8-Channel, 24-Bit ANALOG-TO-DIGITAL CONVERTER

FEATURES

- 24 BITS NO MISSING CODES
- INL: 0.0012\% of FSR (max)
- FULL-SCALE INPUT: $\pm 2 \mathrm{~V}_{\text {REF }}$
- PGA FROM 1 TO 128
- 22 BITS EFFECTIVE RESOLUTION (PGA = 1), 19 BITS (PGA = 128)
- SINGLE CYCLE SETTLING MODE
- PROGRAMMABLE DATA OUTPUT RATES UP TO 1kHz
- ON-CHIP 1.25V/2.5V REFERENCE
- ON-CHIP CALIBRATION
- SPI COMPATIBLE
- POWER SUPPLY: 2.7V to 5.25 V
- < 1mW POWER CONSUMPTION, $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
- LIQUID/GAS CHROMATOGRAPHY
- BLOOD ANALYSIS
- SMART TRANSMITTERS
- PORTABLE INSTRUMENTATION
- WEIGH SCALES
- PRESSURE TRANSDUCERS

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[^0]ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

NOTE: (1) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION ${ }^{(1)}$

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY
ADS1217 $"$	TQFP-48	PFB $"$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	ADS1217	ADS1217IPFBT	Tape and Reel, 250
ADS1217IPFBR	Tape and Reel, 2000					

NOTE: (1) For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet, or see the TI website at www.ti.com.

ELECTRICAL CHARACTERISTICS: $\mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}$

All specifications at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{DV} \mathrm{VD}_{\mathrm{D}}=+2.7 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{f}_{\mathrm{MOD}}=19.2 \mathrm{kHz}, \mathrm{PGA}=1$, Buffer $\mathrm{ON}, \mathrm{R}_{\mathrm{DAC}}=150 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{DATA}}=10 \mathrm{~Hz}$, and $\mathrm{V}_{\mathrm{REF}}=+2.5 \mathrm{~V}$, unless otherwise specified.

PARAMETER	CONDITIONS	ADS1217			UNITS
		MIN	TYP	MAX	
ANALOG INPUT ($A_{\text {IN }} 0-A_{\text {IN }} 7, A_{\text {INcom }}$) Full-Scale Input Voltage Analog Input Voltage Differential Input Impedance Input Current Bandwidth Fast Settling Filter Sinc ${ }^{2}$ Filter Sinc ${ }^{3}$ Filter Programmable Gain Amplifier Burnout Current Sources	$\begin{gathered} \left(\mathrm{A}_{\mathrm{IN}_{+}}\right)-\left(\mathrm{A}_{\mathrm{IN}}\right) \\ \text { Buffer OFF } \\ \text { Buffer ON } \\ \text { Buffer OFF } \\ \text { Buffer ON } \\ \\ -3 \mathrm{~dB} \\ -3 \mathrm{~dB} \\ -3 \mathrm{~dB} \end{gathered}$ User Selectable Gain Ranges	$\begin{gathered} \text { AGND }-0.1 \\ \text { AGND }+0.05 \end{gathered}$	$\begin{gathered} \pm 2 \mathrm{~V}_{\text {REF }} / \mathrm{PGA} \\ \\ 10 / \mathrm{PGA} \\ 0.5 \\ 0.469 \mathrm{f}_{\text {DATA }} \\ 0.318 \mathrm{f}_{\text {DATA }} \\ 0.262 \mathrm{f}_{\text {DATA }} \end{gathered}$	$\begin{aligned} & \mathrm{AV}_{\mathrm{DD}}+0.1 \\ & \mathrm{AV}_{\mathrm{DD}}-1.5 \end{aligned}$ 128	V V V $\mathrm{M} \Omega$ nA Hz Hz Hz $\mu \mathrm{A}$
OFFSET DAC Offset DAC Range Offset DAC Monotonicity Offset DAC Gain Error Offset DAC Gain Error Drift		8	$\begin{gathered} \pm \mathrm{V}_{\mathrm{REF}} /(\mathrm{PGA}) \\ \\ \pm 1 \\ 1 \end{gathered}$		$\begin{gathered} \mathrm{V} \\ \text { Bits } \\ \% \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{gathered}$
SYSTEM PERFORMANCE Resolution No Missing Codes Integral Nonlinearity Offset Error Offset Drift Gain Error Gain Error Drift Common-Mode Rejection Normal-Mode Rejection Output Noise Power-Supply Rejection	Sinc ${ }^{3}$ Filter End Point Fit, Differential Input, Buffer Off Before Calibration After Calibration at DC $\begin{aligned} & \mathrm{f}_{\mathrm{CM}}=60 \mathrm{~Hz}, \mathrm{f}_{\mathrm{DATA}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{CM}}=50 \mathrm{~Hz}, \mathrm{f}_{\mathrm{DATA}}=50 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{CM}}=60 \mathrm{~Hz}, \mathrm{f}_{\mathrm{DATA}}=60 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{SIG}}=50 \mathrm{~Hz}, \mathrm{f}_{\text {DATA }}=50 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{SIG}}=60 \mathrm{~Hz}, \mathrm{f}_{\mathrm{DATA}}=60 \mathrm{~Hz} \end{aligned}$ at $\mathrm{DC}, \mathrm{dB}=-20 \log \left(\Delta \mathrm{~V}_{\mathrm{OUT}} / \Delta \mathrm{V}_{\mathrm{DD}}\right)^{(2)}$	24 100	0.0003 7.5 0.02 0.005 0.5 130 120 120 100 100 Characte 95	$\begin{gathered} 24 \\ 0.0012 \end{gathered}$	Bits Bits \% of $\mathrm{FSR}^{(1)}$ ppm of FSR ppm of FSR/ ${ }^{\circ} \mathrm{C}$ \% $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ dB dB dB dB dB dB dB

NOTES: (1) FSR is Full-Scale Range. (2) $\Delta \mathrm{V}_{\text {OUT }}$ is change in digital result. (3) 12 pF switched capacitor at $\mathrm{f}_{\text {SAMP }}$ clock frequency.

ELECTRICAL CHARACTERISTICS: AV ${ }_{\text {DD }}=5 \mathrm{~V}$ (Cont.)

All specifications at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, A V_{D D}=+5 \mathrm{~V}, \mathrm{DV}$ DD $=+2.7 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{f}_{\mathrm{MOD}}=19.2 \mathrm{kHz}, \mathrm{PGA}=1$, Buffer $\mathrm{ON}, \mathrm{R}_{\mathrm{DAC}}=150 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{DATA}}=10 \mathrm{~Hz}$, and $\mathrm{V}_{\mathrm{REF}}=+2.5 \mathrm{~V}$, unless otherwise specified

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} \& \multirow[b]{2}{*}{CONDITIONS} \& \multicolumn{3}{|c|}{ADS1217} \& \multirow[b]{2}{*}{UNITS} \\
\hline \& \& MIN \& TYP \& MAX \& \\
\hline \begin{tabular}{l}
VOLTAGE REFERENCE INPUT \\
Reference Input (\(\mathrm{V}_{\mathrm{REF}}\)) \\
Negative Reference Input (\(\mathrm{V}_{\text {REF- }}\)) \\
Positive Reference Input (\(\mathrm{V}_{\mathrm{REF}+}\)) \\
Common-Mode Rejection \\
Common-Mode Rejection \\
Bias Current \({ }^{(3)}\)
\end{tabular} \& \[
\begin{gathered}
\mathrm{V}_{\text {REF }} \equiv\left(\mathrm{V}_{\mathrm{REF}+}\right)-\left(\mathrm{V}_{\mathrm{REF}-}\right) \\
\text { at } \mathrm{DC} \\
\mathrm{f}_{\mathrm{VREFCM}}=60 \mathrm{~Hz}, \mathrm{f}_{\mathrm{DATA}}=60 \mathrm{~Hz} \\
\mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}, \mathrm{PGA}=1
\end{gathered}
\] \& \[
\begin{gathered}
0.1 \\
\text { AGND - } 0.1 \\
\left(\mathrm{~V}_{\text {REF-- }}\right)+0.1
\end{gathered}
\] \& \[
\begin{gathered}
2.5 \\
\\
120 \\
120 \\
1.3
\end{gathered}
\] \& \[
\begin{gathered}
2.6 \\
\left(\mathrm{~V}_{\mathrm{REF}+}\right)-0.1 \\
\mathrm{AV} \mathrm{DD}^{2}+0.1
\end{gathered}
\] \& \\
\hline \begin{tabular}{l}
ON-CHIP VOLTAGE REFERENCE \\
Output Voltage \\
Short-Circuit Current Source \\
Short-Circuit Current Sink \\
Drift \\
Noise \\
Output Impedance \\
Startup Time
\end{tabular} \& \begin{tabular}{l}
REF HI = 1 \\
REF HI \(=0\)
\[
\begin{gathered}
V_{\text {RCAP }}= \\
=0.1 \mu \mathrm{~F}, B W=0.1 \mathrm{~Hz} \text { to } 100 \mathrm{~Hz} \\
\text { Sourcing } 100 \mu \mathrm{~A}
\end{gathered}
\]
\end{tabular} \& 2.4 \& \[
\begin{gathered}
2.5 \\
1.25 \\
8 \\
50 \\
15 \\
10 \\
3 \\
5
\end{gathered}
\] \& 2.6 \& \begin{tabular}{l}
V \\
V \\
mA \\
\(\mu \mathrm{A}\) \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \(\mu \mathrm{Vrms}\) \\
\(\Omega\) \\
ms
\end{tabular} \\
\hline \begin{tabular}{l}
IDAC \\
Full-Scale Output Current \\
Current Setting Resistance (\(\mathrm{R}_{\mathrm{DAC}}\)) \\
Monotonicity \\
Compliance Voltage \\
Output Impedance \\
PSRR \\
Gain Error \\
Gain Error Drift \\
Gain Error Mismatch \\
Gain Error Mismatch Drift
\end{tabular} \& \[
\begin{gathered}
\mathrm{R}_{\mathrm{DAC}}=150 \mathrm{k} \Omega, \text { Range }=1 \\
\mathrm{R}_{\mathrm{DAC}}=150 \mathrm{k} \Omega, \text { Range }=2 \\
\mathrm{R}_{\mathrm{DAC}}=150 \mathrm{k} \Omega, \text { Range }=3 \\
\mathrm{R}_{\mathrm{DAC}}=15 \mathrm{k} \Omega \text {, Range }=3 \\
\mathrm{R}_{\mathrm{DAC}}=150 \mathrm{k} \Omega \\
\mathrm{~V}_{\text {OUT }}=\mathrm{AV} \\
\text { Individual IDAC } \\
\text { Individual IDAC }
\end{gathered}
\] \& \[
\begin{array}{cc}
10 \& \\
8 \& \\
0 \& \\
\& \text { See }
\end{array}
\] \& 0.5
1
2
20

