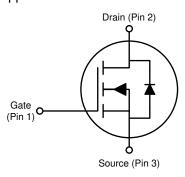
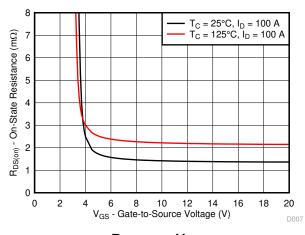


CSD18510KTT SLPS638C - NOVEMBER 2016 - REVISED JUNE 2024

CSD18510KTT 40V N-Channel NexFETTM Power MOSFET

1 Features


- Ultra-low Q_g and Q_{gd}
- Low-thermal resistance
- Avalanche rated
- Lead-free terminal plating
- RoHS compliant
- Halogen free
- D²PAK plastic package


2 Applications

- Secondary side synchronous rectifier
- Motor control

3 Description

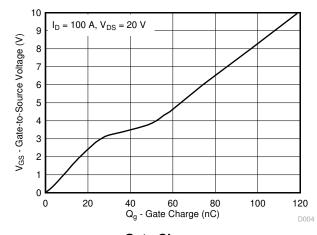
This 40V, 1.4mΩ, D²PAK (TO-263) NexFET[™] power MOSFET is designed to minimize losses in power conversion applications.

R_{DS(on)} vs V_{GS}

Product Summary

T _A = 25°	С	TYPICAL VA	UNIT	
V _{DS}	Drain-to-Source Voltage 40			
Qg	Gate Charge Total (10V)	119		nC
Q _{gd}	Gate Charge Gate-to-Drain	21		nC
В	Drain-to-Source On Resistance	V _{GS} = 4.5V 2.0		mΩ
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10V	1.4	11112
V _{GS(th)}	Threshold Voltage	1.7	V	

Device Information⁽¹⁾


DEVICE	QTY	MEDIA	PACKAGE	SHIP
CSD18510KTT	500	40.1.1.5.1	D ² PAK	Tape
CSD18510KTTT	50	13-Inch Reel	Plastic Package	and Reel

For all available packages, see the orderable addendum at the end of the data sheet.

Absolute Maximum Ratings

T _A = 2	5°C	VALUE	UNIT	
V _{DS}	Drain-to-Source Voltage	40	V	
V _{GS}	Gate-to-Source Voltage	±20	٧	
	Continuous Drain Current (Package Limited)	200		
I _D	Continuous Drain Current (Silicon Limited), T _C = 25°C	274	A	
	Continuous Drain Current (Silicon Limited), T _C = 100°C	193		
I _{DM}	Pulsed Drain Current ⁽¹⁾	400	Α	
P _D	Power Dissipation	250	W	
T _J , T _{stg}	Operating Junction, Storage Temperature	-55 to 175	°C	
E _{AS}	Avalanche Energy, Single Pulse I_D = 81A, L = 0.1mH, R_G = 25 Ω	328	mJ	

Max $R_{\theta JC}$ = 0.6°C/W, pulse duration \leq 100 μ s, duty cycle \leq (1)

Gate Charge

Table of Contents

1 Features	5.1 Receiving Notification of Documentation Updates7
2 Applications1	5.2 Support Resources7
3 Description1	
4 Specifications3	
4.1 Electrical Characteristics3	
4.2 Thermal Information3	· ·
4.3 Typical MOSFET Characteristics4	7 Mechanical, Packaging, and Orderable Information8
5 Device and Documentation Support7	

