1		21	
t _{pd}	CLR		C _L = 50 pF		8.7	17.1	1		21	ns
t _{sk(o)}						1.5			1.5	

6.11 Switching Characteristics, V_{CC} = 5 V ± 0.5 V

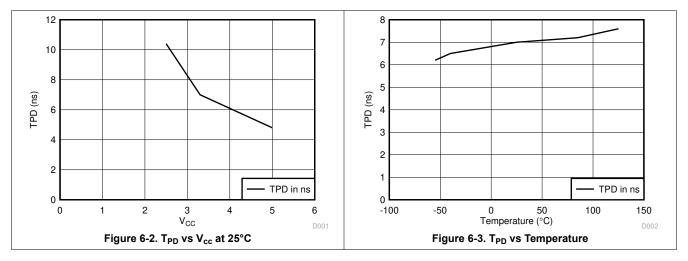
over recommended operating free-air temperature range (unless otherwise noted), (see Figure 7-1)

PARAMETE	FROM	то	LOAD		25°C		-40	°C to 125	5°C	UNIT
R	(INPUT)	(OUTPUT)	САР	MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT
f			C _L = 15 pF	120	205		100			MHz
f _{max}			C _L = 50 pF	80	160		70			
+	CLK	Q	С _L = 15 рF		4.8	9	1		11.5	ns
t _{pd}	CLR	Q	CL = 15 pr		4.7	8.5	1		11	115
+	CLK	Q			6.2	11	1		14	
t _{pd}	CLR	Q	C _L = 50 pF		6	10.5	1		13.5	ns
t _{sk(o)}						1			1	

6.12 Operating Characteristics

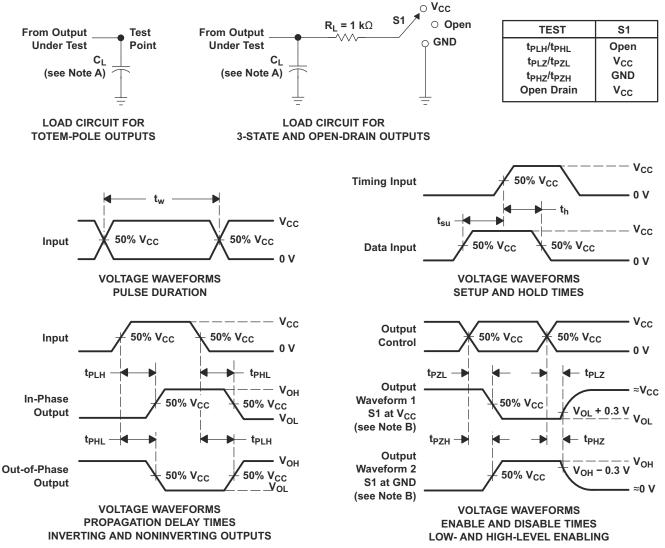
T_A = 25°C

	PARAMETER	TEST CO	NDITIONS	V _{cc}	TYP	UNIT
C	Power dissipation capacitance	C ₁ = 50 pF	f = 10 MHz	3.3 V	15.9	۶Ľ
Cpd		C _L = 50 p⊦		5 V	17.1	pF


6.13 Noise Characteristics

V_{CC} = 3.3 V, C_{L} = 50 pF, T_{A} = 25°C

	PARAMETER ⁽¹⁾	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.3	0.8	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.3	-0.8	V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		3		V
V _{IH(D)}	High-level dynamic input voltage	2.31			V
V _{IL(D)}	Low-level dynamic input voltage			0.99	V


(1) Characteristics for surface-mount packages only.

6.14 Typical Characteristics

7 Parameter Measurement Information

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
 Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z₀ = 50 Ω , t_r \leq 3 ns,
- and t_f ≤ 3 ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- $G. \quad t_{PHL} \text{ and } t_{PLH} \text{ are the same as } t_{pd}.$
- H. All parameters and waveforms are not applicable to all devices.

Figure 7-1. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview

The SN74LV273A-Q1 device is an octal positive-edge triggered D-type flip-flop with shared direct active low clear (CLR) input and clock (CLK).