Cha
400
5
75
0.25

15 \& $\mathrm{AV}_{\mathrm{DD}}-1$ \& $$
\begin{gathered}
\mathrm{mA} \\
\mathrm{~mA} \\
\mathrm{~mA} \\
\mathrm{~mA} \\
\mathrm{k} \Omega \\
\mathrm{Bits} \\
\mathrm{~V} \\
\\
\mathrm{ppm} / \mathrm{V} \\
\% \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\% \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}
\end{gathered}
$$

\hline | POWER-SUPPLY REQUIREMENTS |
| :--- |
| Power-Supply Voltage |
| Analog Current ($l_{\text {ADC }}+I_{\text {VREF }}+I_{\text {IDAC }}$ |
| A/D Converter Current ($\mathrm{I}_{\mathrm{ADC}}$) |
| $\mathrm{V}_{\text {REF }}$ Current (IVREF) |
| $I_{\text {IDAC }}$ Current (IIDAC) |
| Digital Current |
| Power Dissipation | \& | $A V_{D D}$ |
| :--- |
| $\overline{\text { PDWN }}=0$, or SLEEP |
| PGA = 1, Buffer OFF |
| PGA = 128, Buffer OFF |
| PGA = 1, Buffer ON |
| PGA $=128$, Buffer $O N$ |
| Excludes Load Current |
| Normal Mode, $\mathrm{DV}_{\mathrm{DD}}=5 \mathrm{~V}$ |
| SLEEP Mode, $\mathrm{DV}_{\mathrm{DD}}=5 \mathrm{~V}$ |
| Read Data Continuous Mode, $\mathrm{DV}_{\mathrm{DD}}=5 \mathrm{~V}$ $\overline{\mathrm{PDWN}}=0$ |
| PGA = 1, Buffer OFF, REFEN $=0$, |
| IDACs OFF, $D V_{D D}=5 \mathrm{~V}$ | \& 4.75 \& 1

175
500
250
900
250
480
180
150
230
1

1.8 \& \[
$$
\begin{gathered}
5.25 \\
275 \\
750 \\
350 \\
1375 \\
375 \\
675 \\
275
\end{gathered}
$$

\] \& | V nA $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| :--- |
| $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ nA mW |

\hline
\end{tabular}

NOTES: (1) FSR is Full-Scale Range. (2) $\Delta \mathrm{V}_{\text {OUT }}$ is change in digital result. (3) 12 pF switched capacitor at $\mathrm{f}_{\text {SAMP }}$ clock frequency.

ELECTRICAL CHARACTERISTICS: $\mathrm{AV}_{\mathrm{DD}}=3 \mathrm{~V}$

All specifications at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{DV} \mathrm{DD}=+2.7 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{f}_{\mathrm{MOD}}=19.2 \mathrm{kHz}, \mathrm{PGA}=1$, Buffer $\mathrm{ON}, \mathrm{R}_{\mathrm{DAC}}=75 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{DATA}}=10 \mathrm{~Hz}$, and $\mathrm{V}_{\mathrm{REF}}=+1.25 \mathrm{~V}$, unless otherwise specified.

PARAMETER	CONDITIONS	ADS1217			UNITS
		MIN	TYP	MAX	
ANALOG INPUT ($\left.\mathrm{A}_{\text {IN }} 0-\mathrm{A}_{\text {IN }} 7, \mathrm{~A}_{\text {INCOM }}\right)$ Full-Scale Input Voltage Analog Input Range Input Impedance Input Current Bandwidth Fast Settling Filter Sinc ${ }^{2}$ Filter Sinc ${ }^{3}$ Filter Programmable Gain Amplifier Burnout Current Sources	$\begin{gathered} \left(\mathrm{A}_{\mathrm{IN}_{\mathrm{N}}}\right)-\left(\mathrm{A}_{\text {IN }}\right) \\ \text { Buffer OFF } \\ \text { Buffer ON } \\ \text { Buffer OFF } \\ \text { Buffer ON } \\ \\ -3 \mathrm{~dB} \\ -3 \mathrm{~dB} \\ -3 \mathrm{~dB} \end{gathered}$ User Selectable Gain Ranges	$\begin{gathered} \text { AGND - } 0.1 \\ \text { AGND }+0.05 \end{gathered}$	$\begin{gathered} \pm 2 \mathrm{~V}_{\text {REF }} / \mathrm{PGA} \\ \\ 10 / \text { PGA } \\ 0.5 \\ 0.469 f_{\text {DATA }} \\ 0.318 f_{\text {DATA }} \\ 0.262 f_{\text {DATA }} \end{gathered}$	$\begin{aligned} & \mathrm{AV}_{\mathrm{DD}}+0.1 \\ & \mathrm{AV}_{\mathrm{DD}}-1.5 \end{aligned}$ 128	V V V $\mathrm{M} \Omega$ nA Hz Hz Hz $\mu \mathrm{A}$
OFFSET DAC Offset DAC Range Offset DAC Monotonicity Offset DAC Gain Error Offset DAC Gain Error Drift		8	$\begin{gathered} \pm \mathrm{V}_{\mathrm{REF}} /(\mathrm{PGA}) \\ \\ \pm 1 \\ 2 \end{gathered}$		$\begin{gathered} \text { V } \\ \text { Bits } \\ \% \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{gathered}$
SYSTEM PERFORMANCE Resolution No Missing Codes Integral Nonlinearity Offset Error Offset Drift Gain Error Gain Error Drift Common-Mode Rejection Normal-Mode Rejection Output Noise Power-Supply Rejection	Sinc ${ }^{3}$ Filter End Point Fit, Differential Input, Buffer Off, $\mathrm{T}=25^{\circ} \mathrm{C}$ Before Calibration After Calibration at DC $\begin{aligned} \mathrm{f}_{\mathrm{CM}} & =60 \mathrm{~Hz}, \mathrm{f}_{\mathrm{DATA}}=10 \mathrm{~Hz} \\ \mathrm{f}_{\mathrm{CM}} & =50 \mathrm{~Hz}, \mathrm{f}_{\mathrm{DATA}}=50 \mathrm{~Hz} \\ \mathrm{f}_{\mathrm{CM}} & =60 \mathrm{~Hz}, \mathrm{f}_{\mathrm{DATA}}=60 \mathrm{~Hz} \\ \mathrm{f}_{\mathrm{SIG}} & =50 \mathrm{~Hz}, \mathrm{f}_{\text {DATA }}=50 \mathrm{~Hz} \\ \mathrm{f}_{\mathrm{SIG}} & =60 \mathrm{~Hz}, \mathrm{f}_{\mathrm{DATA}}=60 \mathrm{~Hz} \end{aligned}$ at $\mathrm{DC}, \mathrm{dB}=-20 \log \left(\Delta \mathrm{~V}_{\mathrm{OUT}} / \Delta \mathrm{V}_{\mathrm{DD}}\right)^{(2)}$	24 100	0.0003 15 0.04 0.010 1.0 130 120 120 100 100 ypical Characte 90	$\begin{gathered} 24 \\ 0.0012 \end{gathered}$	Bits Bits \% of FSR ${ }^{(1)}$ ppm of FSR ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$ \% $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ dB dB dB dB dB dB dB
VOLTAGE REFERENCE INPUT Reference Input ($\mathrm{V}_{\text {REF }}$) Negative Reference Input ($\mathrm{V}_{\text {REF- }}$) Positive Reference Input ($\mathrm{V}_{\mathrm{REF}_{+}}$) Common-Mode Rejection Common-Mode Rejection Bias Current ${ }^{(3)}$	$\begin{gathered} \mathrm{V}_{\text {REF }} \equiv\left(\mathrm{V}_{\text {REF }+}\right)-\left(\mathrm{V}_{\text {REF- }-}\right) \\ \text { at DC } \\ \mathrm{f}_{\text {VREFCM }}=60 \mathrm{~Hz}, \mathrm{f}_{\text {DATA }}=60 \mathrm{~Hz} \\ \mathrm{~V}_{\text {REF }}=1.25 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0.1 \\ \text { AGND - } 0.1 \\ \left(\mathrm{~V}_{\text {REF-- }}\right)+0.1 \end{gathered}$	$\begin{aligned} & 1.25 \\ & \\ & 120 \\ & 120 \\ & 0.65 \end{aligned}$	$\begin{gathered} 1.3 \\ \left(\mathrm{~V}_{\mathrm{REF}+}\right)-0.1 \\ \mathrm{AV} \mathrm{DD}^{2}+0.1 \end{gathered}$	V V V dB dB $\mu \mathrm{A}$
ON-CHIP VOLTAGE REFERENCE Output Voltage Short-Circuit Current Source Short-Circuit Current Sink Drift Noise Output Impedance Startup Time	REF HI $=0$ $\begin{gathered} \mathrm{V}_{\mathrm{RCAP}}=0.1 \mu \mathrm{~F}, \mathrm{BW}=0.1 \mathrm{~Hz} \text { to } 100 \mathrm{~Hz} \\ \text { Sourcing } 100 \mu \mathrm{~A} \end{gathered}$	1.2	$\begin{gathered} 1.25 \\ 3 \\ 50 \\ 15 \\ 10 \\ 3 \\ 5 \end{gathered}$	1.3	V mA $\mu \mathrm{A}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{Vrms}$ Ω ms
IDAC Full-Scale Output Current Current Setting Resistance ($\mathrm{R}_{\mathrm{DAC}}$) Monotonicity Compliance Voltage Output Impedance PSRR Gain Error Gain Error Drift Gain Error Mismatch Gain Error Mismatch Drift	$\begin{gathered} \mathrm{R}_{\mathrm{DAC}}=75 \mathrm{k} \Omega, \text { Range }=1 \\ \mathrm{R}_{\mathrm{DAC}}=75 \mathrm{k} \Omega, \text { Range }=2 \\ \mathrm{R}_{\mathrm{DAC}}=75 \mathrm{k} \Omega, \text { Range }=3 \\ \mathrm{R}_{\mathrm{DAC}}=15 \mathrm{k} \Omega, \text { Range }=3 \\ \mathrm{R}_{\mathrm{DAC}}=75 \mathrm{k} \Omega \end{gathered}$ $\begin{gathered} \mathrm{V}_{\text {OUT }}= \\ =\mathrm{AV}_{\mathrm{DD}} / 2, \text { Code }>16 \\ \text { Individual IDAC } \\ \text { Individual IDAC } \end{gathered}$ Between IDACs, Same Range and Code Between IDACs, Same Range and Code				$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \mathrm{k} \Omega \\ \mathrm{Bits} \\ \mathrm{~V} \\ \\ \mathrm{ppm} / \mathrm{V} \\ \% \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \% \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{gathered}$

NOTES: (1) FSR is Full-Scale Range. (2) $\Delta \mathrm{V}_{\text {OUT }}$ is change in digital result. (3) 12 pF switched capacitor at $\mathrm{f}_{\text {SAMP }}$ clock frequency.

ELECTRICAL CHARACTERISTICS: $\mathrm{AV}_{\mathrm{DD}}=3 \mathrm{~V}$ (Cont.)

All specifications at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, A V_{D D}=+3 \mathrm{~V}, D V_{D D}=+2.7 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{f}_{\mathrm{MOD}}=19.2 \mathrm{kHz}, \mathrm{PGA}=1$, Buffer $\mathrm{ON}, \mathrm{R}_{\mathrm{DAC}}=75 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{DATA}}=10 \mathrm{~Hz}$, and $\mathrm{V}_{\mathrm{REF}}=+1.25 \mathrm{~V}$, unless otherwise specified

PARAMETER	CONDITIONS	ADS1217			UNITS
		MIN	TYP	MAX	
POWER-SUPPLY REQUIREMENTS					
Power-Supply Voltage	$\mathrm{AV}_{\mathrm{DD}}$	2.7		3.3	V
Analog Current $\left(I_{\text {ADC }}+I_{\text {VREF }}+I_{\text {IDAC }}\right)$ A/D Converter Current ($\mathrm{I}_{\mathrm{ADC}}$)	$\overline{\text { PDWN }}=0$, or SLEEP		1		nA
	PGA = 1, Buffer OFF		160	250	$\mu \mathrm{A}$
	PGA = 128, Buffer OFF		450	700	$\mu \mathrm{A}$
	PGA = 1, Buffer ON		230	325	$\mu \mathrm{A}$
	PGA $=128$, Buffer ON		850	1325	$\mu \mathrm{A}$
$\mathrm{V}_{\text {REF }}$ Current (IVREF)			250	375	$\mu \mathrm{A}$
$I_{\text {IDAC }}$ Current (IDAC)	Excludes Load Current		480	675	$\mu \mathrm{A}$
Digital Current	Normal Mode, DV ${ }_{\text {DD }}=3 \mathrm{~V}$		90	200	$\mu \mathrm{A}$
	SLEEP Mode, $\mathrm{DV}_{\mathrm{DD}}=3 \mathrm{~V}$		75		$\mu \mathrm{A}$
	Read Data Continuous Mode, $\mathrm{DV}_{\mathrm{DD}}=3 \mathrm{~V}$ PDWN $=0$		113 1		$\mu \mathrm{A}$ nA
Power Dissipation	PGA = 1, Buffer OFF, REFEN $=0$, IDACs OFF, $D V_{D D}=3 V$		0.8	1.4	mW

NOTES: (1) FSR is Full-Scale Range. (2) $\Delta \mathrm{V}_{\text {OUT }}$ is change in digital result. (3) 12 pF switched capacitor at $\mathrm{f}_{\text {SAMP }}$ clock frequency.

ELECTRICAL CHARACTERISTICS: Digital

All specifications at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and DV DD $=+2.7 \mathrm{~V}$ to 5.25 V .

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT/OUTPUT					
Logic Level					
V_{IH}		$0.8 \times \mathrm{DV}_{\mathrm{DD}}$		$D V_{\text {D }}$	V
$\mathrm{V}_{\text {IL }}{ }^{(1)}$		DGND		$0.2 \times \mathrm{DV}_{\text {DD }}$	V
V_{OH}	$\mathrm{I}_{\mathrm{OH}}=1 \mathrm{~mA}$	DV ${ }_{\text {DD }}-0.4$			V
$\mathrm{V}_{\text {OL }}$	$\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}$	DGND		DGND + 0.4	V
Input Leakage: I_{IN}	$0<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{DD}}$	-10		10	$\mu \mathrm{A}$
CLOCK RATES					
Master Clock Rate: fosc		1		8	MHz
Master Clock Period: tosc	1/fosc	125		1000	ns

NOTE: (1) Maximum V_{IL} for X_{IN} is $\mathrm{DGND}+0.05 \mathrm{~V}$.

PIN DESCRIPTIONS

PIN NUMBER	NAME	DESCRIPTION	PIN NUMBER	NAME	DESCRIPTION
1	$\mathrm{AV}_{\text {DD }}$	Analog Power Supply	25	$\mathrm{X}_{\text {IN }}$	Clock Input
2	AGND	Analog Ground	26	$\mathrm{X}_{\text {OUT }}$	Clock Output, used with crystal or resonator.
3	$\mathrm{A}_{\text {IN }} 0$	Analog Input 0	27	$\overline{\text { PDWN }}$	Active LOW. Power Down. The power-down
4	$\mathrm{A}_{\text {IN }} 1$	Analog Input 1			function shuts down the analog and digital
5	$\mathrm{A}_{\text {IN }} 2$	Analog Input 2			circuits.
6	AlN 3	Analog Input 3	28	$\frac{\mathrm{POL}}{\text { DSYNC }}$	Serial Clock Polarity Input
7	$\mathrm{A}_{\text {IN }} 4$	Analog Input 4	29	DSYNC	Active LOW, Synchronization Control Input
8	$\mathrm{A}_{\text {IN }} 5$	Analog Input 5	30	DGND	Digital Ground
9	$\mathrm{A}_{\text {IN }} 6$	Analog Input 6	31	$\frac{D V_{D D}}{\text { DRDY }}$	Digital Power Supply
10	$\mathrm{A}_{\text {IN }} 7$	Analog Input 7	32	$\frac{\text { DRDY }}{\overline{C S}}$	Active LOW, Data Ready Output
11	A Incom	Analog Input Common	33	$\overline{\mathrm{CS}}$	Active LOW, Chip Select Input
12	AGND	Analog Ground	34	SCLK	Serial Clock, Schmitt Trigger
13	AV DD	Analog Power Supply	35	$\mathrm{D}_{\text {IN }}$	Serial Data Input, Schmitt Trigger
14	$\mathrm{V}_{\text {RCAP }}$	$\mathrm{V}_{\text {Refout }}$ Bypass Capacitor	36	$\mathrm{D}_{\text {out }}$	Serial Data Output
15	IDAC1	Current DAC1 Output	37-44	D0-D7	Digital I/O 0-7
16	IDAC2	Current DAC2 Output	45	AGND	Analog Ground
17	$\mathrm{R}_{\text {DAC }}$	Current DAC Resistor	46	$V_{\text {REFOUT }}$	Voltage Reference Output
18-22	DGND	Digital Ground	47	$\mathrm{V}_{\text {REF }+}$	Positive Differential Reference Input
23	BUFEN	Buffer Enable Input	48	$V_{\text {REF- }}$	Negative Differential Reference Input
24	RESET	Active LOW, resets the entire chip.			

NOTE: (1) Bit Order $=0$.

TIMING CHARACTERISTICS

SPEC	DESCRIPTION	MIN	MAX	UNITS
t_{1}	SCLK Period	4	3	$\frac{t_{\text {OsC }} \text { Periods }}{\text { DRDY Periods }}$
t_{2}	SCLK Pulse Width, HIGH and LOW	200		ns
t_{3}	$\overline{\mathrm{CS}}$ LOW to First SCLK Edge; Setup Time ${ }^{(1)}$	0		ns
t_{4}	$\mathrm{D}_{\text {IN }}$ Valid to SCLK Edge; Setup Time	50		ns
t_{5}	Valid D_{IN} to SCLK Edge; Hold Time	50		ns
t_{6}	Delay Between Last SCLK Edge for D_{IN} and First SCLK Edge for $\mathrm{D}_{\text {Out }}$:			
	RDATA, RDATAC, RREG, WREG, RRAM, WRAM	50		tosc Periods
	CSREG, CSRAMX, CSRAM	200		tosc Periods
	CSARAM, CSARAMX	1100		$\mathrm{t}_{\text {osc }}$ Periodsnsns
$\mathrm{t}_{7}{ }^{(2)}$	SCLK Edge to Valid New Dout		50	
$\mathrm{t}_{8}{ }^{(2)}$	SCLK Edge to $\mathrm{D}_{\text {Out }}$, Hold Time	0		
t_{9}	Last SCLK Edge to $\mathrm{D}_{\text {OUT }}$ Tri-State NOTE: $\mathrm{D}_{\text {Out }}$ goes tri-state immediately when $\overline{\mathrm{CS}}$ goes HIGH.	6	10	$t_{\text {osc }}$ Periods ns
t_{10}	$\overline{\mathrm{CS}}$ LOW Time After Final SCLK Edge	0		
t_{11}	Final SCLK Edge of One Op Code Until First Edge SCLK of Next Command:			
	RREG, WREG, RRAM, WRAM, CSRAMX, CSARAMX, CSRAM, CSARAM, CSREG, DSYNC, SLEEP, RDATA,			$\mathrm{t}_{\text {osc }}$ Periods
	RDATAC, STOPC	4		tosc Periods
	CREG, CRAM	220		$t_{\text {tosc }}$ Periods
	CREGA	1600		$\mathrm{t}_{\text {osc }}$ Periods
	SELFGCAL, SELFOCAL, SYSOCAL, SYSGCAL	7		DRDY Periods
	SELFCAL	14		$\overline{\text { DRDY }}$ Periods
	RESET (Input pin, command, or SCLK pattern)	16		tosc Periods
t_{12}		300	500	$\mathrm{t}_{\text {Osc }}$ Periods$\mathrm{t}_{\text {osc }}$ Periods
t_{13}		5		
t_{14}		550	750	tosc Periods tosc Periods
t_{15}		1050	1250	
t_{16}	Pulse Width	4		tosc Periods
t_{17}	Data Not Valid	4		tosc Periods

NOTES: (1) $\overline{\mathrm{CS}}$ may be tied LOW. (2) Load $=20 \mathrm{pF}$.

TYPICAL CHARACTERISTICS

$A V_{D D}=+5 V, D V_{D D}=+5 V, f_{O S C}=2.4576 \mathrm{MHz}, P G A=1, R_{D A C}=150 \mathrm{k} \Omega, f_{D A T A}=10 \mathrm{~Hz}$, and $V_{R E F}=+2.5 \mathrm{~V}$, unless otherwise specified.

FAST SETTLING FILTER EFFECTIVE NUMBER OF BITS vs DECIMATION RATIO

TYPICAL CHARACTERISTICS (Cont.)

$A V_{D D}=+5 \mathrm{~V}, D V_{D D}=+5 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=2.4576 \mathrm{MHz}, \mathrm{PGA}=1, \mathrm{R}_{\mathrm{DAC}}=150 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{DATA}}=10 \mathrm{~Hz}$, and $\mathrm{V}_{\mathrm{REF}}=+2.5 \mathrm{~V}$, unless otherwise specified.

TYPICAL CHARACTERISTICS (Cont.)

$A V_{D D}=+5 V, D V_{D D}=+5 V, f_{O S C}=2.4576 \mathrm{MHz}, P G A=1, R_{D A C}=150 \mathrm{k} \Omega, f_{D A T A}=10 \mathrm{~Hz}$, and $\mathrm{V}_{\mathrm{REF}}=+2.5 \mathrm{~V}$, unless otherwise specified.

TYPICAL CHARACTERISTICS (Cont.)

$A V_{D D}=+5 V, D V_{D D}=+5 V, f_{O S C}=2.4576 \mathrm{MHz}, P G A=1, R_{D A C}=150 \mathrm{k} \Omega, f_{D A T A}=10 \mathrm{~Hz}$, and $V_{R E F}=+2.5 \mathrm{~V}$, unless otherwise specified.

IDAC DIFFERENTIAL NONLINEARITY

OVERVIEW

INPUT MULTIPLEXER

The input multiplexer (mux) provides for any combination of differential inputs to be selected on any of the input channels, as shown in Figure 1. If channel 1 is selected as the positive differential input channel, any other channel can be selected as the negative differential input channel. With this method, it is possible to have up to eight fully differential input channels.

In addition, current sources are supplied that will source or sink current to detect open or short circuits on the pins.

FIGURE 1. Input Multiplexer Configuration.

TEMPERATURE SENSOR

An on-chip diode provides temperature sensing capability. When the configuration register for the input MUX is set to all 1 s , the diode is connected to the input of the A/D converter. All other channels are open. The anode of the diode is connected to the positive input of the A/D converter, and the cathode of the diode is connected to negative input of the A/D converter. The output of IDAC1 is connected to the anode to bias the diode and the cathode of the diode is also connected to ground to complete the circuit.

In this mode, the output of IDAC1 is also connected to the output pin, so some current may flow into an external load from IDAC1, rather than the diode. See Application Report Measuring Temperature with the ADS1216, ADS1217, or ADS1218 (SBAA073) for more information.

BURNOUT CURRENT SOURCES

When the Burnout bit is set in the ACR configuration register, two current sources are enabled. The current source on the positive input channel sources approximately $2 \mu \mathrm{~A}$ of current. The current source on the negative input channel sinks approximately $2 \mu \mathrm{~A}$. This allows for the detection of an open circuit (full-scale reading) or short circuit (0 V differential reading) on the selected input differential pair.

INPUT BUFFER

The input impedance of the ADS1217 without the buffer is $10 \mathrm{M} \Omega /$ PGA. With the buffer enabled, the input voltage range is reduced and the analog power-supply current is higher. The buffer is controlled by ANDing the state of the buffer pin with the state of the BUFFER bit in the ACR register. See Application Report Input Currents for High-Resolution ADCs (SBAA090) for more information.

IDAC1 AND IDAC2

The ADS1217 has two 8-bit current output DACs that can be controlled independently. The output current is set with $R_{D A C}$, the range select bits in the ACR register, and the 8 -bit digital value in the IDAC register. The output current $=\left(\mathrm{V}_{\text {REF }} / 8 \mathrm{R}_{\mathrm{DAC}}\right)\left(2^{\text {RANGE-1 }}\right)$ (DAC CODE). With $\mathrm{V}_{\text {REFOUT }}=2.5 \mathrm{~V}$ and $\mathrm{R}_{\text {DAC }}=150 \mathrm{k} \Omega$, the full-scale output can be selected to be $0.5,1$, or 2 mA . The compliance voltage range is $A G N D$ to within 1 V of $A V_{D D}$. When the internal voltage reference of the ADS1217 is used, it is the reference for the IDAC. An external reference may be used for the IDACs by disabling the internal reference and tying the external reference input to the $\mathrm{V}_{\text {REFOUT }}$ pin.

PGA

The PGA can be set to gains of $1,2,4,8,16,32,64$, or 128. Using the PGA can improve the effective resolution of the A/D converter. For instance, with a PGA of 1 on a 10 V full-scale range, the A / D converter can resolve to $2 \mu \mathrm{~V}$. With a PGA of 128 on a 80 mV full-scale range, the A/D converter can resolve to 150 nV .

PGA OFFSET DAC

The input to the PGA can be shifted by half the full-scale input range of the PGA by using the ODAC register. The ODAC (Offset DAC) register is an 8-bit value; the MSB is the sign and the seven LSBs provide the magnitude of the offset. Using the ODAC does not reduce the performance of the A/D converter. See Application Report The Offset DAC (SBAA077) for more information.

MODULATOR

The modulator is a single-loop, 2nd-order system. The modulator runs at a clock speed ($\mathrm{f}_{\mathrm{MOD}}$) that is derived from the external clock (f_{OSC}). The frequency division is determined by the SPEED bit in the setup register.

SPEED BIT	$\mathbf{f}_{\text {MOD }}$
0	$\mathrm{f}_{\mathrm{OSc}} / 128$
1	$\mathrm{f}_{\mathrm{OSC}} / 256$

VOLTAGE REFERENCE INPUT

The ADS1217 uses a differential voltage reference input. The input signal is measured against the differential voltage $\mathrm{V}_{\mathrm{REF}} \equiv\left(\mathrm{V}_{\mathrm{REF}+}\right)-\left(\mathrm{V}_{\mathrm{REF}-}\right)$. For $A \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}$ is typically 2.5 V . For $A V_{D D}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}$ is typically 1.25 V . Due to the sampling nature of the modulator, the reference input current increases with higher modulator clock frequency ($f_{\text {MOD }}$) and higher PGA settings.

ON-CHIP VOLTAGE REFERENCE

A selectable voltage reference (1.25 V or 2.5 V) is available for supplying the voltage reference input. To use, connect $\mathrm{V}_{\text {REF- }}$ to $A G N D$ and $\mathrm{V}_{\text {REF+ }}$ to $\mathrm{V}_{\text {REFOUT. }}$. The enabling and voltage selection are controlled through bits REF EN and REF HI in the setup register. The 2.5 V reference requires $A V_{D D}=5 \mathrm{~V}$. When using the on-chip voltage reference, the $\mathrm{V}_{\text {REFOUT }}$ pin should be bypassed with a $0.1 \mu \mathrm{~F}$ capacitor to AGND.

$\mathrm{V}_{\text {RCAP }}$ PIN

This pin provides a bypass cap for noise filtering on internal $\mathrm{V}_{\text {REF }}$ circuitry only. As this is a sensitive pin, place the capacitor as close as possible and avoid any resistive loading. The recommended capacitor is a $0.001 \mu \mathrm{~F}$ ceramic cap. If an external $\mathrm{V}_{\text {REF }}$ is used, this pin can be left unconnected.

CLOCK GENERATOR

The clock source for the ADS1217 can be provided from a crystal, oscillator, or external clock. When the clock source is a crystal, external capacitors must be provided to ensure startup and a stable clock frequency; see Figure 2 and Table I.

FIGURE 2. Crystal Connection.

CLOCK SOURCE	FREQUENCY	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{2}}$	PART NUMBER
Crystal	2.4576	$0-20 \mathrm{pF}$	$0-20 \mathrm{pF}$	ECS, ECSD $2.45-32$
Crystal	4.9152	$0-20 \mathrm{pF}$	$0-20 \mathrm{pF}$	ECS, ECSL 4.91
Crystal	4.9152	$0-20 \mathrm{pF}$	$0-20 \mathrm{pF}$	ECS, ECSD 4.91
Crystal	4.9152	$0-20 \mathrm{pF}$	$0-20 \mathrm{pF}$	CTS, MP 042 4M9182

TABLE I. Typical Clock Sources.

CALIBRATION

The offset and gain errors in the ADS1217, or the complete system, can be reduced with calibration. Internal calibration of the ADS1217 is called self calibration. This is handled with three commands. One command does both offset and gain calibration. There is also a gain calibration command and an offset calibration command. Each calibration process takes seven $t_{\text {DATA }}$ periods to complete. It takes $14 t_{\text {DATA }}$ periods to
complete both an offset and gain calibration. Self-gain calibration is optimized for PGA gains less than 8 . When using higher gains, system gain calibration is recommended.
For system calibration, the appropriate signal must be applied to the inputs. The system offset command requires a "zero" differential input signal. It then computes an offset that will nullify offset in the system. The system gain command requires a positive "full-scale" differential input signal. It then computes a value to nullify gain errors in the system. Each of these calibrations will take seven $t_{\text {DATA }}$ periods to complete.
Calibration must be performed after power on, a change in decimation ratio, or a change of the PGA. For operation with a reference voltage greater than $\left(\mathrm{AV}_{\mathrm{DD}}-1.5 \mathrm{~V}\right)$, the buffer must also be turned off during calibration.
At the completion of calibration, the $\overline{\text { DRDY }}$ signal goes LOW, which indicates the calibration is finished and valid data is available. See Application Report Calibration Routine and Register Value Generation for the ADS121x Series (SBAA099) for more information.

DIGITAL FILTER

The Digital Filter can use either the fast settling, sinc 2, or sinc^{3} filter, as shown in Figure 3. In addition, the Auto mode changes the sinc filter after the input channel or PGA is changed. When switching to a new channel, it will use the fast settling filter; It will then use the sinc${ }^{2}$ followed by the sinc^{3} filter. This combines the low-noise advantage of the sinc^{3} filter with the quick response of the fast settling time filter. See Figure 4 for the frequency response of each filter.
When using the fast setting filter, select a decimation value set by the DECO and M/DEC1 registers that is evenly divisible by four for the best gain accuracy. For example, choose 260 rather than 261.
AUTO MODE FILTER SELECTION

CONVERSION CYCLE			
1	2	3	$4+$
Fast	Sinc 2	Sinc 3	Sinc 3

FIGURE 3. Filter Step Responses.

FIGURE 4. Filter Frequency Responses.

DIGITAL I/O INTERFACE

The ADS1217 has eight pins dedicated for digital I/O. The default power-up condition for the digital I/O pins are as inputs. All of the digital I/O pins are individually configurable as inputs or outputs. They are configured through the DIR control register. The DIR register defines whether the pin is an input or output, and the DIO register defines the state of the digital output. When the digital I/O are configured as inputs, DIO is used to read the state of the pin. If the digital I/O are not used, either 1) configure as outputs; or, 2) leave as inputs and tie to ground, this prevents excess power dissipation.

SERIAL PERIPHERAL INTERFACE

The Serial Peripheral Interface (SPI) allows a controller to communicate synchronously with the ADS1217. The ADS1217 operates in slave only mode.

Chip Select ($\overline{\mathrm{CS}}$)

The chip select ($\overline{\mathrm{CS}}$) input of the ADS1217 must be externally asserted before a master device can exchange data with the ADS1217. $\overline{\mathrm{CS}}$ must be LOW for the duration of the transaction. $\overline{\mathrm{CS}}$ can be tied low.

Serial Clock (SCLK)

SCLK, a Schmitt Trigger input, clocks data transfer on the $\mathrm{D}_{\text {IN }}$ input and $\mathrm{D}_{\text {Out }}$ output. When transferring data to or from the ADS1217, multiple bits of data may be transferred back-to-
back with no delay in SCLKs or toggling of $\overline{\mathrm{CS}}$. Make sure to avoid glitches on SCLK as they can cause extra shifting of the data.

Polarity (POL)

The serial clock polarity is specified by the POL input. When SCLK is active HIGH, set POL HIGH. When SCLK is active LOW, set POL LOW.

DATA READY

The $\overline{\text { DRDY }}$ output is used as a status signal to indicate when data is ready to be read from the ADS1217. $\overline{\text { DRDY }}$ goes LOW when new data is available. It is reset HIGH when a read operation from the data register is complete. It also goes HIGH prior to the updating of the output register to indicate when not to read from the device to ensure that a data read is not attempted while the register is being updated.

DSYNC OPERATION

DSYNC is used to provide for synchronization of the A / D conversion with an external event. Synchronization can be achieved either through the $\overline{\text { DSYNC pin or the DSYNC }}$ command. When the $\overline{\text { DSYNC }}$ pin is used, the filter counter is reset on the falling edge of DSYNC. The modulator is held in reset until $\overline{\text { DSYNC }}$ is taken HIGH. Synchronization occurs on the next rising edge of the system clock after $\overline{\text { DSYNC }}$ is taken HIGH.

When the DSYNC command is sent, the filter counter is reset on the edge of the last SCLK on the DSYNC command. The modulator is held in reset until the next edge of SCLK is detected. Synchronization occurs on the next rising edge of the system clock after the first SCLK after the DSYNC command. After a DSYNC operation, $\overline{\text { DRDY }}$ is held HIGH until valid data is ready.

RESET

There are three methods to reset the ADS1217: the RESET input, the RESET command, and a special SCLK input pattern. When using the RESET input, take it LOW to force a reset. Make sure to follow the minimum pulse width timing specifications before taking the RESET input back high. Also, avoid glitches on the RESET input as these may cause accidental resets. The RESET command takes effect after all 8 bits have been shifted into DIN. Afterwards, the reset releases automatically. The ADS1217 can also be reset with a special pattern on SCLK, see the Timing Diagram. Reset occurs on the falling edge of the last SCLK edge in the pattern (for $\mathrm{POL}=0$). Afterwards, the reset releases automatically.

POWER-UP—SUPPLY VOLTAGE RAMP RATE

The power-on reset circuitry was designed to accommodate digital supply ramp rates as slow as $1 \mathrm{~V} / 10 \mathrm{~ms}$. To ensure proper operation, the power supply should ramp monotonically.

MEMORY

Two types of memory are used on the ADS1217: registers and RAM. 16 registers directly control the various functions (PGA, DAC value, Decimation Ratio, etc.) and can be directly read or written. Collectively, the registers contain all the information needed to configure the part, such as data format, mux settings, calibration settings, decimation ratio, etc. Additional registers, such as output data, are accessed through dedicated instructions.

REGISTER BANK TOPOLOGY

The operation of the device is set up through individual registers. The set of the 16 registers required to configure the device is referred to as a Register Bank, as shown in Figure 5.
Reads and Writes to Registers and RAM occur on a byte basis. However, copies between registers and RAM occurs on a bank basis. The RAM is independent of the Registers; that is, the RAM can be used as general-purpose RAM.

The ADS1217 supports any combination of eight analog inputs. With this flexibility, the device could easily support eight unique configurations-one per input channel. In order to facilitate this type of usage, eight separate register banks are available. Therefore, each configuration could be written once and recalled as needed without having to serially retransmit all the configuration data. Checksum commands are also included, which can be used to verify the integrity of RAM.

FIGURE 5. Memory Organization.
The RAM provides eight "banks", with a bank consisting of 16 bytes. The total size of the RAM is 128 bytes. Copies between the registers and RAM are performed on a bank basis. Also, the RAM can be directly read or written through the serial interface on power-up. The banks allow separate storage of settings for each input.
The RAM address space is linear, therefore accessing RAM is done using an auto-incrementing pointer. Access to RAM in the entire memory map can be done consecutively without having to address each bank individually. For example, if you were currently accessing bank 0 at offset $0 F_{H}$ (the last location of bank 0), the next access would be bank 1 and offset 00_{H}. Any access after bank 7 and offset $0 F_{H}$ will wrap around to bank 0 and Offset 00_{H}.

Although the Register Bank memory is linear, the concept of addressing the device can also be thought of in terms of bank and offset addressing. Looking at linear and bank addressing syntax, we have the following comparison: in the linear memory map, the address 14_{H} is equivalent to bank 1 and offset 04_{H}. Simply stated, the most significant four bits represent the bank, and the least significant four bits represent the offset. The offset is equivalent to the register address for that bank of memory.

REGISTER MAP

ADDRESS	REGISTER	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
00_{H}	SETUP	ID	ID	ID	SPEED	REF EN	REF HI	BUF EN	BIT ORDER
$0^{\text {H }}$	MUX	PSEL3	PSEL2	PSEL1	PSEL0	NSEL3	NSEL2	NSEL1	NSEL0
02 ${ }_{\mathrm{H}}$	ACR	BOCS	IDAC2R1	IDAC2R0	IDAC1R1	IDAC1R0	PGA2	PGA1	PGAO
03_{H}	IDAC1	IDAC1_7	IDAC1_6	IDAC1_5	IDAC1_4	IDAC1_3	IDAC1_2	IDAC1_1	IDAC1_0
0^{4}	IDAC2	IDAC2_7	IDAC2_6	IDAC2_5	IDAC2_4	IDAC2_3	IDAC2_2	IDAC2_1	IDAC2_0
05_{H}	ODAC	SIGN	OSET_6	OSET_5	OSET_4	OSET_3	OSET_2	OSET_1	OSET_0
06_{H}	DIO	DIO_7	DIO_6	DIO_5	DIO_4	DIO_3	DIO_2	DIO_1	DIO_0
0^{07}	DIR	DIR_7	DIR_6	DIR_5	DIR_4	DIR_3	DIR_2	DIR_1	DIR_0
08_{H}	DEC0	DEC07	DEC06	DEC05	DEC04	DEC03	DEC02	DEC01	DEC00
$09_{\text {H }}$	M/DEC1	$\overline{\text { DRDY }}$	U/B	SMODE1	SMODE0	Reserved	DEC10	DEC09	DEC08
$0 \mathrm{~A}_{\mathrm{H}}$	OCRO	OCR07	OCR06	OCR05	OCR04	OCR03	OCR02	OCR01	OCR00
OB_{H}	OCR1	OCR15	OCR14	OCR13	OCR12	OCR11	OCR10	OCR09	OCR08
OC_{H}	OCR2	OCR23	OCR22	OCR21	OCR20	OCR19	OCR18	OCR17	OCR16
OD_{H}	FSR0	FSR07	FSR06	FSR05	FSR04	FSR03	FSR02	FSR01	FSR00
$0 \mathrm{E}_{\mathrm{H}}$	FSR1	FSR15	FSR14	FSR13	FSR12	FSR11	FSR10	FSR09	FSR08
$0 \mathrm{~F}_{\mathrm{H}}$	FSR2	FSR23	FSR22	FSR21	FSR20	FSR19	FSR18	FSR17	FSR16

TABLE II. Registers.

DETAILED REGISTER DEFINITIONS
SETUP (Address 00_{H}) Setup Register
Reset Value $=$ iii01110

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	
ID	ID 0						

bit 7-5 Factory Programmed Bits
bit 4 SPEED: Modulator Clock Speed
$0: f_{\text {MOD }}=f_{\text {OSC }} / 128$ (default)
$1: f_{\text {MOD }}=f_{\text {OSC }} / 256$
bit 3 REF EN: Internal Voltage Reference Enable $0=$ Internal Voltage Reference Disabled
1 = Internal Voltage Reference Enabled (default)
bit 2 REF HI: Internal Reference Voltage Select
$0=$ Internal Reference Voltage $=1.25 \mathrm{~V}$
$1=$ Internal Reference Voltage $=2.5 \mathrm{~V}$ (default)
bit 1 BUF EN: Buffer Enable
0 = Buffer Disabled
1 = Buffer Enabled (default)
bit $0 \quad$ BIT ORDER: Set Order Bits are Transmitted $0=$ Most Significant Bit Transmitted First (default) 1 = Least Significant Bit Transmitted First Data is always shifted into the part most significant bit first. Data is always shifted out of the part most significant byte first. This configuration bit only controls the bit order within the byte of data that is shifted out.

MUX (Address 01_{H}) Multiplexer Control Register Reset Value $=01_{\mathrm{H}}$

bit 7-4 PSEL3: PSEL2: PSEL1: PSEL0: Positive Channel Select
0000 = AIN0 (default)
0001 = AIN1
0010 = AIN2
$0011=$ AIN3
0100 = AIN4
$0101=$ AIN5
0110 = AIN6
0111 = AIN7
$1 \mathrm{xxx}=\mathrm{AINCOM}$ (except when all bits are 1s)
1111 = Temperature Sensor Diode
bit 3-0 NSEL3: NSEL2: NSEL1: NSELO: Negative Channel Select
$0000=$ AINO
$0001=$ AIN1 (default)
$0010=$ AIN2
$0011=$ AIN3
0100 = AIN4
0101 = AIN5
0110 = AIN6
0111 = AIN7
1xxx = AINCOM (except when all bits are 1s)
1111 = Temperature Sensor Diode

ACR (Address 02_{H}) Analog Control Register
Reset Value $=00_{\mathrm{H}}$

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
BOCS	IDAC2R1	IDAC2R0	IDAC1R1	IDAC1R0	PGA2	PGA1	PGA0

bit $7 \quad$ BOCS: Burnout Current Source
0 = Disabled (default)
1 = Enabled

IDAC Current $=\left(\frac{V_{\text {REF }}}{8 R_{\text {DAC }}}\right)\left(2^{\text {RANGE- } 1}\right)($ DAC Code $)$
bit 6-5 IDAC2R1: IDAC2R0: Full-Scale Range Select for IDAC2
$00=$ Off (default)
01 = Range 1
$10=$ Range 2
11 = Range 3
bit 4-3 IDAC1R1: IDAC1R0: Full-Scale Range Select for IDAC1
$00=$ Off (default)
01 = Range 1
$10=$ Range 2
11 = Range 3
bit 2-0 PGA2: PGA1: PGA0: Programmable Gain Amplifier Gain Selection
$000=1$ (default)
$001=2$
$010=4$
$011=8$
$100=16$
$101=32$
$110=64$
$111=128$

IDAC1 (Address 03_{H}) Current DAC 1
Reset Value $=00_{\mathrm{H}}$

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
IDAC1_7	IDAC1_6	IDAC1_5	IDAC1_4	IDAC1_3	IDAC1_2	IDAC1_1	IDAC1_0

The DAC code bits set the output of DAC1 from 0 to fullscale. The value of the full-scale current is set by this Byte, $V_{\text {REF }}, R_{D A C}$, and the DAC1 range bits in the ACR register.

IDAC2 (Address 04 ${ }_{H}$) Current DAC 2
Reset Value $=00_{H}$

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
IDAC2_7	IDAC2_6	IDAC2_5	IDAC2_4	IDAC1_3	IDAC1_2	IDAC1_1	IDAC1_0

The DAC code bits set the output of DAC2 from 0 to fullscale. The value of the full-scale current is set by this Byte, $V_{\text {REF }}, R_{\text {DAC }}$, and the DAC2 range bits in the ACR register.

ODAC (Address 05_{H}) Offset DAC Setting
Reset Value $=00_{\mathrm{H}}$

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
SIGN	OSET6	OSET5	OSET4	OSET3	OSET2	OSET1	OSET0

bit 7 Offset Sign
$0=$ Positive
1 = Negative
bit 6-0 \quad Offset $=\frac{V_{\text {REF }}}{\mathrm{PGA}} \cdot\left(\frac{\text { Code }}{127}\right)$

NOTE: The offset must be used after calibration or the calibration will notify the effects.

DIO (Address 06_{H}) Digital I/O
Reset Value $=00_{\mathrm{H}}$

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
DIO7	DIO6	DIO5	DIO4	DIO3	DIO2	DIO1	DIO0

A value written to this register will appear on the digital I/O pins if the pin is configured as an output in the DIR register. Reading this register will return the value of the digital I/O pins.

DIR (Address 07_{H}) Direction control for digital I/O
Reset Value $=\mathrm{FF}_{\mathrm{H}}$

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
DIR7	DIR6	DIR5	DIR4	DIR3	DIR2	DIR1	DIR0

Each bit controls whether the Digital I/O pin is an output $(=0)$ or input $(=1)$. The default power-up state is as inputs.

DECO (Address 08_{H}) Decimation Register
(Least Significant 8 bits)
Reset Value $=80_{\mathrm{H}}$

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
DEC07	DEC06	DEC05	DEC04	DEC03	DEC02	DEC01	DEC00

The decimation value is defined with 11 bits for a range of 20 to 2047. This register is the least significant 8 bits. The 3 most significant bits are contained in the M/DEC1 register. The default data rate is 10 Hz with a 2.4576 MHz crystal.

M/DEC1 (Address 09 ${ }_{\mathrm{H}}$) Mode and Decimation Register Reset Value $=07_{\mathrm{H}}$

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
$\overline{\text { DRDY }}$	$U \bar{B}$	SMODE1	SMODE0	Reserved	DEC10	DEC09	DEC08

bit 7 DRDY: Data Ready (Read Only)
This bit duplicates the state of the DRDY pin.
bit 6 U/B: Data Format
$0=$ Bipolar (default)
1 = Unipolar

$\mathbf{U} / \overline{\mathbf{B}}$	ANALOG INPUT	DIGITAL OUTPUT
0	+FS	0×7 FFFFF
	Zero	0×000000
	-FS	0×800000
1	+FS	$0 \times$ FFFFFF
	Zero	0×000000
	-FS	0×000000

bit 5-4 SMODE1: SMODE0: Settling Mode
$00=$ Auto (default)
$01=$ Fast Settling filter
$10=$ Sinc 2 filter
$11=$ Sinc 3 filter
bit 2-0 DEC10: DEC09: DEC08: Most Significant Bits of the Decimation Value

OCRO (Address $0 \mathrm{~A}_{\mathrm{H}}$) Offset Calibration Coefficient
(Least Significant Byte)
Reset Value $=00_{\mathrm{H}}$

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
OCR07	OCR06	OCR05	OCR04	OCR03	OCR02	OCR01	OCR00

OCR1 (Address $0 \mathrm{~B}_{\mathrm{H}}$) Offset Calibration Coefficient (Middle Byte)
Reset Value $=00_{H}$

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
OCR15	OCR14	OCR13	OCR12	OCR11	OCR10	OCR09	OCR08

OCR2 (Address $0 \mathrm{C}_{\mathrm{H}}$) Offset Calibration Coefficient
(Most Significant Byte)
Reset Value $=00_{\mathrm{H}}$

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
OCR23	OCR22	OCR21	OCR20	OCR19	OCR18	OCR17	OCR16

FSR0 (Address $0 D_{H}$) Full-Scale Register
(Least Significant Byte)
Reset Value $=24_{\mathrm{H}}$

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
FSR07	FSR06	FSR05	FSR04	FSR03	FSR02	FSR01	FSR00

FSR1 (Address $0 \mathrm{E}_{\mathrm{H}}$) Full-Scale Register
(Middle Byte)
Reset Value $=90_{\mathrm{H}}$

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
FSR15	FSR14	FSR13	FSR12	FSR011	FSR10	FSR09	FSR08

FSR2 (Address $0 \mathrm{~F}_{\mathrm{H}}$) Full-Scale Register
(Most Significant Byte)
Reset Value $=67_{\mathrm{H}}$

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
FSR23	FSR22	FSR21	FSR20	FSR019	FSR18	FSR17	FSR16

COMMAND DEFINITIONS

The commands listed below control the operation of the ADS1217. Some of the commands are stand-alone commands (e.g., RESET) while others require additional bytes (e.g., WREG requires command, count, and the data bytes). Commands that output data require a minimum of four $f_{\text {OSC }}$ cycles before the data is ready (e.g., RDATA).

Operands:
$\mathrm{n}=$ count (0 to 127)
$r=$ register (0 to 15)
$x=$ don't care
a = RAM bank address (0 to 7)

COMMANDS	DESCRIPTION	COMMAND BYTE	2ND COMMAND BYTE
RDATA	Read Data	$00000001\left(01_{\text {H }}\right)$	-
RDATAC	Read Data Continuously	$00000011\left(03_{\mathrm{H}}\right)$	-
STOPC	Stop Read Data Continuously	$00001111\left(0 \mathrm{~F}_{\mathrm{H}}\right)$	-
RREG	Read from REG Bank rrrr	$0001 \mathrm{rrrr}\left(1 \mathrm{x}_{\mathrm{H}}\right)$	xxxx_nnnn (\# of reg-1)
RRAM	Read from RAM Bank aaa	0010 Oaaa ($2 \mathrm{x}_{\mathrm{H}}$)	xnnn_nnnn (\# of bytes-1)
CREG	Copy REGs to RAM Bank aaa	0100 Oaaa ($4 \mathrm{x}_{\mathrm{H}}$)	-
CREGA	Copy REGS to all RAM Banks	$01001000(48 \mathrm{H})$	- -
WREG	Write to REG rrrr	$0101 \mathrm{rrrr}\left(5 \mathrm{x}_{\mathrm{H}}\right)$	xxxx_nnnn (\# of reg-1)
WRAM	Write to RAM Bank aaa	$01100 \mathrm{Oaaa}\left(6 \mathrm{X}_{\mathrm{H}}\right)$	xnnn_nnnn (\# of bytes-1)
CRAM	Copy RAM Bank aaa to REG	1100 0aaa (CX_{H})	-
CSRAMX	Calc RAM Bank aaa Checksum	1101 Oaaa (Dx_{H})	-
CSARAMX	Calc all RAM Bank Checksum	11011000 (D8 ${ }^{\text {H }}$)	-
CSREG	Calc REG Checksum	$11011111\left(\mathrm{DF}_{\mathrm{H}}\right)$	-
CSRAM	Calc RAM Bank aaa Checksum	1110 Oaaa (Ex Ex_{H})	-
CSARAM	Calc all RAM Banks Checksum	11101000 (E8H)	-
SELFCAL	Self Cal Offset and Gain	$11110000\left(\mathrm{FO}_{\mathrm{H}}\right)$	-
SELFOCAL	Self Cal Offset	$11110001\left(\mathrm{~F}_{\mathrm{H}}\right)$	-
SELFGCAL	Self Cal Gain	11110010 (F_{H})	-
SYSOCAL	Sys Cal Offset	$11110011\left(\mathrm{~F}_{3}\right)$	-
SYSGCAL	Sys Cal Gain	$11110100\left(\mathrm{~F}_{4}\right)$	-
WAKEUP	Wake Up From Sleep Mode	$11111011\left(\mathrm{FB}_{\mathrm{H}}\right)$	-
DSYNC	Sync DRDY	$11111100\left(\mathrm{FC}_{\mathrm{H}}\right)$	-
SLEEP	Put in Sleep Mode	$11111101\left(\mathrm{FD}_{\mathrm{H}}\right)$	-
RESET	Reset to Power-Up Values	11111110 (FE_{H})	-

TABLE III. Command Summary.

RDATA
 Read Data

Description: Read a single 24-bit ADC conversion result. On completion of read back, DRDY goes HIGH.
Operands: None
Bytes: 1
Encoding: 00000001
Data Transfer Sequence:

RDATAC
Description: Read Data Continuous mode enables the continuous output of new data on each DRDY. This command eliminates the need to send the Read Data Command on each $\overline{\text { DRDY. This mode may be terminated by either the STOP }}$ Read Continuous command or the RESET command.
Operands: None

Bytes: 1

Encoding: 00000011

Data Transfer Sequence:

Command terminated when ииии ииии equals STOPC or RESET.

NOTE: (1) For wait time, refer to timing specification.

CREG

Description: Ends the continuous data output mode.
Operands: None
Bytes: 1
Encoding: 00001111
Data Transfer Sequence:

RREG

Read from Registers
Description: Output the data from up to 16 registers starting with the register address specified as part of the instruction. The number of registers read will be one plus the second byte. If the count exceeds the remaining registers, the addresses will wrap back to the beginning.

Operands: r, n
Bytes: 2
Encoding: 0001 rrrr xxxx nnnn

Data Transfer Sequence:

Read Two Registers Starting from Register 01 ${ }_{\mathrm{H}}$ (MUX)

RRAM

Read from RAM
Description: Up to 128 bytes can be read from RAM starting at the bank specified in the op code. All reads start at the address for the beginning of the RAM bank. The number of bytes to read will be one plus the value of the second byte.

Operands: a, n
Bytes: 2
Encoding: 0010 Oaaa xnnn nnnn

Data Transfer Sequence:

Read Two RAM Locations Starting from 20_{H}

Description: Copy the 16 control registers to the RAM bank specified in the op code. Refer to timing specifications for command execution time.
Operands: a
Bytes: 1
Encoding: 01000 aaa
Data Transfer Sequence:
Copy Register Values to RAM Bank 3

CREGA Copy Registers to All RAM Banks

Description: Duplicate the 16 control registers to all the RAM banks. Refer to timing specifications for command execution time.
Operands: None
Bytes:
1
Encoding: 01001000
Data Transfer Sequence:
$\mathrm{D}_{\text {IN }} 01001000$

WREG
Write to Register
Description: Write to the registers starting with the register specified as part of the instruction. The number of registers that will be written is one plus the value of the second byte.
Operands: r, n
Bytes: 2
Encoding: 0101 rrrr xxxx nnnn
Data Transfer Sequence:
Write Two Registers Starting from 06 (DIO)

Description: Write up to 128 RAM locations starting at the beginning of the RAM bank specified as part of the instruction. The number of bytes written is RAM is one plus the value of the second byte.
Operands: a, n
Bytes: 2
Encoding: 0110 Oaaa xnnn nnnn
Data Transfer Sequence:
Write to Two RAM Locations starting from 10^{H}

CRAM
Copy RAM Bank to Registers
Description: Copy the selected RAM Bank to the Configuration Registers. This will overwrite all of the registers with the data from the RAM bank.

Operands: a
Bytes: 1
Encoding: 1100 0aaa
Data Transfer Sequence:
Copy RAM Bank 0 to the Registers

CSRAMX Calculate RAM Bank Checksum
Description: Calculate the checksum of the selected RAM Bank. The checksum is calculated as a sum of all the bytes with the carry ignored. The ID, $\overline{\text { DRDY, }}$, and DIO bits are masked so they are not included in the checksum.
Operands: a
Bytes: 1
Encoding: 1101 0aaa
Data Transfer Sequence:
Calculate Checksum for RAM Bank 3

CSARAMX
Description: Calculate the checksum of all RAM Banks. The checksum is calculated as a sum of all the bytes with the carry ignored. The ID, $\overline{\text { DRDY, }}$, and DIO bits are masked so they are not included in the checksum.
Operands: None
Bytes: 1
Encoding: 11011000
Data Transfer Sequence:

Calculate the Checksum
 of Registers

CSREG
Description: Calculate the checksum of all the registers. The checksum is calculated as a sum of all the bytes with the carry ignored. The ID, $\overline{\text { DRDY }}$ and DIO bits are masked so they are not included in the checksum.

Operands: None
Bytes: 1
Encoding: 11011111
Data Transfer Sequence:

CSRAM Calculate RAM Bank Checksum
Description: Calculate the checksum of the selected RAM Bank. The checksum is calculated as a sum of all the bytes with the carry ignored. All bits are included in the checksum calculation, there is no masking of bits.
Operands: a
Bytes: 1
Encoding: 1110 0aaa
Data Transfer Sequence:
Calculate Checksum for RAM Bank 2

NOTE: (1) For wait time, refer to timing specification.

Description: Calculate the checksum of all RAM Banks. The checksum is calculated as a sum of all the bytes with the carry ignored. All bits are included in the checksum calculation, there is no masking of bits.
Operands: None
Bytes: 1
Encoding: 11101000
Data Transfer Sequence:

SELFCAL Offset and Gain Self Calibration

Description: Starts the process of self calibration. The Offset Control Register (OCR) and the Full-Scale Register (FSR) are updated with new values after this operation.

Operands: None
Bytes:
1
Encoding: 11110000
Data Transfer Sequence:

SELFOCAL

Offset Self Calibration

Description: Starts the process of self-calibration for offset. The Offset Control Register (OCR) is updated after this operation.

Operands: None
Bytes: 1
Encoding: 11110001
Data Transfer Sequence:

SELFGCAL

Gain Self Calibration
Description: Starts the process of self-calibration for gain. The Full-Scale Register (FSR) is updated with new values after this operation.
Operands: None
Bytes: 1
Encoding: 11110010
Data Transfer Sequence:

SYSOCAL System Offset Calibration

Description: Starts the system offset calibration process. For a system offset calibration the input should be set to 0 V differential, and the ADS1217 computes the OCR register value that will compensate for offset errors. The Offset Control Register (OCR) is updated after this operation.

Operands: None
Bytes: 1
Encoding: 11110011
Data Transfer Sequence:

SYSGCAL
 System Gain Calibration

Description: Starts the system gain calibration process. For a system gain calibration, the differential input should be set to the reference voltage and the ADS1217 computes the FSR register value that will compensate for gain errors. The FSR is updated after this operation.
Operands: None
Bytes: 1
Encoding: 11110100
Data Transfer Sequence:

DSYNC
Description: Synchronizes the ADS1217 to the serial clock edge.
Operands: None
Bytes:
1
Encoding: 11111100
Data Transfer Sequence:

SLEEP

Sleep Mode
Description: Puts the ADS1217 into a low power sleep mode. SCLK must be inactive while in sleep mode. To exit this mode, issue the WAKEUP command.

Operands: None
Bytes: 1
Encoding: 11111101
Data Transfer Sequence:

WAKEUP Wakeup From Sleep Mode

Description: Use this command to wake up from sleep mode.
Operands: None
Bytes: 1
Encoding: 11111011
Data Transfer Sequence:

RESET Reset to Power-Up Values

Description: Restore the registers to their power-up values. This command will also stop the Read Continuous mode. It does not affect the contents of RAM.

Operands: None
Bytes: 1
Encoding: 11111110
Data Transfer Sequence:

MSB	LSB															
	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	X	rdata	X	rdatac	X	X	X	X	X	X	X	X	X	X	X	stopc
0001	$\begin{gathered} \text { rreg } \\ 0 \end{gathered}$	$\begin{gathered} \text { rreg } \\ 1 \end{gathered}$	$\begin{gathered} \text { rreg } \\ 2 \end{gathered}$	$\begin{gathered} \text { rreg } \\ 3 \end{gathered}$	$\begin{gathered} \text { rreg } \\ 4 \end{gathered}$	$\begin{gathered} \text { rreg } \\ 5 \end{gathered}$	$\begin{gathered} \text { rreg } \\ 6 \end{gathered}$	$\begin{gathered} \text { rreg } \\ 7 \end{gathered}$	$\begin{gathered} \text { rreg } \\ 8 \end{gathered}$	$\begin{gathered} \text { rreg } \\ 9 \end{gathered}$	$\begin{gathered} \text { rreg } \\ \text { A } \end{gathered}$	$\begin{gathered} \text { rreg } \\ \text { B } \end{gathered}$	$\begin{gathered} \text { rreg } \\ \text { C } \end{gathered}$	$\begin{gathered} \text { rreg } \\ \text { D } \end{gathered}$	$\begin{gathered} \text { rreg } \\ \mathrm{E} \end{gathered}$	$\begin{gathered} \text { rreg } \\ \text { F } \end{gathered}$
0010	$\begin{gathered} \text { rram } \\ 0 \end{gathered}$	$\begin{gathered} \text { rram } \\ 1 \end{gathered}$	$\begin{gathered} \text { rram } \\ 2 \end{gathered}$	$\begin{gathered} \text { rram } \\ 3 \end{gathered}$	$\begin{gathered} \text { rram } \\ 4 \end{gathered}$	$\begin{gathered} \text { rram } \\ 5 \end{gathered}$	$\begin{gathered} \text { rram } \\ 6 \end{gathered}$	$\begin{gathered} \text { rram } \\ 7 \end{gathered}$	X	X	X	X	X	X	X	X
0011	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
0100	$\begin{gathered} \text { creg } \\ 0 \end{gathered}$	$\begin{gathered} \text { creg } \\ 1 \end{gathered}$	$\begin{gathered} \text { creg } \\ 2 \end{gathered}$	$\begin{gathered} \text { creg } \\ 3 \end{gathered}$	$\begin{gathered} \text { creg } \\ 4 \end{gathered}$	$\begin{gathered} \text { creg } \\ 5 \end{gathered}$	$\begin{gathered} \text { creg } \\ 6 \end{gathered}$	$\begin{gathered} \text { creg } \\ 7 \end{gathered}$	crega	X	X	X	X	X	X	X
0101	wreg 0	wreg 1	wreg 2	wreg 3	wreg 4	wreg 5	$\begin{gathered} \text { wreg } \\ 6 \end{gathered}$	wreg 7	wreg 8	$\begin{gathered} \text { wreg } \\ 9 \end{gathered}$	wreg A	wreg B	wreg C	wreg D	wreg E	wreg F
0110	wram 0	wram 1	wram 2	wram 3	wram 4	wram 5	wram 6	wram 7	X	X	X	X	X	X	X	X
0111	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
1000	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
1001	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
1010	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
1011	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
1100	cram 0	cram 1	cram 2	cram 3	cram 4	cram 5	cram 6	cram 7	X	X	X	X	X	X	X	X
1101	$\begin{gathered} \text { csramx } \\ 0 \end{gathered}$	$\begin{gathered} \text { csramx } \\ 1 \end{gathered}$	$\begin{gathered} \text { csramx } \\ 2 \end{gathered}$	$\begin{gathered} \text { csramx } \\ 3 \end{gathered}$	$\begin{gathered} \text { csramx } \\ 4 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { csramx } \\ 5 \end{array}$	$\begin{array}{\|c} \text { csramx } \\ 6 \end{array}$	$\begin{gathered} \text { csramx } \\ 7 \end{gathered}$	$\begin{gathered} \text { csa } \\ \text { ramx } \end{gathered}$	X	X	X	X	X	X	csreg
1110	$\begin{gathered} \text { cs } \\ \text { ram } 0 \end{gathered}$	$\begin{gathered} \text { cs } \\ \text { ram } 1 \end{gathered}$	$\begin{gathered} \text { cs } \\ \text { ram2 } \end{gathered}$	$\begin{gathered} \text { cs } \\ \text { ram } 3 \end{gathered}$	$\begin{gathered} \text { cs } \\ \text { ram } 4 \end{gathered}$	$\begin{gathered} \text { cs } \\ \text { ram } 5 \end{gathered}$	$\begin{gathered} \text { cs } \\ \text { ram } 6 \end{gathered}$	$\begin{gathered} \text { cs } \\ \text { ram } 7 \end{gathered}$	$\begin{aligned} & \text { csa } \\ & \text { ram } \end{aligned}$	X	X	X	X	X	X	X
1111	self cal	self ocal	self gcal	sys ocal	sys gcal	X	X	X	X	X	X	wakeup	dsync	sleep	reset	X
x = Reserved																

TABLE IV. Command Map.

DEFINITION OF TERMS

Analog Input Voltage-the voltage at any one analog input relative to AGND.

Analog Input Differential Voltage-given by the following equation: $\left(\mathrm{A}_{\mathrm{IN}_{+}}\right)-\left(\mathrm{A}_{\text {IN-}}\right)$. Thus, a positive digital output is produced whenever the analog input differential voltage is positive, while a negative digital output is produced whenever the differential is negative.
For example, when the converter is configured with a 2.5 V reference and placed in a gain setting of 1, the positive full-scale output is produced when the analog input differential is $2 \cdot 2.5 \mathrm{~V}$. The negative full-scale output is produced when the differential is $2 \cdot(-2.5 \mathrm{~V})$. In each case, the actual input voltages must remain within the $A G N D$ to $A V_{D D}$ range.
Conversion Cycle-the term conversion cycle usually refers to a discrete A/D conversion operation, such as that performed by a successive approximation converter. As used here, a conversion cycle refers to the $t_{\text {DATA }}$ time period. However, each digital output is actually based on the modulator results from several $t_{\text {DATA }}$ time periods.

FILTER SETTING	MODULATOR RESULTS
Fast Settling	$1 \mathrm{t}_{\text {DATA }}$ Time Period
Sinc 2	$2 \mathrm{t}_{\text {DATA }}$ Time Period
Sinc 3	$3 \mathrm{t}_{\text {DATA }}$ Time Period

Data Rate-the rate at which conversions are completed.
See definition for $f_{\text {DATA. }}$.
Decimation Ratio-defines the ratio between the output of the modulator and the output Data Rate. Valid values for the Decimation Ratio are from 20 to 2047. Larger Decimation Ratios will have lower noise.
Effective Resolution-the effective resolution of the ADS1217 in a particular configuration can be expressed in two different units: bits rms (referenced to output) and Vrms (referenced to input). Computed directly from the converter's output data, each is a statistical calculation. The conversion from one to the other is shown below.
Effective number of bits (ENOB) or effective resolution is commonly used to define the usable resolution of the A/D converter. It is calculated from empirical data taken directly from the device. It is typically determined by applying a fixed known signal source to the analog input and computing the standard deviation of the data sample set. The rms noise defines the $\pm \sigma$ interval about the sample mean.
The data from the A/D converter is output as codes, which then can be easily converted to other units, such as ppm or volts. The equations and table below show the relationship between bits or codes, ppm, and volts.

$$
\mathrm{ENOB}=\frac{-20 \log (\mathrm{ppm})}{6.02}
$$

BITS rms	BIPOLAR Vrms	UNIPOLAR Vrms
	$\frac{\left(\frac{4 \mathrm{~V}_{\text {REF }}}{\text { PGA }}\right)}{10\left(\frac{6.02 \cdot \text { ENOB }}{20}\right)}$	$\frac{\left(\frac{2 \mathrm{~V}_{\text {REF }}}{\text { PGA }}\right)}{10^{\left(\frac{6.02 \cdot \text { ENOB }}{20}\right)}}$
	10	298 nV
	596 nV	$1.19 \mu \mathrm{~V}$
	$2.38 \mu \mathrm{~V}$	$4.77 \mu \mathrm{~V}$
20	$9.54 \mu \mathrm{~V}$	$19.1 \mu \mathrm{~V}$
18	$38.1 \mu \mathrm{~V}$	$76.4 \mu \mathrm{~V}$
16	$153 \mu \mathrm{~V}$	$305 \mu \mathrm{~V}$
14	$610 \mu \mathrm{~V}$	1.22 mV
12	2.44 mV	

$\mathrm{f}_{\text {DATA }}$-the frequency of the digital output data produced by the ADS1217, $\mathrm{f}_{\text {DATA }}$ is also referred to as the Data Rate.
$\mathrm{f}_{\text {DATA }}=\left(\frac{\mathrm{f}_{\text {MOD }}}{\text { Decimation Ratio }}\right)=\left(\frac{\mathrm{f}_{\mathrm{OSC}}}{\text { mfactor } \bullet \text { Decimation Ratio }}\right)$
$\mathbf{f}_{\text {MOD }}$-the frequency or speed at which the modulator of the ADS1217 is running. This depends on the SPEED bit as shown below:

SPEED BIT	$\mathbf{f}_{\text {MOD }}$
0	$\mathrm{f}_{\mathrm{OSc}} / 128$
1	$\mathrm{f}_{\mathrm{OSc}} / 256$

$\mathbf{f}_{\text {Osc }}$-the frequency of the crystal input signal at the $X_{\text {IN }}$ input of the ADS1217.
$\mathbf{f}_{\text {SAMP }}$-the frequency, or switching speed, of the input sampling capacitor. The value is given by one of the following equations:

PGA SETTING	SAMPLING FREQUENCY
$1,2,4,8$	$\mathrm{f}_{\text {SAMP }}=\frac{\mathrm{f}_{\mathrm{OSC}}}{\mathrm{mfactor}}$
8	$\mathrm{f}_{\mathrm{SAMP}}=\frac{2 \mathrm{f}_{\mathrm{OSC}}}{\mathrm{mfactor}}$
16	$\mathrm{f}_{\text {SAMP }}=\frac{8 \mathrm{f}_{\mathrm{OSC}}}{\mathrm{mfactor}}$
32	$\mathrm{f}_{\text {SAMP }}=\frac{16 \mathrm{f}_{\text {OSC }}}{\mathrm{mfactor}}$
64,128	$\mathrm{f}_{\text {SAMP }}=\frac{16 \mathrm{f}_{\text {OSC }}}{\mathrm{mfactor}}$

Filter Selection-the ADS1217 uses a $(\sin x / x)$ filter or sinc filter. There are three different sinc filters that can be selected. A fast settling filter will settle in one $t_{\text {DATA }}$ cycle. The sinc^{2} filter will settle in two cycles and have lower noise. The sinc^{3} will achieve lowest noise and higher number of effective bits, but requires three cycles to settle. The ADS1217 will operate with any one of these filters, or it can operate in an auto mode, where it will first select the fast settling filter after a new channel is selected and will then switch to sinc 2 for one reading, followed by sinc 3 from then on.

Full-Scale Range (FSR)—as with most A/D converters, the full-scale range of the ADS1217 is defined as the "input", which produces the positive full-scale digital output minus the "input", which produces the negative full-scale digital output. The full-scale range changes with gain setting, see Table V.

For example, when the converter is configured with a 2.5 V reference and is placed in a gain setting of 2 , the full-scale range is: $2 \cdot[1.25 \mathrm{~V}$ (positive full-scale) minus -1.25 V (negative full-scale)] $=5 \mathrm{~V}$.

Least Significant Bit (LSB) Weight-this is the theoretical amount of voltage that the differential voltage at the analog input would have to change in order to observe a change in the output data of one least significant bit. It is computed as follows:

$$
\text { LSB Weight }=\frac{\text { Full }- \text { Scale Range }}{2^{N}}
$$

where N is the number of bits in the digital output.
$t_{\text {DATA }}$-the inverse of $f_{\text {DATA }}$, or the period between each data output.

	5V SUPPLY ANALOG INPUT ${ }^{(1)}$			GENERAL EQUATIONS		
GAIN SETTING	FULL-SCALE RANGE	DIFFERENTIAL INPUT VOLTAGES ${ }^{(2)}$	PGA OFFSET RANGE	FULL-SCALE RANGE	DIFFERENTIAL INPUT VOLTAGES ${ }^{(2)}$	PGA SHIFT RANGE
1	10V	$\pm 5 \mathrm{~V}$	± 2.5	$4 \mathrm{~V}_{\text {REF }}$	$\pm 2 \mathrm{~V}_{\text {REF }}$	$\pm \mathrm{V}_{\text {REF }}$
2	5 V	$\pm 2.5 \mathrm{~V}$	$\pm 1.25 \mathrm{~V}$	PGA	PGA	PGA
4	2.5 V	$\pm 1.25 \mathrm{~V}$	$\pm 0.625 \mathrm{~V}$			
8	1.25 V	$\pm 0.625 \mathrm{~V}$	$\pm 312.5 \mathrm{mV}$			
16	0.625 V	$\pm 312.5 \mathrm{mV}$	$\pm 156.25 \mathrm{mV}$			
32	312.5 mV	$\pm 156.25 \mathrm{mV}$	$\pm 78.125 \mathrm{mV}$			
64	156.25 mV	$\pm 78.125 \mathrm{mV}$	$\pm 39.0625 \mathrm{mV}$			
128	78.125 mV	$\pm 39.0625 \mathrm{mV}$	$\pm 19.531 \mathrm{mV}$			
NOTES: (1) With a 2.5 V reference. (2) The ADS1217 allows common-mode voltage as long as the absolute input voltage on $\mathrm{A}_{\mathrm{IN}+}$ or $\mathrm{A}_{\mathrm{IN}-}$ does not go below AGND or above $A V_{D D}$.						

TABLE V. Full-Scale Range versus PGA Setting.

Revision History

DATE	REVISION	PAGE	SECTION	DESCRIPTION
$2 / 07$	C	2,4	Electrical Characteristics	Changed Gain Error condition from "Before Calibration" to "After Calibration"

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{(} \mathrm{C}$)	Device Marking (4/5)	Samples
ADS1217IPFBR	ACTIVE	TQFP	PFB	48	2000	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ADS1217	Samples
ADS1217IPFBT	ACTIVE	TQFP	PFB	48	250	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ADS1217	Samples
ADS1217IPFBTG4	ACTIVE	TQFP	PFB	48	250	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ADS1217	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
ADS1217IPFBR	TQFP	PFB	48	2000	330.0	16.4	9.6	9.6	1.5	12.0	16.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS1217IPFBR	TQFP	PFB	48	2000	350.0	350.0	43.0

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Reference JEDEC registration MS-026.

NOTES: (continued)
4. Publication IPC-7351 may have alternate designs.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
7. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

[^0]: All trademarks are the property of their respective owners.