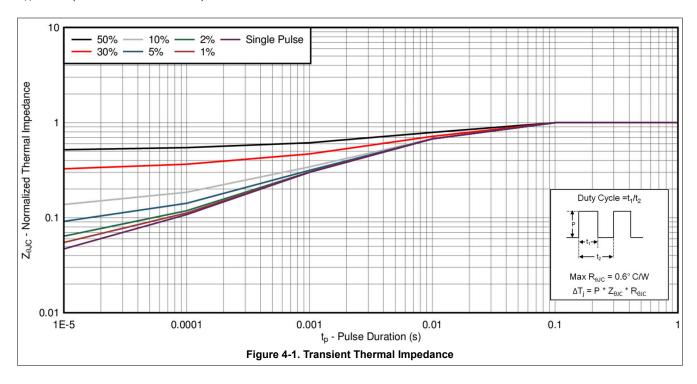
4 Specifications

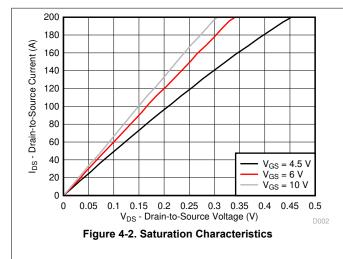
4.1 Electrical Characteristics

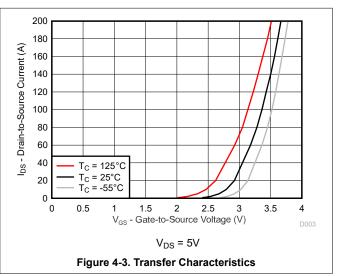
 $T_A = 25^{\circ}C$ (unless otherwise stated)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
STATIC	CHARACTERISTICS		·		
BV _{DSS}	Drain-to-source voltage	$V_{GS} = 0V, I_D = 250\mu A$	40		V
I _{DSS}	Drain-to-source leakage current	V _{GS} = 0V, V _{DS} = 32V		1	μΑ
I _{GSS}	Gate-to-source leakage current	V _{DS} = 0V, V _{GS} = 20V		100	nA
V _{GS(th)}	Gate-to-source threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.4 1.7	2.3	V
	Drain to course on registence	V _{GS} = 4.5V, I _D = 100A	2.0	2.6	mΩ
R _{DS(on)}	Drain-to-source on resistance	V _{GS} = 10V, I _D = 100A	1.4	1.7	11177
9 _{fs}	Transconductance	V _{DS} = 4V, I _D = 100A	330		S
DYNAM	IC CHARACTERISTICS				
C _{iss}	Input capacitance		8770	11400	pF
C _{oss}	Output capacitance	$V_{GS} = 0V, V_{DS} = 20V, f = 1MHz$	832	1080	pF
C _{rss}	Reverse transfer capacitance		424	551	pF
R_G	Series gate resistance		0.9	1.8	Ω
Q_g	Gate charge total (4.5V)		58	75	nC
$\overline{Q_g}$	Gate charge total (10V)		118	153	nC
Q _{gd}	Gate charge gate-to-drain	V _{DS} = 20V, I _D = 100A	21		nC
Q _{gs}	Gate charge gate-to-source		28		nC
Q _{g(th)}	Gate charge at V _{th}		15		nC
Q _{oss}	Output charge	V _{DS} = 20V, V _{GS} = 0V	35		nC
t _{d(on)}	Turnon delay time		10		ns
t _r	Rise time	V _{DS} = 20V, V _{GS} = 10V,	8		ns
t _{d(off)}	Turnoff delay time	I_{DS} = 100A, R_G = 0 Ω	29		ns
t _f	Fall time		8		ns
DIODE (CHARACTERISTICS			'	
V _{SD}	Diode forward voltage	I _{SD} = 100A, V _{GS} = 0V	0.85	1.0	V
Q _{rr}	Reverse recovery charge	V _{DS} = 20V, I _F = 100A,	70		nC
t _{rr}	Reverse recovery time	di/dt = 300A/µs	41		ns