Information at the data (D) inputs meeting the setup time requirements is transferred to the (Q) outputs on the positive-going edge of the clock (CLK) pulse. Clock triggering occurs at a particular voltage level and is not related directly to the transition time of the positive-going pulse. When CLK is at either the high or low level or transitioning from a high level to a low level, the D input has no effect at the output. Information at the data (Q) outputs can be asynchronously cleared with a low level input through the clear (CLR) pin.

The SN74LV273A-Q1 is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

8.2 Functional Block Diagram

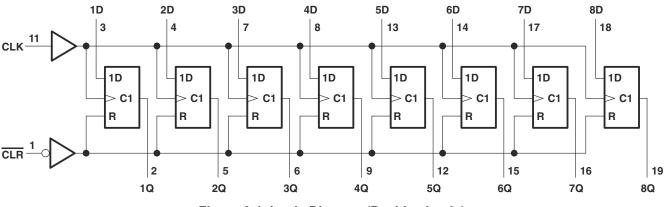


Figure 8-1. Logic Diagram (Positive Logic)

8.3 Feature Description

8.3.1 Balanced CMOS Push-Pull Outputs

This device includes balanced CMOS push-pull outputs. The term *balanced* indicates that the device can sink and source similar currents. The drive capability of this device may create fast edges into light loads so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the output power of the device to be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the *Absolute Maximum Ratings* must be followed at all times.

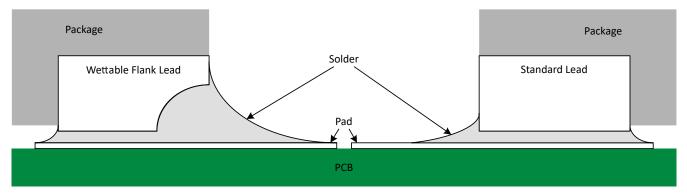
Unused push-pull CMOS outputs should be left disconnected.

8.3.2 Latching Logic

This device includes latching logic circuitry. Latching circuits commonly include D-type latches and D-type flip-flops, but include all logic circuits that act as volatile memory.

When the device is powered on, the state of each latch is unknown. There is no default state for each latch at start-up.

The output state of each latching logic circuit only remains stable as long as power is applied to the device within the supply voltage range specified in the *Recommended Operating Conditions* table.



8.3.3 Partial Power Down (Ioff)

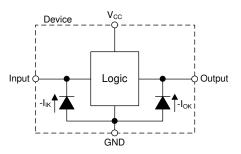
This device includes circuitry to disable all outputs when the supply pin is held at 0 V. When disabled, the outputs will neither source nor sink current, regardless of the input voltages applied. The amount of leakage current at each output is defined by the I_{off} specification in the *Electrical Characteristics* table.

8.3.4 Wettable Flanks

This device includes wettable flanks for at least one package. See the *Features* section on the front page of the data sheet for which packages include this feature.

Figure 8-2. Simplified Cutaway View of Wettable-Flank QFN Package and Standard QFN Package After Soldering

Wettable flanks help improve side wetting after soldering, which makes QFN packages easier to inspect with automatic optical inspection (AOI). As shown in Figure 8-2, a wettable flank can be dimpled or step-cut to provide additional surface area for solder adhesion which assists in reliably creating a side fillet. Please see the mechanical drawing for additional details.



8.3.5 Clamp Diode Structure

Figure 8-3 shows the inputs and outputs to this device have negative clamping diodes only.

CAUTION

Voltages beyond the values specified in the *Absolute Maximum Ratings* table can cause damage to the device. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

Figure 8-3. Electrical Placement of Clamping Diodes for Each Input and Output

8.4 Device Functional Modes

	INPUTS ⁽¹⁾		OUTPUT ⁽²⁾
CLR	CLK	D	Q
L	Х	Х	L
н	L, H, ↓	Х	Q ₀
н	1	L	L
Н	1	Н	Н

Table 8-1. Function Table

 L = input low, H = input high, ↑ = input transitioning from low to high, ↓ = input transitioning from high to low, X = do not care

(2) L = output low, H = output high, Q_0 = previous state

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

In this application, the SN74LV273A-Q1 is used to synchronize incoming data to the system clock on an 8-bit bus.

9.2 Typical Application

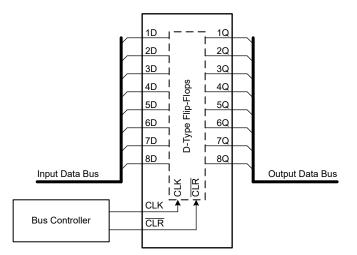


Figure 9-1. Typical Application Diagram

9.2.1 Power Considerations

Ensure the desired supply voltage is within the range specified in the *Recommended Operating Conditions*. The supply voltage sets the device's electrical characteristics as described in the *Electrical Characteristics* section.

The positive voltage supply must be capable of sourcing current equal to the total current to be sourced by all outputs of the SN74LV273A-Q1 plus the maximum static supply current, I_{CC} , listed in the *Electrical Characteristics*, and any transient current required for switching. The logic device can only source as much current that is provided by the positive supply source. Be sure to not exceed the maximum total current through V_{CC} listed in the *Absolute Maximum Ratings*.

The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the SN74LV273A-Q1 plus the maximum supply current, I_{CC} , listed in the *Electrical Characteristics*, and any transient current required for switching. The logic device can only sink as much current that can be sunk into its ground connection. Be sure to not exceed the maximum total current through GND listed in the *Absolute Maximum Ratings*.

The SN74LV273A-Q1 can drive a load with a total capacitance less than or equal to 50 pF while still meeting all of the data sheet specifications. Larger capacitive loads can be applied; however, it is not recommended to exceed 50 pF.

The SN74LV273A-Q1 can drive a load with total resistance described by $R_L \ge V_O / I_O$, with the output voltage and current defined in the *Electrical Characteristics* table with V_{OH} and V_{OL} . When outputting in the HIGH state, the output voltage in the equation is defined as the difference between the measured output voltage and the supply voltage at the V_{CC} pin.

Total power consumption can be calculated using the information provided in *CMOS Power Consumption and Cpd Calculation*.

Thermal increase can be calculated using the information provided in *Thermal Characteristics of Standard Linear* and Logic (SLL) Packages and Devices.

CAUTION

The maximum junction temperature, $T_{J(max)}$ listed in the *Absolute Maximum Ratings*, is an additional limitation to prevent damage to the device. Do not violate any values listed in the *Absolute Maximum Ratings*. These limits are provided to prevent damage to the device.

9.2.2 Input Considerations

Input signals must cross $V_{IL(max)}$ to be considered a logic LOW, and $V_{IH(min)}$ to be considered a logic HIGH. Do not exceed the maximum input voltage range found in the *Absolute Maximum Ratings*.

Unused inputs must be terminated to either V_{CC} or ground. The unused inputs can be directly terminated if the input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input will be used sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used for a default state of LOW. The drive current of the controller, leakage current into the SN74LV273A-Q1 (as specified in the *Electrical Characteristics*), and the desired input transition rate limits the resistor size. A 10-k Ω resistor value is often used due to these factors.

The SN74LV273A-Q1 has CMOS inputs and thus requires fast input transitions to operate correctly, as defined in the *Recommended Operating Conditions* table. Slow input transitions can cause oscillations, additional power consumption, and reduction in device reliability.

Refer to the *Feature Description* section for additional information regarding the inputs for this device.

9.2.3 Output Considerations

The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will decrease the output voltage as specified by the V_{OH} specification in the *Electrical Characteristics*. The ground voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output voltage as specified by the V_{OL} specification in the *Electrical Characteristics*.

Push-pull outputs that could be in opposite states, even for a very short time period, should never be connected directly together. This can cause excessive current and damage to the device.

Two channels within the same device with the same input signals can be connected in parallel for additional output drive strength.

Unused outputs can be left floating. Do not connect outputs directly to V_{CC} or ground.

Refer to the *Feature Description* section for additional information regarding the outputs for this device.

9.2.4 Detailed Design Procedure

- Add a decoupling capacitor from V_{CC} to GND. The capacitor needs to be placed physically close to the device and electrically close to both the V_{CC} and GND pins. An example layout is shown in the *Layout* section.
- Ensure the capacitive load at the output is ≤ 50 pF. This is not a hard limit; it will, however, ensure optimal performance. This can be accomplished by providing short, appropriately sized traces from the SN74LV273A-Q1 to one or more of the receiving devices.
- 3. Ensure the resistive load at the output is larger than $(V_{CC} / I_{O(max)}) \Omega$. This will ensure that the maximum output current from the *Absolute Maximum Ratings* is not violated. Most CMOS inputs have a resistive load measured in M Ω ; much larger than the minimum calculated previously.
- 4. Thermal issues are rarely a concern for logic gates; the power consumption and thermal increase, however, can be calculated using the steps provided in the application report, *CMOS Power Consumption and Cpd Calculation*.

9.2.5 Application Curves

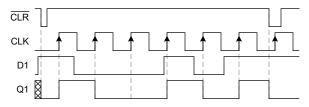


Figure 9-2. Application Timing Diagram

9.3 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Absolute Maximum Ratings* section. Each V_{CC} terminal must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1- μ F capacitor; if there are multiple V_{CC} terminals, then TI recommends a 0.01- μ F or 0.022- μ F capacitor for each power terminal. Multiple bypass capacitors can be paralleled to reject different frequencies of noise. Frequencies of 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor must be installed as close as possible to the power terminal for best results.

9.4 Layout

9.4.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{CC} , whichever makes more sense for the logic function or is more convenient.

9.4.2 Layout Example

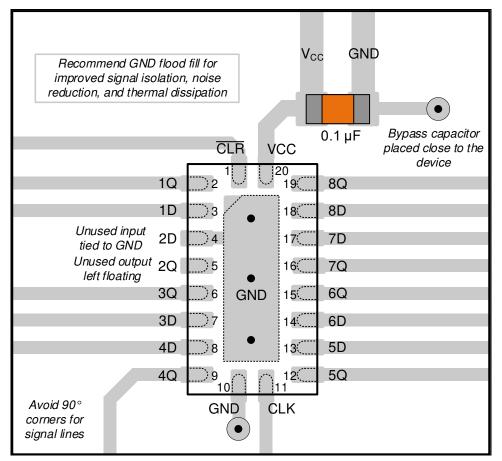


Figure 9-3. Layout Example for the SN74LV273A-Q1 in the WRKS Package

10 Device and Documentation Support

10.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, Power-Up Behavior of Clocked Devices application note
- Texas Instruments, Introduction to Logic application note

10.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com. In the upper right-hand corner, click the *Alert me* button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document.

10.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

10.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LV273AQDGSRQ1	ACTIVE	VSSOP	DGS	20	5000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L273Q	Samples
SN74LV273AQWRKSRQ1	ACTIVE	VQFN	RKS	20	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV273AQ	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

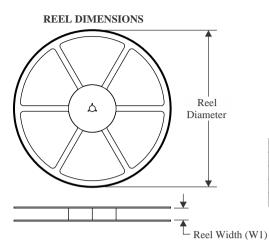
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

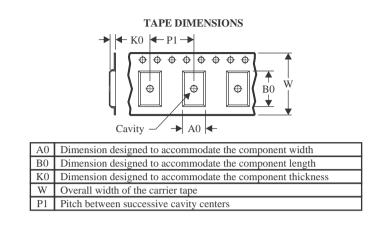

PACKAGE OPTION ADDENDUM

OTHER QUALIFIED VERSIONS OF SN74LV273A-Q1 :

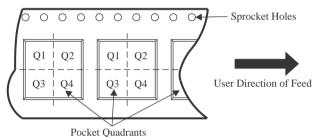
• Catalog : SN74LV273A

NOTE: Qualified Version Definitions:


Catalog - TI's standard catalog product

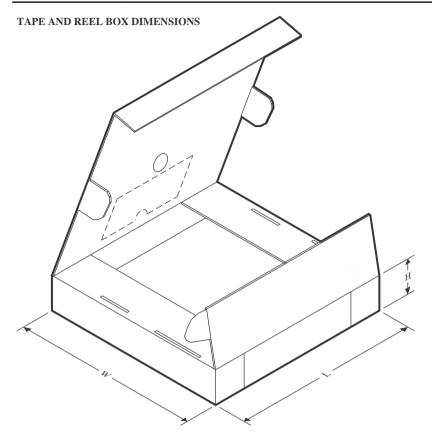


Texas


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV273AQDGSRQ1	VSSOP	DGS	20	5000	330.0	16.4	5.4	5.4	1.45	8.0	16.0	Q1
SN74LV273AQWRKSRQ1	VQFN	RKS	20	3000	180.0	12.4	2.8	4.8	1.2	4.0	12.0	Q1

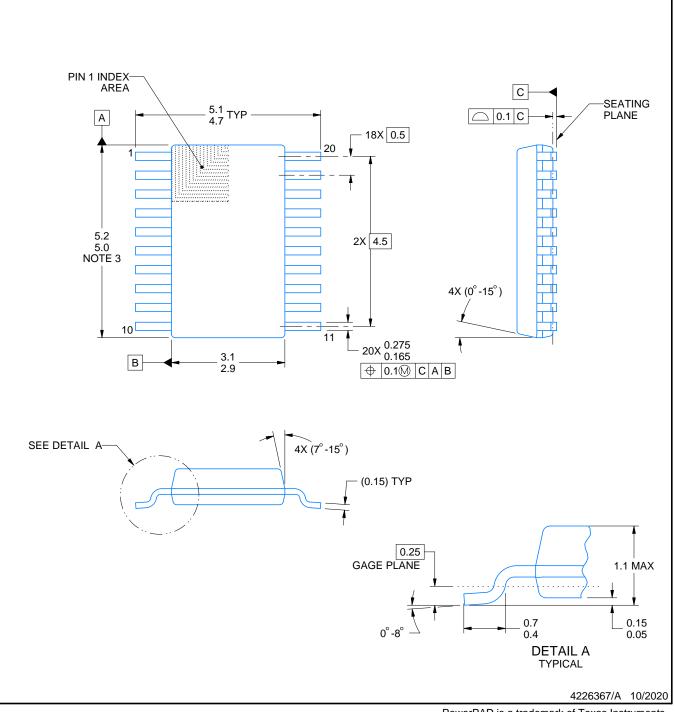
www.ti.com

PACKAGE MATERIALS INFORMATION

17-Apr-2023

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV273AQDGSRQ1	VSSOP	DGS	20	5000	356.0	356.0	35.0
SN74LV273AQWRKSRQ1	VQFN	RKS	20	3000	210.0	185.0	35.0


DGS0020A

PACKAGE OUTLINE

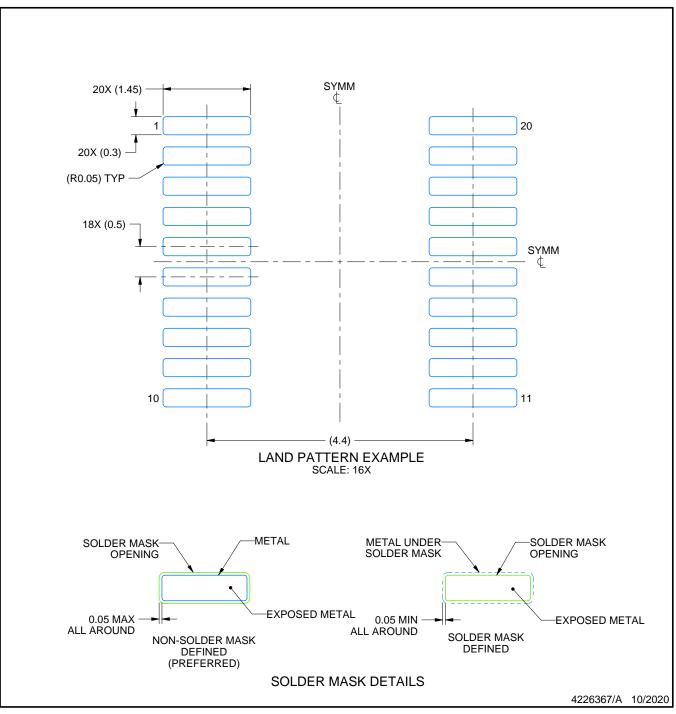
VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. No JEDEC registration as of September 2020.
- 5. Features may differ or may not be present.



DGS0020A

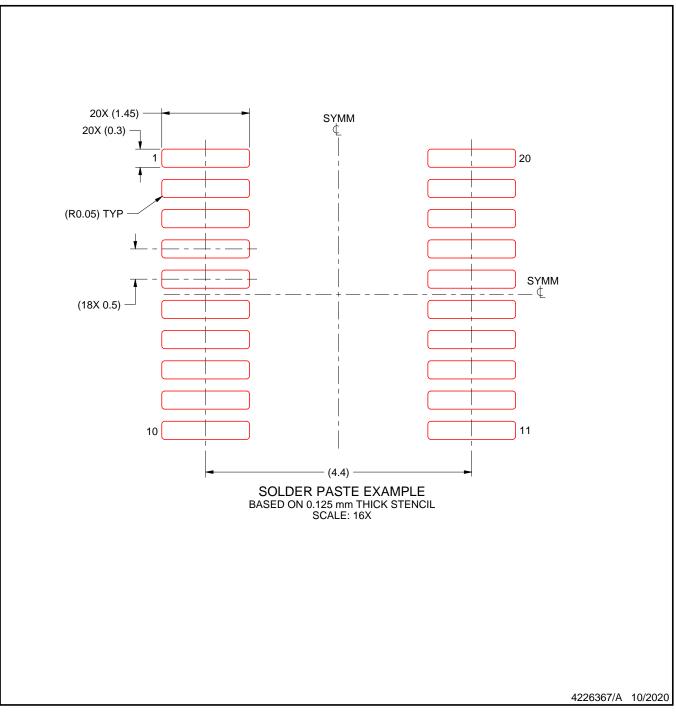
EXAMPLE BOARD LAYOUT

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.
- 10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.



DGS0020A

EXAMPLE STENCIL DESIGN

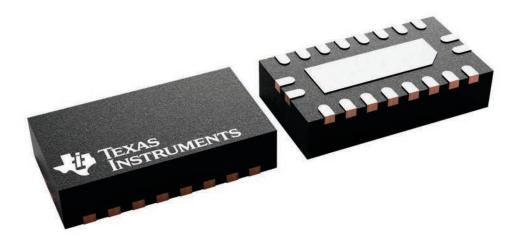
VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

