The TLC2272AM-MIL device is a dual operational amplifier from Texas Instruments. The device exhibits rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLC2272AM-MIL device offers 2 MHz of bandwidth and 3 V/μs of slew rate for higher-speed applications. Thee device offers comparable ac performance while having better noise, input offset voltage, and power dissipation than existing CMOS operational amplifiers. The TLC2272AM-MIL device has a noise voltage of 9 nV/√Hz, two times lower than competitive solutions.
The TLC2272AM-MIL device, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources such as piezoelectric transducers. Because of the micropower dissipation levels, the device works well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature, with single- or split-supplies, makes this device a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC2272AM-MIL device is available with a maximum input offset voltage of 950 μV. This device is fully characterized at 5 V and ±5 V.
The TLC2272AM-MIL device also makes a great upgrade to the TLC272 in standard designs, offering increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows the device to be used in a wider range of applications. For applications that require higher output drive and wider input voltage range, see the TLV2432 and TLV2442 devices.
If the design requires single amplifiers, see the TLV2211, TLV2221 and TLV2231 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their small size and low power consumption make them ideal for high density, battery-powered equipment.
PART NUMBER | PACKAGE | BODY SIZE (NOM) |
---|---|---|
TLC2272AM-MIL | SOIC (8) | 3,91 mm × 4,90 mm |
CDIP (8) | 6,67 mm × 9,60 mm | |
LCCC (20) | 8,89 mm × 8,89 mm | |
CFP (10) | 6,35 mm × 6,35 mm |
DATE | REVISION | NOTE |
---|---|---|
June 2017 | * | Initial release |
Changes from * Revision (June 2017) to * Revision
PIN | I/O | DESCRIPTION | |||
---|---|---|---|---|---|
NAME | NO. | ||||
D or JG | FK | U | |||
1IN+ | 3 | 7 | 4 | I | Non-inverting input, Channel 1 |
1IN– | 2 | 5 | 3 | I | Inverting input, Channel 1 |
1OUT | 1 | 2 | 2 | O | Output, Channel 1 |
2IN+ | 5 | 12 | 6 | I | Non-inverting input, Channel 2 |
2IN– | 6 | 15 | 7 | I | Inverting input, Channel 2 |
2OUT | 7 | 17 | 8 | O | Output, Channel 2 |
VDD+ | 8 | 20 | 9 | — | Positive (highest) supply |
VDD– | — | — | — | — | Negative (lowest) supply |
VDD–/GND | 4 | 10 | 5 | — | Negative (lowest) supply |
NC | — | 1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19 | 1, 10 | — | No connection |
MIN | MAX | UNIT | ||
---|---|---|---|---|
Supply voltage, VDD+(2) | 8 | V | ||
VDD–(2) | –8 | V | ||
Differential input voltage, VID(3) | ±16 | V | ||
Input voltage, VI (any input)(2) | VDD− − 0.3 | VDD+ | V | |
Input current, II (any input) | ±5 | mA | ||
Output current, IO | ±50 | mA | ||
Total current into VDD+ | ±50 | mA | ||
Total current out of VDD– | ±50 | mA | ||
Duration of short-circuit current at (or below) 25°C(4) | Unlimited | |||
Operating ambient temperature range, TA | –55 | 125 | ||
Storage temperature, Tstg | –65 | 150 | °C |
VALUE | UNIT | ||||
---|---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per AEC Q100-002(1) | Devices in D packages | ±2000 | V |
Charged-device model (CDM), per AEC Q100-011 | Devices in D packages | ±1000 |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VDD± | Supply voltage | ±2.2 | ±8 | V | |
VI | Input voltage | VDD− | VDD+ − 1.5 | V | |
VIC | Common-mode input voltage | VDD− | VDD+ − 1.5 | V | |
TA | Operating ambient temperature | –55 | 125 | °C |
THERMAL METRIC(1) | TLC2272AM-MIL | UNIT | ||||
---|---|---|---|---|---|---|
D (SOIC) | JG (CDIP) | FK (LCCC) | U (CFP) | |||
8-PIN | 20-PIN | 10-PIN | ||||
RθJA | Junction-to-ambient thermal resistance (2)(3) | 115.6 | — | — | °C/W | |
RθJC(top) | Junction-to-case (top) thermal resistance (2)(3) | 61.8 | 18 | 121.3 | °C/W | |
RθJB | Junction-to-board thermal resistance | 55.9 | — | — | °C/W | |
ψJT | Junction-to-top characterization parameter | 14.3 | — | — | °C/W | |
ψJB | Junction-to-board characterization parameter | 55.4 | — | — | °C/W | |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | — | — | 8.68 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |||
---|---|---|---|---|---|---|---|---|
VIO | Input offset voltage | VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω |
TA = 25°C | 300 | 950 | µV | ||
TA = –55°C to 125°C | 1500 | |||||||
αVIO | Temperature coefficient of input offset voltage |
VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω | 2 | μV/°C | ||||
Input offset voltage long-term drift(1) | VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω | 0.002 | μV/mo | |||||
IIO | Input offset current | VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω |
TA = 25°C | 0.5 | 60 | pA | ||
TA = –55°C to 125°C | 800 | |||||||
IIB | Input bias current | VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω |
TA = 25°C | 1 | 60 | pA | ||
TA = –55°C to 125°C | 800 | |||||||
VICR | Common-mode input voltage | RS = 50 Ω; |VIO | ≤ 5 mV | TA = 25°C | –0.3 | 2.5 | 4 | V | |
TA = –55°C to 125°C | 0 | 2.5 | 3.5 | |||||
VOH | High-level output voltage | IOH = –20 μA | 4.99 | V | ||||
IOH = –200 μA | TA = 25°C | 4.85 | 4.93 | |||||
TA = –55°C to 125°C | 4.85 | |||||||
IOH = –1 mA | TA = 25°C | 4.25 | 4.65 | |||||
TA = –55°C to 125°C | 4.25 | |||||||
VOL | Low-level output voltage | VIC = 2.5 V | IOL = 50 μA | 0.01 | V | |||
IOL = 500 μA | TA = 25°C | 0.09 | 0.15 | |||||
TA = –55°C to 125°C | 0.15 | |||||||
IOL = 5 mA | TA = 25°C | 0.9 | 1.5 | |||||
TA = –55°C to 125°C | 1.5 | |||||||
AVD | Large-signal differential voltage amplification |
VIC = 2.5 V, VO = 1 V to 4 V, RL = 10 kΩ(2) |
TA = 25°C | 10 | 35 | V/mV | ||
TA = –55°C to 125°C | 10 | |||||||
VIC = 2.5 V, VO = 1 V to 4 V; RL = 1 MΩ(2) | 175 | |||||||
rid | Differential input resistance | 1012 | Ω | |||||
ri | Common-mode input resistance | 1012 | Ω | |||||
ci | Common-mode input capacitance | f = 10 kHz, P package | 8 | pF | ||||
zo | Closed-loop output impedance | f = 1 MHz, AV = 10 | 140 | Ω | ||||
CMRR | Common-mode rejection ratio | VIC = 0 V to 2.7 V, VO = 2.5 V, RS = 50 Ω |
TA = 25°C | 70 | 75 | dB | ||
TA = –55°C to 125°C | 70 | |||||||
kSVR | Supply-voltage rejection ratio (ΔVDD / ΔVIO) |
VDD = 4.4 V to 16 V, VIC = VDD / 2, no load |
TA = 25°C | 80 | 95 | dB | ||
TA = –55°C to 125°C | 80 | |||||||
IDD | Supply currrent | VO = 2.5 V, no load | TA = 25°C | 2.2 | 3 | mA | ||
TA = –55°C to 125°C | 3 | |||||||
SR | Slew rate at unity gain | VO = 0.5 V to 2.5 V, RL = 10 kΩ(2), CL = 100 pF(2) |
TA = 25°C | 2.3 | 3.6 | V/µs | ||
TA = –55°C to 125°C | 1.7 | |||||||
Vn | Equivalent input noise voltage | f = 10 Hz | 50 | nV/√Hz | ||||
f = 1 kHz | 9 | |||||||
VNPP | Peak-to-peak equivalent input noise voltage |
f = 0.1 Hz to 1 Hz | 1 | µV | ||||
f = 0.1 Hz to 10 Hz | 1.4 | |||||||
In | Equivalent input noise current | 0.6 | fA/√Hz | |||||
THD+N | Total harmonic distortion + noise | VO = 0.5 V to 2.5 V, f = 20 kHz, RL = 10 kΩ(2) |
AV = 1 | 0.0013% | ||||
AV = 10 | 0.004% | |||||||
AV = 100 | 0.03% | |||||||
Gain-bandwidth product | f = 10 kHz, RL = 10 kΩ(2), CL = 100 pF(2) | 2.18 | MHz | |||||
BOM | Maximum output-swing bandwidth | VO(PP) = 2 V, AV = 1, RL = 10 kΩ(2), CL = 100 pF(2) | 1 | MHz | ||||
ts | Settling time | AV = –1, RL = 10 kΩ(2), Step = 0.5 V to 2.5 V, CL = 100 pF(2) |
To 0.1% | 1.5 | µs | |||
To 0.01% | 2.6 | |||||||
φm | Phase margin at unity gain | RL = 10 kΩ(2), CL = 100 pF(2) | 50 | ° | ||||
Gain margin | RL = 10 kΩ(2), CL = 100 pF(2) | 10 | dB |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |||
---|---|---|---|---|---|---|---|---|
VIO | Input offset voltage | VIC = 0 V, VO = 0 V, RS = 50 Ω |
TA = 25°C | 300 | 950 | µV | ||
TA = –55°C to 125°C | 1500 | |||||||
αVIO | Temperature coefficient of input offset voltage |
VIC = 0 V, VO = 0 V, RS = 50 Ω | 2 | μV/°C | ||||
Input offset voltage long-term drift(1) | VIC = 0 V, VO = 0 V, RS = 50 Ω | 0.002 | μV/mo | |||||
IIO | Input offset current | VIC = 0 V, VO = 0 V, RS = 50 Ω |
TA = 25°C | 0.5 | 60 | pA | ||
TA = –55°C to 125°C | 800 | |||||||
IIB | Input bias current | VIC = 0 V, VO = 0 V, RS = 50 Ω |
TA = 25°C | 1 | 60 | pA | ||
TA = –55°C to 125°C | 800 | |||||||
VICR | Common-mode input voltage | RS = 50 Ω; |VIO | ≤ 5 mV | TA = 25°C | –5.3 | 0 | 4 | V | |
TA = –55°C to 125°C | –5 | 0 | 3.5 | |||||
VOM+ | Maximum positive peak output voltage |
IO = –20 μA | 4.99 | V | ||||
IO = –200 μA | TA = 25°C | 4.85 | 4.93 | |||||
TA = –55°C to 125°C | 4.85 | |||||||
IO = –1 mA | TA = 25°C | 4.25 | 4.65 | |||||
TA = –55°C to 125°C | 4.25 | |||||||
VOM– | Maximum negative peak output voltage |
VIC = 0 V, | IO = 50 μA | –4.99 | V | |||
IO = 500 μA | TA = 25°C | –4.85 | –4.91 | |||||
TA = –55°C to 125°C | –4.85 | |||||||
IO = 5 mA | TA = 25°C | –3.5 | –4.1 | |||||
TA = –55°C to 125°C | –3.5 | |||||||
AVD | Large-signal differential voltage amplification |
VO = ±4 V; RL = 10 kΩ | TA = 25°C | 20 | 50 | V/mV | ||
TA = –55°C to 125°C | 20 | |||||||
VO = ±4 V; RL = 1 MΩ | 300 | |||||||
rid | Differential input resistance | 1012 | Ω | |||||
ri | Common-mode input resistance | 1012 | Ω | |||||
ci | Common-mode input capacitance | f = 10 kHz, P package | 8 | pF | ||||
zo | Closed-loop output impedance | f = 1 MHz, AV = 10 | 130 | Ω | ||||
CMRR | Common-mode rejection ratio | VIC = –5 V to 2.7 V, VO = 0 V, RS = 50 Ω |
TA = 25°C | 75 | 80 | dB | ||
TA = –55°C to 125°C | 75 | |||||||
kSVR | Supply-voltage rejection ratio (ΔVDD / ΔVIO) |
VDD+ = 2.2 V to ±8 V, VIC = 0 V, no load |
TA = 25°C | 80 | 95 | dB | ||
TA = –55°C to 125°C | 80 | |||||||
IDD | Supply currrent | VO = 0 V, no load | TA = 25°C | 2.4 | 3 | mA | ||
TA = –55°C to 125°C | 3 | |||||||
SR | Slew rate at unity gain | VO = ±2.3 V, RL = 10 kΩ, CL = 100 pF |
TA = 25°C | 2.3 | 3.6 | V/µs | ||
TA = –55°C to 125°C | 1.7 | |||||||
Vn | Equivalent input noise voltage | f = 10 Hz | 50 | nV/√Hz | ||||
f = 1 kHz | 9 | |||||||
VNPP | Peak-to-peak equivalent input noise voltage |
f = 0.1 Hz to 1 Hz | 1 | µV | ||||
f = 0.1 Hz to 10 Hz | 1.4 | |||||||
In | Equivalent input noise current | 0.6 | fA/√Hz | |||||
THD+N | Total harmonic distortion + noise | VO = ±2.3, f = 20 kHz, RL = 10 kΩ |
AV = 1 | 0.0011% | ||||
AV = 10 | 0.004% | |||||||
AV = 100 | 0.03% | |||||||
Gain-bandwidth product | f = 10 kHz, RL = 10 kΩ, CL = 100 pF | 2.25 | MHz | |||||
BOM | Maximum output-swing bandwidth | VO(PP) = 4.6 V, AV = 1, RL = 10 kΩ, CL = 100 pF | 0.54 | MHz | ||||
ts | Settling time | AV = –1, RL = 10 kΩ, Step = –2.3 V to 2.3 V, CL = 100 pF |
To 0.1% | 1.5 | µs | |||
To 0.01% | 3.2 | |||||||
φm | Phase margin at unity gain | RL = 10 kΩ, CL = 100 pF | 52 | ° | ||||
Gain margin | RL = 10 kΩ, CL = 100 pF | 10 | dB |
FIGURE(1) | |||
---|---|---|---|
VIO | Input offset voltage | Distribution | 1, 2 |
vs Common-mode voltage | 3, 4 | ||
αVIO | Input offset voltage temperature coefficient | Distribution | 5, 6 (2) |
IIB / IIO | Input bias and input offset current | vs ambient temperature | 7(2) |
VI | Input voltage | vs Supply voltage | 8 |
vs ambient temperature | 9(2) | ||
VOH | High-level output voltage | vs High-level output current | 10(2) |
VOL | Low-level output voltage | vs Low-level output current | 11, 12(2) |
VOM+ | Maximum positive peak output voltage | vs Output current | 13(2) |
VOM- | Maximum negative peak output voltage | vs Output current | 14(2) |
VO(PP) | Maximum peak-to-peak output voltage | vs Frequency | 15 |
IOS | Short-circuit output current | vs Supply voltage | 16 |
vs ambient temperature | 17(2) | ||
VO | Output voltage | vs Differential input voltage | 18, 19 |
AVD | Large-signal differential voltage amplification | vs Load resistance | 20 |
Large-signal differential voltage amplification and phase margin | vs Frequency | 21, 22 | |
Large-signal differential voltage amplification | vs ambient temperature | 23(2), 24(2) | |
z0 | Output impedance | vs Frequency | 25, 26 |
CMRR | Common-mode rejection ratio | vs Frequency | 27 |
vs ambient temperature | 28 | ||
kSVR | Supply-voltage rejection ratio | vs Frequency | 29, 30 |
vs ambient temperature | 31(2) | ||
IDD | Supply current | vs Supply voltage | 32(2), (2) |
vs ambient temperature | 33(2), (2) | ||
SR | Slew rate | vs Load Capacitance | 34 |
vs ambient temperature | 35(2) | ||
VO | Inverting large-signal pulse response | 36, 37 | |
Voltage-follower large-signal pulse response | 38, 39 | ||
Inverting small-signal pulse response | 40, 41 | ||
Voltage-follower small-signal pulse response | 42, 43 | ||
Vn | Equivalent input noise voltage | vs Frequency | 44, 45 |
Noise voltage over a 10-second period | 46 | ||
Integrated noise voltage | vs Frequency | 47 | |
THD+N | Total harmonic distortion + noise | vs Frequency | 48 |
Gain-bandwidth product | vs Supply voltage | 49 | |
vs ambient temperature | 50(2) | ||
φm | Phase margin | vs Load capacitance | 51 |
Gain margin | vs Load capacitance | 52 |
The TLC2272AM-MIL device is a rail-to-rail output operational amplifier. The device operates from a 4.4-V to 16-V single supply or ±2.2-V to ±8-V dual supply, is unity-gain stable, and is suitable for a wide range of general-purpose applications.
COMPONENT | COUNT |
---|---|
Transistors | 38 |
Resistors | 26 |
Diodes | 9 |
Capacitors | 3 |
The TLC2272AM-MIL device features 2-MHz bandwidth and voltage noise of 9 nV/√Hz with performance rated from 4.4 V to 16 V across a temperature range of –40°C to 125°C. LinMOS suits a wide range of audio, automotive, industrial, and instrumentation applications.
The TLC2272AM-MIL device is powered on when the supply is connected. The device may operate with single or dual supply, depending on the application. The device is in its full-performance mode once the supply is above the recommended value.