4.2 Thermal Information

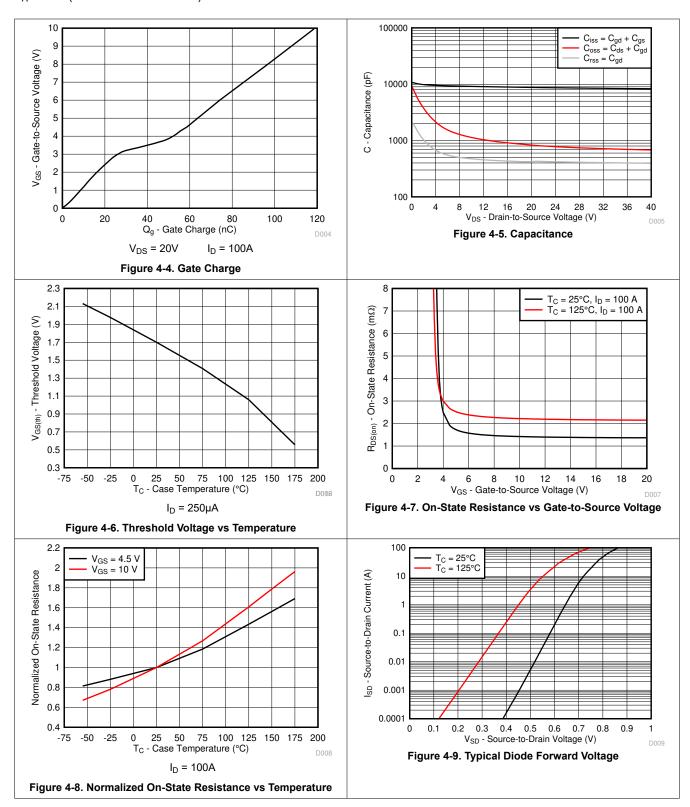

T_A = 25°C (unless otherwise stated)


	THERMAL METRIC	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction-to-case thermal resistance			0.6	°C/W
$R_{\theta JA}$	Junction-to-ambient thermal resistance			62	°C/W



4.3 Typical MOSFET Characteristics

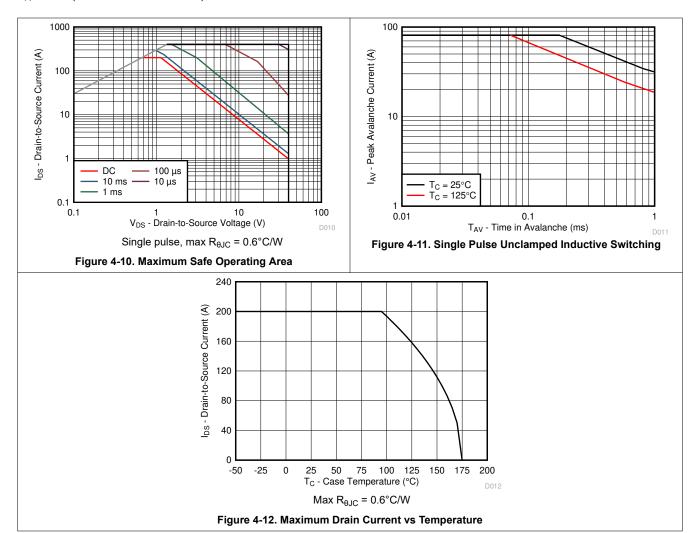
T_A =25°C (unless otherwise stated)



Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

4.3 Typical MOSFET Characteristics (continued)


T_A =25°C (unless otherwise stated)

4.3 Typical MOSFET Characteristics (continued)

T_A =25°C (unless otherwise stated)

5 Device and Documentation Support

5.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

5.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

5.3 Trademarks

NexFET[™] and TI E2E[™] are trademarks of Texas Instruments. All trademarks are the property of their respective owners.

5.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

5.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

6 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (November 2022) to Revision C (June 2024)	Page
Updated the numbering format for tables, figures, and cross-references throughout the docum	ent 1
Changes from Revision A (January 2017) to Revision B (November 2022)	Page
Updated Figure 4-3	
Changes from Revision * (November 2016) to Revision A (January 2017)	Page
• Changed silicon current limit, T _C = 25°C from 237A : to 274A in the <i>Absolute Maximum Rating</i>	
• Changed silicon current limit, T _C = 100°C from 167A : to 193A in the <i>Absolute Maximum Ratin</i>	
• Changed max power dissipation from 188W : to 250W in the Absolute Maximum Ratings table	1
• Changed the charge values in the Dynamic Characteristics section of the Electrical Characteri	-4: 4-1-1- O

7 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

www.ti.com 13-Jun-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CSD18510KTT	ACTIVE	DDPAK/ TO-263	KTT	2	500	RoHS-Exempt & Green	SN	Level-2-260C-1 YEAR	-55 to 175	CSD18510KTT	Samples
CSD18510KTTT	ACTIVE	DDPAK/ TO-263	KTT	2	50	RoHS-Exempt & Green	SN	Level-2-260C-1 YEAR	-55 to 175	CSD18510KTT	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

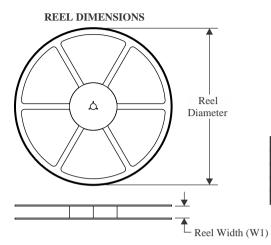
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

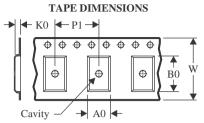
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

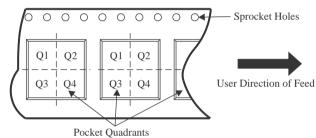
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE OPTION ADDENDUM


www.ti.com 13-Jun-2024

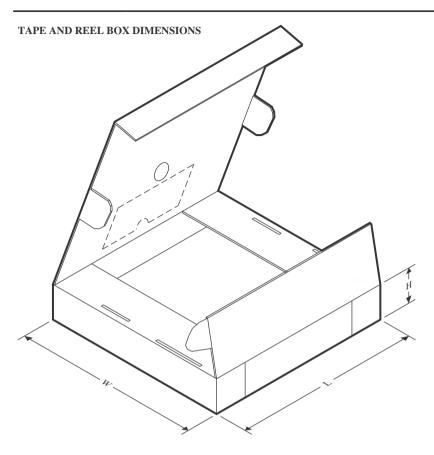
PACKAGE MATERIALS INFORMATION

www.ti.com 13-Jun-2024


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

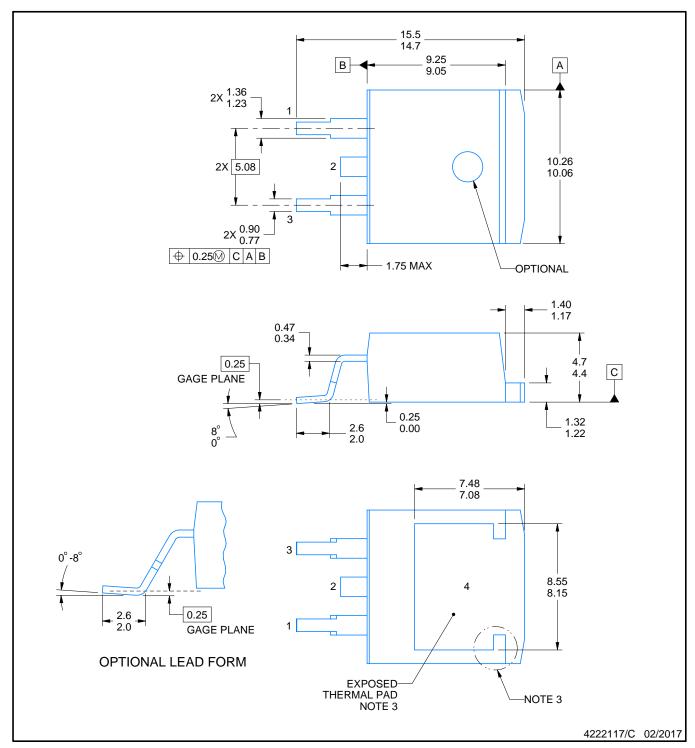


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CSD18510KTT	DDPAK/ TO-263	KTT	2	500	330.0	24.4	10.8	16.3	5.11	16.0	24.0	Q2
CSD18510KTTT	DDPAK/ TO-263	KTT	2	50	330.0	24.4	10.8	16.3	5.11	16.0	24.0	Q2

PACKAGE MATERIALS INFORMATION

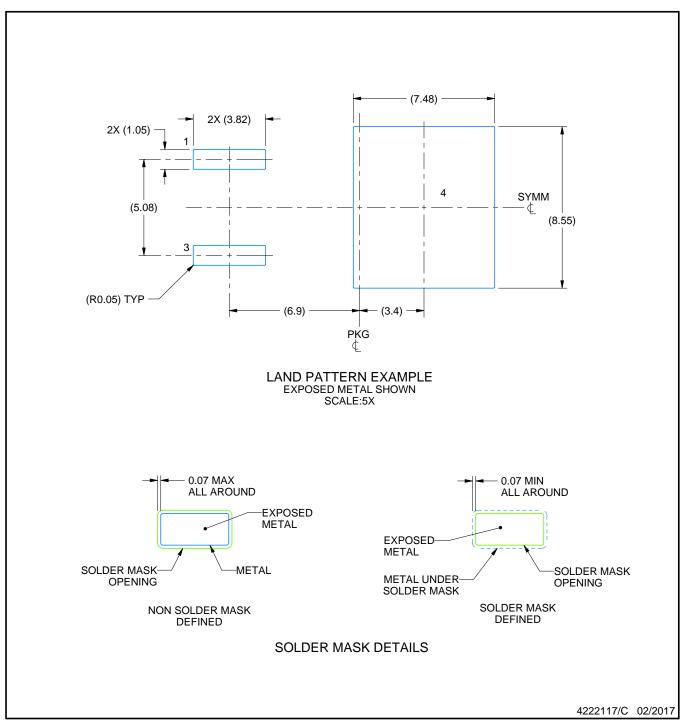
www.ti.com 13-Jun-2024



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CSD18510KTT	DDPAK/TO-263	ктт	2	500	340.0	340.0	38.0
CSD18510KTTT	DDPAK/TO-263	KTT	2	50	340.0	340.0	38.0

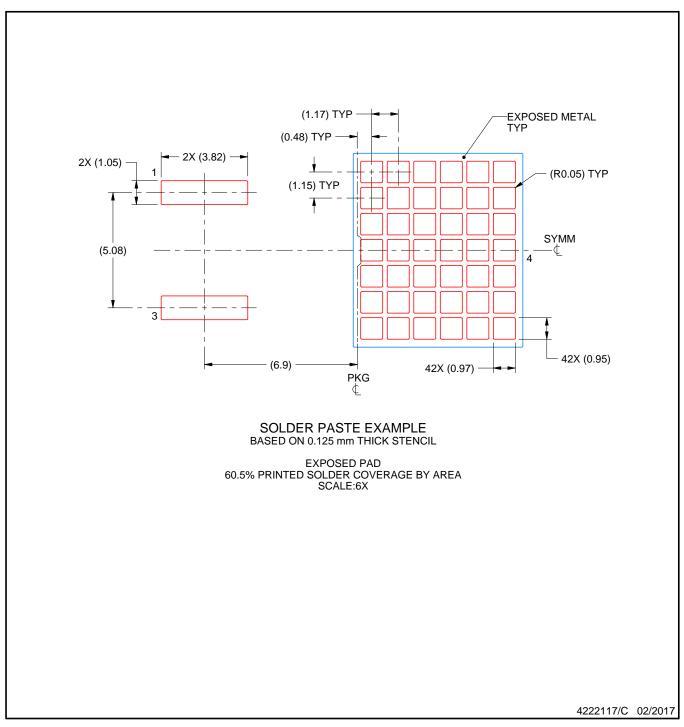
TO-263


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- Features may not exist and shape may vary per different assembly sites.
 Reference JEDEC registration TO-263.

TO-263



NOTES: (continued)

- 5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002(www.ti.com/lit/slma004) and SLMA004 (www.ti.com/lit/slma004).
- 6. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

TO-263

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated