SLASET9A
May 2019 – January 2023
TAS5825P
PRODUCTION DATA
1
Features
2
Applications
3
Description
4
Revision History
5
Device Comparison Table
6
Pin Configuration and Functions
7
Specifications
7.1
Absolute Maximum Ratings
7.2
ESD Ratings
7.3
Recommended Operating Conditions
7.4
Thermal Information
7.5
Electrical Characteristics
7.6
Timing Requirements
7.7
Typical Characteristics
7.7.1
Bridge Tied Load (BTL) Configuration Curves with Hybrid Modulation
7.7.2
Parallel Bridge Tied Load (PBTL) Configuration With Hybrid Modulation
7.7.3
Bridge Tied Load (BTL) Configuration Curves with BD Modulation
7.7.4
Parallel Bridge Tied Load (PBTL) Configuration With BD Modulation
8
Parameter Measurement Information
9
Detailed Description
9.1
Overview
9.2
Functional Block Diagram
9.3
Feature Description
9.3.1
Power Supplies
9.3.2
Device Clocking
9.3.3
Serial Audio Port – Clock Rates
9.3.4
Clock Halt Auto-Recovery
9.3.5
Sample Rate on the Fly Change
9.3.6
Serial Audio Port - Data Formats and Bit Depths
9.3.7
Digital Audio Processing
9.3.8
Class-D Audio Amplifier
9.3.8.1
Speaker Amplifier Gain Select
9.3.8.2
Class D Loop Bandwidth and Switching Frequency Setting
9.4
Device Functional Modes
9.4.1
Software Control
9.4.2
Speaker Amplifier Operating Modes
9.4.2.1
BTL Mode
9.4.2.2
PBTL Mode
9.4.3
Low EMI Modes
9.4.3.1
Spread Spectrum
9.4.3.2
Channel to Channel Phase Shift
9.4.3.3
Multi-Devices PWM Phase Synchronization
9.4.3.3.1
Phase Synchronization With I2S Clock In Startup Phase
9.4.3.3.2
Phase Synchronization With GPIO
9.4.4
Thermal Foldback
9.4.5
Device State Control
9.4.6
Device Modulation
9.4.6.1
BD Modulation
9.4.6.2
1SPW Modulation
9.4.6.3
Hybrid Modulation
9.5
Programming and Control
9.5.1
I2 C Serial Communication Bus
9.5.2
I2 C Peripheral Address
9.5.2.1
Random Write
9.5.2.2
Sequential Write
9.5.2.3
Random Read
9.5.2.4
Sequential Read
9.5.2.5
DSP Memory Book, Page and BQ update
9.5.2.6
Checksum
9.5.2.6.1
Cyclic Redundancy Check (CRC) Checksum
9.5.2.6.2
Exclusive or (XOR) Checksum
9.5.3
Control via Software
9.5.3.1
Startup Procedures
9.5.3.2
Shutdown Procedures
9.5.3.3
Protection and Monitoring
9.5.3.3.1
Overcurrent Limit (Cycle-By-Cycle)
9.5.3.3.2
Overcurrent Shutdown (OCSD)
9.5.3.3.3
DC Detect
9.6
Register Maps
9.6.1
CONTROL PORT Registers
10
Application and Implementation
10.1
Application Information
10.1.1
Bootstrap Capacitors
10.1.2
Inductor Selections
10.1.3
Power Supply Decoupling
10.1.4
Output EMI Filtering
10.2
Typical Applications
10.2.1
2.0 (Stereo BTL) System
10.2.2
79
10.2.3
Design Requirements
10.2.4
Detailed Design procedures
10.2.4.1
Step One: Hardware Integration
10.2.4.2
Step Two: Hardware Integration
10.2.4.3
Step Three: Software Integration
10.2.5
Application Curves
10.2.6
MONO (PBTL) Systems
10.2.7
Application Curves
10.3
Power Supply Recommendations
10.3.1
DVDD Supply
10.3.2
PVDD Supply
10.4
Layout
10.4.1
Layout Guidelines
10.4.1.1
General Guidelines for Audio Amplifiers
10.4.1.2
Importance of PVDD Bypass Capacitor Placement on PVDD Network
10.4.1.3
Optimizing Thermal Performance
10.4.1.3.1
Device, Copper, and Component Layout
10.4.1.3.2
Stencil Pattern
10.4.1.3.2.1
PCB footprint and Via Arrangement
10.4.1.3.2.2
Solder Stencil
10.4.2
Layout Example
11
Device and Documentation Support
11.1
Device Support
11.1.1
Device Nomenclature
11.1.2
Development Support
11.2
Receiving Notification of Documentation Updates
11.3
Support Resources
11.4
Trademarks
11.5
Electrostatic Discharge Caution
11.6
Glossary
12
Mechanical, Packaging, and Orderable Information
Package Options
Mechanical Data (Package|Pins)
RHB|32
MPQF130D
Thermal pad, mechanical data (Package|Pins)
RHB|32
QFND029X
Orderable Information
slaset9a_oa
slaset9a_pm
1
Features
High-efficiency Class-D operation with Hybrid-Pro:
Approximately 50% longer battery life compared to fixed supply voltage solutions
> 90% Power efficiency, 90 mΩ R
DS(on)
Low quiescent current, < 20 mA at 12 V PVDD
Supports multiple output configurations:
1 × 53 W, 1.0 Mode (4-Ω, 22 V, THD+N=1%)
1 × 65 W, 1.0 Mode (4-Ω, 22 V, THD+N=10%)
2 × 30 W, 2.0 Mode (8-Ω, 24 V, THD+N=1%)
2 × 38 W, 2.0 Mode (8-Ω, 24 V, THD+N=10%)
Excellent audio performance:
THD+N ≤ 0.03% at 1 W, 1 kHz, PVDD = 12 V
SNR ≥ 110 dB (A-weighted), ICN ≤ 35 µVRMS
Flexible audio I/O:
Supports 32, 44.1, 48, 88.2, 96 kHz SR
Supports I
2
S, LJ, RJ, TDM format
Supports 3-wire digital audio interface
Flexible processing features:
3-Band advanced DRC + AGL, 2 × 15 BQs
PVDD sensing to avoid clipping distortion while voltage rail drops
Up to 4 ms lookahead delay buffer for Hybrid-Pro algorithm audio signal tracking
Optional 8 or 16 Hybrid-Pro DC-DC control steps with max 10 ms peak sample hold
Flexible power supply configurations:
PVDD: 4.5 V to 26.4 V
DVDD and I/O: 1.8 V or 3.3 V
Excellent integrated self-protection:
Over-current error (OCE)
Cycle-by-cycle current limit
Over-temperature warning (OTW)
Over-temperature error (OTE)
Under, over-voltage lock-out (UVLO, OVLO)
Easy system integration:
I
2
C Software Control
Reduced solution size:
Small 5 × 5 mm package
Fewer passives required compared to open-loop Class-D devices
No bulky electrolytic capacitors or large inductors required for most applications