SLVS676D JUNE   2006  – July 2015 TPS62420 , TPS62421

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Dissipation Ratings
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
      1. 8.1.1 Converter 1
      2. 8.1.2 Converter 2
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Dynamic Voltage Positioning
      2. 8.3.2 Undervoltage Lockout
      3. 8.3.3 Mode Selection
      4. 8.3.4 Enable
      5. 8.3.5 DEF_1 Pin Function
      6. 8.3.6 180° Out-of-Phase Operation
      7. 8.3.7 Thermal Shutdown
      8. 8.3.8 Short Circuit Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Soft-Start
      2. 8.4.2 100% Duty Cycle Low Dropout Operation
      3. 8.4.3 Power-Save Mode
    5. 8.5 Programming
      1. 8.5.1 EasyScale™ Interface: One-Pin Serial Interface for Dynamic Output Voltage Adjustment
        1. 8.5.1.1 General
        2. 8.5.1.2 Protocol
        3. 8.5.1.3 Bit Decoding
        4. 8.5.1.4 Acknowledge
        5. 8.5.1.5 MODE Selection
    6. 8.6 Register Maps
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Output Voltage Setting
        1. 9.1.1.1 Converter 1 Adjustable Default Output Voltage Setting
        2. 9.1.1.2 Converter 2
    2. 9.2 Typical Applications
      1. 9.2.1 Typical Application Circuit 1.5-V and 2.85-V Adjustable Outputs
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Output Filter Design (Inductor and Output Capacitor)
            1. 9.2.1.2.1.1 Inductor Selection
            2. 9.2.1.2.1.2 Output Capacitor Selection
            3. 9.2.1.2.1.3 Input Capacitor Selection
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Typical Application Circuit TPS62421
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Related Links
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

1 Features

  • High Efficiency up to 95%
  • VIN Range from 2.5 V to 6 V
  • 2.25-MHz Fixed Frequency Operation
  • Output Current 600 mA and 1000 mA
  • Adjustable Output Voltage from 0.6 V to VIN
  • Pin Selectable Output Voltage Supports Simple Dynamic Voltage Scaling
  • Optional EasyScale™ One-Pin Serial Interface for Dynamic Output Voltage Adjustment
  • Power-Save Mode at Light Load Currents
  • 180° Out of Phase Operation
  • Output Voltage Accuracy in PWM Mode ±1%
  • Typical 32-μA Quiescent Current for both Converters
  • 100% Duty Cycle for Lowest Dropout
  • Available in a 10-Pin VSON (3 mm × 3 mm)

2 Applications

  • Cell Phones, Smart-phones
  • PDAs, Pocket PCs
  • OMAP™ and Low Power DSP Supply
  • Portable Media Players
  • Digital Radios
  • Digital Cameras

3 Description

The TPS6242x device is a synchronous dual step-down DC–DC converter. It provides two independent output voltage rails powered by 1-cell Li-Ion or 3-cell NiMH/NiCD batteries. The device is also suitable to operate from a standard 3.3-V or 5-V voltage rail.

With an input voltage range of 2.5 V to 6 V, the TPS6242x is ideal for battery-powered portable applications like smart phones, PDAs, and other portable equipment.

With the EasyScale™ serial interface the output voltages can be modified during operation. It therefore supports dynamic voltage scaling for low power DSP and processors.

The TPS6242x operates at 2.25-MHz fixed switching frequency and enter the power-save mode operation at light load currents to maintain high efficiency over the entire load current range. For low-noise applications the devices can be forced into fixed-frequency PWM mode by pulling the MODE/DATA pin High. In the shutdown mode, the current consumption is reduced to 1.2 μA. The device allows the use of small inductors and capacitors to achieve a small solution size.

The TPS6242x operates over a free-air temperature range of –40°C to 85°C. It is available in a 10-pin leadless package (3 mm × 3 mm VSON)

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
TPS62420
TPS62421
VSON (10) 3.00 mm × 3.00 mm
  1. For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application Schematic

TPS62420 TPS62421 sch_lvs676.gif

Efficiency vs Output Current

TPS62420 TPS62421 eff_io_lvs676.gif