RKS 20

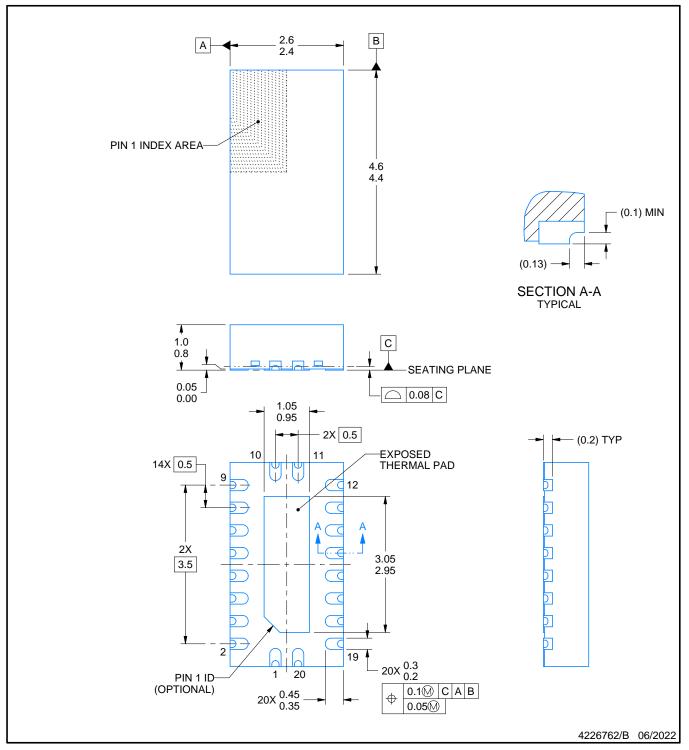

2.5 x 4.5, 0.5 mm pitch

GENERIC PACKAGE VIEW

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


RKS0020B

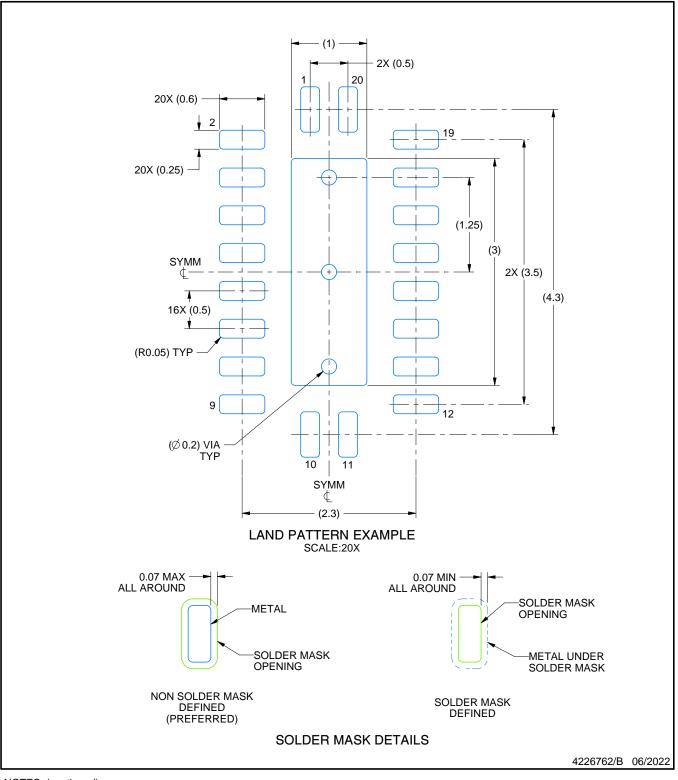
PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



RKS0020B

EXAMPLE BOARD LAYOUT

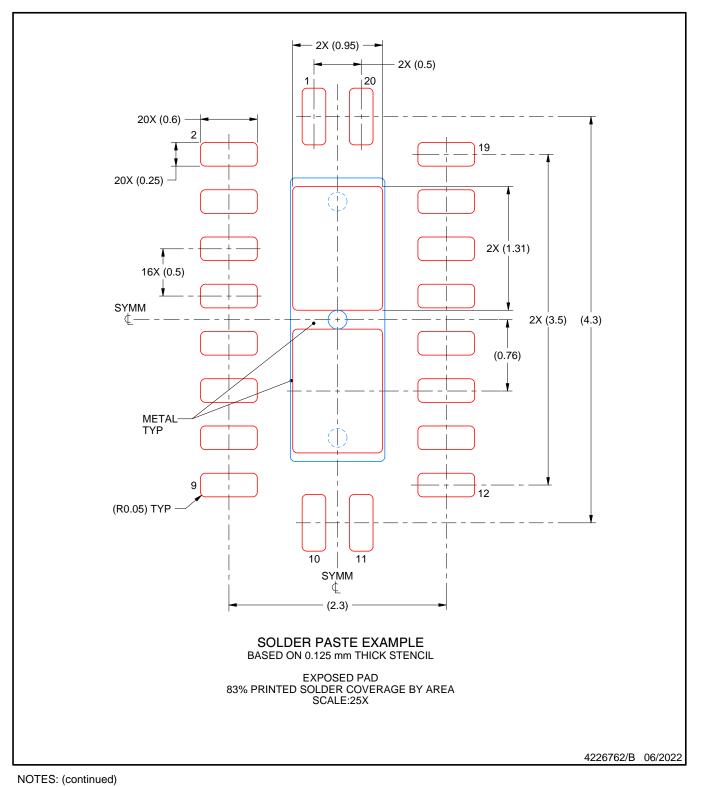
VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.



RKS0020B

EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated