

AWR1843 シングルチップ 77~ 79GHz FMCW レーダー センサ

1 特長

- FMCWトランシーバ
 - PLL、トランスミッタ、レシーバ、ベースバンド、ADC を内蔵
 - 76~81GHz 帯で、使用可能帯域幅 4GHz
 - 4 つの受信チャネル
 - 3 つの送信チャネル
 - フラクショナル N PLL を使用した超高精度のチャ ープエンジン
 - TX 出力:12dBm
 - RX ノイズ指数:
 - 14dB (76~77GHz)
 - 15dB (77~81GHz)
 - 1MHz での位相ノイズ:
 - –95dBc/Hz (76~77GHz)
 - –93dBc/Hz (77~81GHz)
- 較正および自己テスト(監視機能)を内蔵
 - Arm[®] Cortex[®]-R4F ベースの無線制御システム
 - 内蔵ファームウェア (ROM)
 - プロセスおよび温度の自己較正システム
- FMCW 信号処理用の C674x DSP
- オンチップ メモリ:2MB
- 物体追跡および分類、AUTOSAR、インターフェイス制 御用の Cortex-R4F マイクロコントローラ
 - 自律モード (QSPI フラッシュメモリからのユーザー アプリケーションのロード)をサポート
- 内蔵ペリフェラル
 - ECC 付き内部メモリ
- ホストインターフェイス
 - CAN および CAN-FD
- ユーザーアプリケーションで利用可能なその他のイン ターフェイス
 - 最大6つの ADC チャネル
 - 最大2つのSPI チャネル
 - 最大 2 つの UART
 - I^2C
 - GPIO
 - 未加工 ADC データおよびデバッグ計測機器向け 2 レーン LVDS インターフェイス

- デバイスのセキュリティ(一部の部品番号のみ)
 - セキュア認証および暗号化ブートのサポート
 - 顧客がプログラム可能なルートキー、対称キー (256 ビット)、非対称キー (RSA-2K まで)、キー失 効機能付き
 - 暗号化ソフトウェア アクセラレータ PKA、AES (最 大 256 ビット)、SHA (最大 256 ビット)、TRNG/ DRGB
- 機能安全準拠
 - 機能安全アプリケーション向けに開発
 - ASIL-D までの ISO 26262 機能安全システム設計 に役立つ資料を入手可能
 - ASIL-B までのハードウェア インテグリティ
 - 安全関連の認証
 - TUV SUD により ISO 26262 認証済み (ASIL B まで)
- AEC-Q100 認定済み
- デバイスの高度な機能
 - ホストプロセッサの関与を必要としない自己監視機 能を内蔵
 - 複素ベースバンドアーキテクチャ
 - 干渉検出機能を内蔵
 - 送信経路内のプログラム可能な位相ローテーター により、ビーム形成が可能
- パワーマネージメント
 - 内蔵 LDO ネットワークにより PSRR の向上を実現
 - I/O は 3.3V/1.8V のデュアル電圧に対応
- クロックソース
 - 40MHzの外部発振器をサポート
 - 40MHzの外部駆動クロック(方形波/正弦波)を サポート
 - 負荷コンデンサ付きの 40MHz 水晶振動子接続を サポート
- ハードウェア設計が簡単
 - 組み立てが簡単で低コストの PCB を設計できる 0.65mm ピッチ、161 ピン、10.4mm × 10.4mm の フリップ チップ BGA パッケージ
 - 小型ソリューション サイズ
- 動作条件
 - 接合部温度範囲:-40℃~125℃

2 アプリケーション

- 死角検出
- 車線変更支援
- クロストラフィックアラート

駐車支援

物体検出

ジェスチャ認識

図 2-1. 車載用アプリケーション向け自律レーダー センサ

3 概要

AWR1843 デバイスは、76~81GHz 帯で動作可能な統合型シングルチップ FMCW レーダー センサです。テキサス・インスツルメンツの低消費電力 45nm RFCMOS プロセスで製造され、超小型のフォームファクタで、かつてないレベルの統合を実現しています。AWR1843 は、低消費電力で自己監視機能を備えた超高精度の車載用レーダー システムに最適なソリューションです。

AWR1843 デバイスは、76~81GHz 帯車載用レーダー センサの実装を簡単にする自己完結型 FMCW レーダー セン サ シングルチップ ソリューションです。テキサス・インスツルメンツの低消費電力 45nm RFCMOS プロセスで製造され、 PLL および ADC コンバータを内蔵する 3TX/4RX システムのモノリシック実装を実現しています。また、TI の高性能 C674x DSP を含む DSP サブシステムをレーダー信号処理のために統合しています。無線の構成、制御、較正用に BIST プロセッサ サブシステムも内蔵されています。さらに、このデバイスには車載用インターフェイスとして使用される ARM R4F が搭載されており、ユーザーがプログラム可能です。ハードウェア アクセラレータ ブロック (HWA) はレーダー 処理を実行でき、DSP の MIPS を節約して、DSP がより高いレベルのアルゴリズムを実行できるようにします。プログラミ ング モデルを変更するだけで、さまざまなセンサ (短距離、中距離、長距離)を実装でき、マルチモード センサの実装に おいては動的再構成にも対応します。また本デバイスは、TI のリファレンス デザイン、ソフトウェアドライバ、構成例、API ガイド、ユーザー マニュアルを含む完全なプラットフォーム ソリューションとして提供しています。

部品番号 (2)	パッケージ ⁽¹⁾	本体サイズ	トレイ / テープ アンド リール			
AWR1843ABGABLQ1			トレイ			
AWR1843ABGABLRQ1		10.4mm × 10.4mm	テープ アンドリール			
AWR1843ABSABLQ1	ADL (FCDGA, 101)		トレイ			
AWR1843ABSABLRQ1			テープ アンドリール			

(1) 詳細については、セクション 13、「メカニカル、パッケージ、および注文情報」を参照してください。

(2) 詳細については、セクション 11.1 デバイスの命名規則を参照してください。

2 資料に関するフィードバック(ご意見やお問い合わせ)を送信

4機能ブロック図

デバイスの機能ブロック図を図 4-1 に示します。

* Up to 512kB of Radar Data Memory can be switched to the Main R4F program and data RAMs

図 4-1. 機能ブロック図

目次

1 特長1	8.1 概要	54
2アプリケーション2	8.2 機能ブロック図	54
3 概要2	8.3 サブシステム	55
4機能ブロック図3	8.4 その他のサブシステム	<mark>63</mark>
5 デバイスの比較5	9 監視と診断	65
5.1 関連製品6	9.1 監視と診断のメカニズム	<mark>65</mark>
6 端子構成および機能7	10 アプリケーション、実装、およびレイアウト	71
6.1 ピン配置図7	10.1 アプリケーション情報	71
6.2 信号の説明 11	10.2 短距離および中距離レーダー	71
6.3 ピン属性16	10.3 リファレンス回路図	72
7 仕様	11 デバイスおよびドキュメントのサポート	73
7.1 絶対最大定格25	11.1 デバイスの命名規則	73
7.2 ESD 定格	11.2 ツールとソフトウェア	74
7.3 電源投入時間 (POH)	11.3 ドキュメントのサポート	74
7.4 推奨動作条件 26	11.4 サポート・リソース	74
7.5 電源仕様27	11.5 商標	75
7.6 消費電力の概略	11.6 静電気放電に関する注意事項	75
7.7 RF 仕様29	11.7 用語集	75
7.8 CPU の仕様30	12 改訂履歷	76
7.9 FCBGA パッケージの熱抵抗特性 [ABL0161]	13 メカニカル、パッケージ、および注文情報	78
7.10 タイミングおよびスイッチング特性	13.1 パッケージ情報	78
8 詳細説明54	13.2 のトレイ情報	82

5 デバイスの比較

機能	AWR1243	AWR1443	AWR1642	AWR1843 ⁽¹⁾
レシーバの数	4	4	4	4
トランスミッタの数	3	3	2	3
オンチップ メモリ	—	576KB	1.5MB	2MB
最大 I/F (中間周波数) (MHz)	15	5	5	10
最大実数 / 複素数 2x サンプリング レート (MSPS)	37.5	12.5	12.5	25
最大複素数 1x サンプリング レート (MSPS)	18.75	6.25	6.25	12.5
デバイスのセキュリティ (2)		—	あり	あり
プロセッサ				
MCU (R4F)		あり	あり	あり
DSP (C674x)	—	—	あり	あり
ペリフェラル				
シリアル ペリフェラル インターフェイス (SPI) ポート	1	1	2	2
クワッド シリアル ペリフェラル インターフェイス (QSPI)	—	— asy a		あり
I ² C (Inter-Integrated Circuit) インターフェイス	—	1	1	1
コントローラ エリア ネットワーク (DCAN) インターフェイス	—	あり	あり	あり
CAN-FD	_	—	あり	あり
トレース	_	—	あり	あり
PWM	—	—	あり	あり
ハードウェア イン ループ (HIL/DMM)	—	—	あり	あり
GPADC	—	あり	あり	あり
LVDS / デバッグ ⁽³⁾	あり	あり	あり	あり
CSI2	あり	—		_
ハードウェア アクセラレータ	—	あり	—	あり
11 バイパス モード	あり	あり	あり	あり
カスケード (20GHz 同期)	—	—	—	—
JTAG	_	あり	あり	あり
同時に使用できる Tx の数	2	2	2	3 ⁽⁴⁾
チャープごとに構成可能な Tx 位相シフタ	—	—	—	あり
製品ステータ ス ⁽⁵⁾ 製品プレビュー (PP)、 事前情報 (Al)、 量産データ (PD)	PD	PD	PD	PD

(1) 機能安全アプリケーション用に開発された本デバイスは、ASIL-Bまでのハードウェア安全度をサポートしています。詳細については、関連資料を 参照してください。

(2) セキュアブートとカスタマー プログラマブル キーを含むデバイス セキュリティ機能は、「製品情報」表のセクション 3 のデバイスタイプ識別子で示 された一部の製品バリアントでのみ利用できます。

(3) LVDS インターフェイスは、製品インターフェイスではなく、デバッグ目的でのみ使用されます。

(4) 3 Tx 同時動作は、AWR1843 において、1V LDO バイパスおよび PA LDO 無効化モードのみでサポートしています。このモードでは、1V 電源 を VOUT PA ピンに供給する必要があります。その他のデバイスは、2 つのトランスミッタの同時動作のみをサポートします。

(5) 量産データの情報は、公開日の時点で最新のものです。製品は、テキサス・インスツルメンツの標準保証条件に基づく仕様に準拠しています。量 産プロセスにすべてのパラメータのテストが含まれているとは限りません。

5.1 関連製品

この製品ファミリまたは関連製品の他のデバイスの詳細については、以下のリンクを参照してください。

- **ミリ波センサ** テキサス・インスツルメンツの最もフットプリントが小さい車載アプリケーション向けミリ波センサは、 小さい電力で、距離、角度、速度を迅速かつ正確に検出します。
- **車載ミリ波センサ** テキサス・インスツルメンツの車載ミリ波センサ製品ラインアップは、超高分解能、小型、低消費電 カのシングルチップレーダー ソリューションに高性能レーダー フロント エンドを提供します。テキ サス・インスツルメンツのスケーラブルなセンサ製品ラインアップは、すべての自動車の快適性機 能から安全性機能に至るまで、あらゆる性能、アプリケーション、センサ構成に対応する ADAS シ ステム ソリューションの設計と開発を可能にします。
- **コンパニオン製品** この製品と組み合わせて購入または使用されることが多い製品を確認してください。

(AWR1843)

 リファレンスデザイン TI Designs リファレンス デザイン ライブラリは、アナログ、組み込みプロセッサ、コネクティビティの (AWR1843)
 お分野にわたる堅牢なリファレンス デザイン ライブラリです。すべての TI Designs は、システム 設計を迅速に開始できるようにテキサス・インスツルメンツの専門家により作成されたもので、回路 図またはブロック図、BOM、設計ファイルが含まれており、製品の開発期間短縮に役立ちます。 ti.com/tidesigns でリファレンス デザインを検索、ダウンロードしてください。

6 端子構成および機能

6.1 ピン配置図

図 6-1 に、161 ピン FCBGA パッケージ のピン位置を示します。図 6-2、図 6-3、図 6-4、および 図 6-5 は同じピンを示 していますが、4 つの象限に分割されています。

図 6-1. ピン配置図

AWR1843 JAJSGR3D – DECEMBER 2018 – REVISED SEPTEMBER 2024

図 6-3. 右上象限

AWR1843 JAJSGR3D – DECEMBER 2018 – REVISED SEPTEMBER 2024

図 6-4. 左下象限

AWR1843 JAJSGR3D – DECEMBER 2018 – REVISED SEPTEMBER 2024

図 6-5. 右下象限

6.2 信号の説明

注

本デバイスのすべてのデジタル IO ピン (NERROR IN、NERROR_OUT、WARM_RESET を除く) フェイル セーフではないので、VIO 電源が本デバイスに供給されていない状態において、これらの IO ピンが外部から 駆動されないように注意する必要があります。

注

電源ランプ時の GPIO 状態は保証されません。GPIO の状態が重要なアプリケーションで GPIO を使用する 場合には、NRESET が Low であるときにも、トライステート バッファを使用して GPIO 出力をレーダー デバイ スから分離し、プル抵抗を使って、アプリケーションで必要な状態を確定する必要があります。 レーダー デバイ スへの NRESET 信号は、トライステート バッファの出力イネーブル (OE)を制御するために使用できます。

6.2.1 信号の説明 - デジタル

信号名	ピンの種類	説明	ボール番号
ADC_VALID	0	High のとき、有効な ADC サンプルであることを示す	H13、J13、P13
BSS_UART_TX	0	デバッグ UART 送信 [レーダー ブロック]	F14、H14、K13、N10、 N13、N4、N5、R8
CAN_FD_RX	I	CAN FD (MCAN) 受信信号	D13、F14、N10、N4、P12
CAN_FD_TX	0	CAN FD (MCAN) 送信信号	E14、H14、N5、P10、R14
CAN_RX	I	CAN (DCAN) 受信信号	E13
CAN_TX	IO	CAN (DCAN) 送信信号	E15
CHIRP_END	0	各チャープの終了を示すパルス信号	K13、N8、P9
CHIRP_START	0	各チャープの開始を示すパルス信号	K13、N8、P9
DMM0	I	デバッグ インターフェイス (ハードウェア イン ループ) - データライン	R4
DMM1	I	デバッグ インターフェイス (ハードウェア イン ループ) - データライン	P5
DMM2	I	デバッグ インターフェイス (ハードウェア イン ループ) - データライン	R5
DMM3	I	デバッグ インターフェイス (ハードウェア イン ループ) - データライン	P6
DMM4	I	デバッグ インターフェイス (ハードウェア イン ループ) - データライン	R7
DMM5	I	デバッグ インターフェイス (ハードウェア イン ループ) - データライン	P7
DMM6	I	デバッグ インターフェイス (ハードウェア イン ループ) - データライン	R8
DMM7	I	デバッグ インターフェイス (ハードウェア イン ループ) - データライン	P8
DMM_CLK	I	デバッグ インターフェイス (ハードウェア イン ループ) - クロック	N15
DMM_MUX_IN	I	デバッグ インターフェイス (ハードウェア イン ループ) DMM1 と DMM2 の 間でのマルチプレクサ選択 (2 インスタンス)	G13、J13、P4
DMM_SYNC	I	デバッグ インターフェイス (ハードウェア イン ループ) - 同期	N14
DSS_UART_TX	0	デバッグ UART 送信 [DSP]	D13、E13、G14、P8、R12
EPWM1A	0	PWM モジュール 1 - 出力 A	N5、N8
EPWM1B	0	PWM モジュール 1 - 出力 B	H13、N5、P9
EPWM1SYNCI	I	PWM モジュール 1 - 同期入力	J13
EPWM2A	0	PWM モジュール 2 - 出力 A	H13、N4、N5、P9
EPWM2B	0	PWM モジュール 2 - 出力 B	N4
EPWM2SYNCO	0	PWM モジュール 2 - 同期出力	R7
EPWM3A	0	PWM モジュール 3 - 出力 A	N4
EPWM3SYNCO	0	PWM モジュール 3 - 同期出力	P6

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信 11

信号名	ピンの種類	説明	ボール番号
FRAME_START	0	各フレームの開始を示すパルス信号	K13、N8、P9
GPIO_0	IO	汎用 I/O	H13
GPIO_1	IO	汎用 I/O	J13
GPIO_2	IO	汎用 I/O	K13
GPIO_3	IO	汎用 I/O	E13
GPIO_4	IO	汎用 I/O	H14
GPIO_5	IO	汎用 I/O	F14
GPIO_6	IO	汎用 I/O	P11
GPIO_7	IO	汎用 I/O	R12
GPIO_8	IO	汎用 I/O	R13
GPIO_9	IO	汎用 I/O	N12
GPIO_10	IO	汎用 I/O	R14
GPIO_11	IO	汎用 I/O	P12
GPIO_12	IO	汎用 I/O	P13
GPIO_13	IO	汎用 I/O	H13
GPIO_14	IO	汎用 I/O	N5
GPIO_15	IO	汎用 I/O	N4
GPIO_16	IO	汎用 I/O	J13
GPIO_17	IO	汎用 I/O	P10
GPIO_18	IO	汎用 I/O	N10
GPIO_19	IO	汎用 I/O	D13
GPIO_20	IO	汎用 I/O	E14
GPIO_21	IO	汎用 I/O	F13
GPIO_22	IO	汎用 I/O	G14
GPIO_23	IO	汎用 I/O	R11
GPIO_24	IO	汎用 I/O	N13
GPIO_25	IO	汎用 I/O	N8
GPIO_26	IO	汎用 I/O	К13
GPIO_27	IO	汎用 I/O	P9
GPIO_28	IO	汎用 I/O	P4
GPIO_29	IO	汎用 I/O	G13
GPIO_30	IO	汎用 I/O	E15
GPIO_31	IO	汎用 I/O	R4
GPIO_32	IO	汎用 I/O	P5
GPIO_33	IO	汎用 I/O	R5
GPIO_34	IO	汎用 I/O	P6
GPIO_35	IO	汎用 I/O	R7
GPIO_36	IO	汎用 I/O	P7
GPIO_37	IO	汎用 I/O	R8
GPIO_38	IO	汎用 I/O	P8
GPIO_47	IO	汎用 I/O	N15
I2C_SCL	IO	I2C クロック	G14、N4
I2C_SDA	IO	I2C データ	F13、N5

Copyright © 2024 Texas Instruments Incorporated

LVDS_TXP[0] O 差動データ出力・レーン 0 J14 LVDS_TXM[0] O 差動データ出力・レーン 0 J15 LVDS_TXP[1] O 差動データ出力・レーン 1 K14 LVDS_TXM[1] O 差動データ出力・レーン 1 K14 LVDS_CLKP O 差動クロック出力 L14 LVDS_CLKM O 差動フロームクロック M14 LVDS_FRCLKP O 差動フレームクロック M14 LVDS_FRCLKM O 差動フレームクロック M14 LVDS_FRCLKM O 差動フレームクロック M14 LVDS_FRCLKM O 外部 MCU またはプロセッサに供給されるプログラマブル クロック N8 MSS_UARTA_RX I メイン サプジステム - UART A 受信 F14, N4, R11 MSS_UARTA_TX O メイン サプジステム - UART A 受信 N4, P4 MSS_UARTB_RX IO メイン サプジステム - UART B 受信 N4, P4 MSS_UARTB_TX O メイン サプジステム - UART B 受信 N13, N5, P10, P7 NDMM_EN I デバッダ インターフェイス (ハードウェア イン ハープ) イネーブル ーアクテ N13, N5 NERROR_IN I デバッイスへのの エークストロン アニューロ 一日の 一日、 ローン なってごん 電道切なアクションを実行できます。 N6	信号名	ピンの種類	説明	ボール番号
LVDS_TXM[0] O 注助プータ出力・レーン 0 J15 LVDS_TXP[1] O 差動データ出力・レーン 1 K14 LVDS_TXM[1] O 差動プロック出力 K14 LVDS_CLKP O 差動プロック出力 L14 LVDS_CLKM O 差動プロック出力 L14 LVDS_CLKM O 差動プレームクロック M14 LVDS_FRCLKP O 差動プレームクロック M14 LVDS_FRCLKM O グ部 MCU またはプロセッサに供給されるプログラマブル クロック N8 MSS_UARTA_RX I メイン サブシステム - UART A 受信 F14, N4, R11 MSS_UARTA_TX O メイン サブシステム - UART A 受信 N4, P4 MSS_UARTB_RX IO メイン サブシステム - UART B 受信 N4, P4 MSS_UARTB_TX O メイン サブシステム - UART B 受信 F14, H14, K13, N13, N5, P10, P7 NDMM_EN I デバッグ インターフェイス (ハードウェア イン ハープ) イネーブル・アグ デ N13, N5 NERROR_IN I デバイスへのフェイルセーフ入力。他のデバイスからの NERROR 出力 N7 NERROR_OUT O ポープンドレインのフェイルセーフ出力指令, 非常に重大なフォルトが変 N6	LVDS_TXP[0]	0	学動ご、カリカール、シンク	J14
LVDS_TXP[1] O 差動データ出力 - レーン1 K14 LVDS_TXM[1] O 差動データ出力 - レーン1 K15 LVDS_CLKP O 差動クロック出力 L14 LVDS_CLKM O L15 LVDS_FRCLKP O 差動フレームクロック M14 LVDS_FRCLKM O M15 MCU_CLKOUT O 外部 MCU またはプロセッサに供給されるプログラマブル クロック N8 MSS_UARTA_RX I メイン サブシステム - UART A 受信 F14, N4, R11 MSS_UARTA_TX O メイン サブシステム - UART A 受信 N4, P4 MSS_UARTB_RX IO メイン サブシステム - UART B 受信 N4, P4 MSS_UARTB_RX IO メイン サブシステム - UART B 受信 N4, P4 MSS_UARTB_TX O メイン サブシステム - UART B 受信 N4, P4 MSS_UARTB_RX I デバッグ インターフェイス (ハードウェア イン ループ) イネーブル - アグラ ア N13, N5 NDMM_EN I デバッイスへのフェイルセーフ 入力, 他のデバイスからの NERROR 出力 N7 NERROR_IN I デバッイスへのフェイルセーフ 入力, 他のデバイスからの NERROR 出力 N7 NERROR_OUT O オープン ドレインのフェイルセーフ 力力 に接続さ	LVDS_TXM[0]	0		J15
LVDS_TXM[1]O定朝) アクリロガン ビクリK15LVDS_CLKPO 差動/ロック出力L14LVDS_CLKMO 差動/ロック出力L15LVDS_FRCLKPO 差動/フレーム // ロックM14LVDS_FRCLKMO 	LVDS_TXP[1]	0		K14
LVDS_CLKP0 差動クロック出力L14LVDS_CLKM0 差動フレーム クロックL15LVDS_FRCLKP0 差動フレーム クロックM14LVDS_FRCLKM0 米間 MCU またはプロセッサに供給されるプログラマブル クロックM15MCU_CLKOUT0外部 MCU またはプロセッサに供給されるプログラマブル クロックN8MSS_UARTA_RX1メイン サブシステム - UART A 受信F14, N4, R11MSS_UARTA_TX0メイン サブシステム - UART A 受信H14, N13, N5, R4MSS_UARTB_RXIOメイン サブシステム - UART B 受信N4, P4MSS_UARTB_TX0メイン サブシステム - UART B 送信F14, H14, K13, N13, N5, P10, P7NDMM_ENIデバッグ インターフェイス (ハードウェア イン ループ) イネーブル - アクテ イブ Low 信号N13, N5NERROR_INIデバイスへのフェイルセーフ入力。他のデバイスからの NERROR 出力 は、デバイスへのフェイルセーフ出力信号 モッタ モジュールに集約させることができ、フ アームウェアによって適切なアクションを実行できます。N7NERROR_OUT0オープン ドレインのフェイルセーフ出力信号、非常に重大なフォルトが発 生していることを示すために、PMIC / ブロセッサ / MCU に接続されてい ます。復帰にはリセットが必要です。N6	LVDS_TXM[1]	0		K15
LVDS_CLKM0定期ウレームクロック115LVDS_FRCLKP0差動フレームクロックM14LVDS_FRCLKM0外部 MCU またはプロセッサに供給されるプログラマブル クロックM15MCU_CLKOUT0外部 MCU またはプロセッサに供給されるプログラマブル クロックN8MSS_UARTA_RX1メイン サブシステム - UART A 受信F14, N4, R11MSS_UARTA_TX0メイン サブシステム - UART A 送信H14, N13, N5, R4MSS_UARTB_RX10メイン サブシステム - UART B 受信N4, P4MSS_UARTB_RX10メイン サブシステム - UART B 受信N4, P4MSS_UARTB_TX0メイン サブシステム - UART B 送信F14, H14, K13, N13, N5, P10, P7NDMM_EN1デバッグ インターフェイス (ハードウェア イン ループ) イネーブル - アクテ イブ Low 信号N13, N5NERROR_IN1デバイスへのフェイルセーフ入力。他のデバイスからの NERROR 出力 は、デバイス内のエラー信号モニタ モジュールに集約させることができ、フ アームウェアによって適切なアクションを実行できます。N7NERROR_OUT0オープンドレインのフェイルセーフ出力信号。非常に重大なフォルトが発 生していることを示すために、PMIC/ ブロセッサ / MCU に接続されてい ます。復帰にはりセットが必要です。N6	LVDS_CLKP	0	羊動カロッカ山力	L14
LVDS_FRCLKPOM14LVDS_FRCLKMO 差動フレーム クロックM15MCU_CLKOUTO外部 MCU またはプロセッサに供給されるプログラマブル クロックN8MSS_UARTA_RXI×イン サブシステム - UART A 受信F14、 N4、 R11MSS_UARTA_TXO×イン サブシステム - UART A 送信H14、 N13、 N5、 R4MSS_UARTB_RXIO×イン サブシステム - UART B 受信N4、 P4MSS_UARTB_RXIO×イン サブシステム - UART B 受信N4、 P4MSS_UARTB_TXO×イン サブシステム - UART B 受信N4、 P4MSS_UARTB_TXI デバッグ インターフェイス (ハードウェア イン ループ) イネーブル - アクテ ィブ Low 信号F14、 H14、 K13、 N13、 N5、 P10、 P7NDMM_ENI デバイスへのフェイルセーフ入力。他のデバイスからの NERROR 出力 は、デバイス内のエラー信号モニタ モジュールに集約させることができ、フ アームウェアによって適切なアクションを実行できます。N7NERROR_INO オープンドレインのフェイルセーフ出力信号。非常に重大なフォルトが発 ます。復帰にはリセットが必要です。N6	LVDS_CLKM	0		L15
LVDS_FRCLKMOM15MCU_CLKOUTO外部 MCU またはプロセッサに供給されるプログラマブル クロックN8MSS_UARTA_RXIメイン サブシステム - UART A 受信F14、 N4、 R11MSS_UARTA_TXOメイン サブシステム - UART A 受信H14、 N13, N5, R4MSS_UARTB_RXIOメイン サブシステム - UART B 受信N4、 P4MSS_UARTB_TXOメイン サブシステム - UART B 受信N4、 P4MSS_UARTB_TXOメイン サブシステム - UART B 受信N4、 P4MSS_UARTB_TXIデバッグ インターフェイス (ハードウェア イン ループ) イネーブル - アクテ イブ Low 信号N13, N5, P10、 P7NDMM_ENIデバイスへのフェイルセーフ入力。他のデバイスからの NERROR 出力 は、デバイス内のエラー信号モニタ モジュールに集約させることができ、フ アームウェアによって適切なアクションを実行できます。N7NERROR_INIギープン ドレインのフェイルセーフ出力信号。非常に重大なフォルトが発 生していることを示すために、PMIC / プロセッサ / MCU に接続されてい ます。復帰にはリセットが必要です。N6	LVDS_FRCLKP	0		M14
MCU_CLKOUTO外部 MCU またはプロセッサに供給されるプログラマブル クロックN8MSS_UARTA_RXIメイン サブシステム - UART A 受信F14、N4、R11MSS_UARTA_TXOメイン サブシステム - UART A 送信H14、N13、N5、R4MSS_UARTB_RXIOメイン サブシステム - UART B 受信N4、P4MSS_UARTB_TXOメイン サブシステム - UART B 受信F14、H14、K13、N13、N5、P10、P7NDMM_ENIデバッグ インターフェイス (ハードウェア イン ループ) イネーブル - アクテ ィブ Low 信号F14、H14、K13、N13、N5NERROR_INIデバイスへのフェイルセーフ入力。他のデバイスからの NERROR 出力 は、デバイス内のエラー信号モニタ モジュールに集約させることができ、フ アームウェアによって適切なアクションを実行できます。N7NERROR_OUTOオープンドレインのフェイルセーフ出力信号。非常に重大なフォルトが発 生していることを示すために、PMIC / プロセッサ / MCU に接続されてい ます。復帰にはリセットが必要です。N6	LVDS_FRCLKM	0		M15
MSS_UARTA_RX I メイン サブシステム - UART A 受信 F14、N4、R11 MSS_UARTA_TX O メイン サブシステム - UART A 送信 H14、N13、N5、R4 MSS_UARTB_RX IO メイン サブシステム - UART B 受信 N4、P4 MSS_UARTB_TX O メイン サブシステム - UART B 受信 N4、P4 MSS_UARTB_TX O メイン サブシステム - UART B 送信 F14、H14、K13、N13、N5、P10、P7 NDMM_EN I デバッグ インターフェイス (ハードウェア イン ループ) イネーブル - アクテ ィブ Low 信号 N13、N5 NERROR_IN I デバイスへのフェイルセーフ入力。他のデバイスからの NERROR 出力 は、デバイス内のエラー信号モニタ モジュールに集約させることができ、フ アームウェアによって適切なアクションを実行できます。 N7 NERROR_OUT O オープンドレインのフェイルセーフ出力信号。非常に重大なフォルトが発 生していることを示すために、PMIC / プロセッサ / MCU に接続されてい ます。復帰にはリセットが必要です。 N6	MCU_CLKOUT	0	外部 MCU またはプロセッサに供給されるプログラマブル クロック	N8
MSS_UARTA_TX O メイン サブシステム - UART A 送信 H14、N13、N5、R4 MSS_UARTB_RX IO メイン サブシステム - UART B 受信 N4、P4 MSS_UARTB_TX O メイン サブシステム - UART B 受信 F14、H14、K13、N13、N5、 P10、P7 NDMM_EN I デバッグ インターフェイス (ハードウェア イン ループ) イネーブル - アクテ ィブ Low 信号 N13、N5 NERROR_IN I デバイスへのフェイルセーフ入力。他のデバイスからの NERROR 出力 は、デバイス内のエラー信号モニタ モジュールに集約させることができ、フ アームウェアによって適切なアクションを実行できます。 N7 NERROR_OUT O オープンドレインのフェイルセーフ出力信号。非常に重大なフォルトが発 生していることを示すために、PMIC / プロセッサ / MCU に接続されてい ます。復帰にはリセットが必要です。 N6	MSS_UARTA_RX	I	メイン サブシステム - UART A 受信	F14、N4、R11
MSS_UARTB_RX IO メイン サブシステム - UART B 受信 N4、P4 MSS_UARTB_TX O メイン サブシステム - UART B 送信 F14、H14、K13、N13、N5、 P10、P7 NDMM_EN I デバッグ インターフェイス (ハードウェア イン ループ) イネーブル - アクテ イブ Low 信号 N13、N5 NERROR_IN I デバイスへのフェイルセーフ入力。他のデバイスからの NERROR 出力 は、デバイス内のエラー信号モニタ モジュールに集約させることができ、フ アームウェアによって適切なアクションを実行できます。 N7 NERROR_OUT O オープンドレインのフェイルセーフ出力信号。非常に重大なフォルトが発 生していることを示すために、PMIC / プロセッサ / MCU に接続されてい ます。復帰にはリセットが必要です。 N6	MSS_UARTA_TX	0	メイン サブシステム - UART A 送信	H14、N13、N5、R4
MSS_UARTB_TX O メイン サブシステム - UART B 送信 F14、H14、K13、N13、N5、 P10、P7 NDMM_EN I デバッグ インターフェイス (ハードウェア イン ループ) イネーブル - アクテ イブ Low 信号 N13、N5 NERROR_IN I デバイスへのフェイルセーフ入力。他のデバイスからの NERROR 出力 は、デバイス内のエラー信号モニタ モジュールに集約させることができ、フ アームウェアによって適切なアクションを実行できます。 N7 NERROR_OUT O オープンドレインのフェイルセーフ出力信号。非常に重大なフォルトが発 生していることを示すために、PMIC / プロセッサ / MCU に接続されてい ます。復帰にはリセットが必要です。 N6	MSS_UARTB_RX	IO	メイン サブシステム - UART B 受信	N4、P4
NDMM_EN I デバッグ インターフェイス (ハードウェア イン ループ) イネーブル - アクテ イブ Low 信号 N13、N5 NERROR_IN I デバイスへのフェイルセーフ入力。他のデバイスからの NERROR 出力 は、デバイス内のエラー信号モニタ モジュールに集約させることができ、フ アームウェアによって適切なアクションを実行できます。 N7 NERROR_OUT O オープンドレインのフェイルセーフ出力信号。非常に重大なフォルトが発 生していることを示すために、PMIC / プロセッサ / MCU に接続されてい ます。復帰にはリセットが必要です。 N6	MSS_UARTB_TX	0	メイン サブシステム - UART B 送信	F14、H14、K13、N13、N5、 P10、P7
NERROR_IN I デバイスへのフェイルセーフ入力。他のデバイスからの NERROR 出力 は、デバイス内のエラー信号モニタ モジュールに集約させることができ、フ アームウェアによって適切なアクションを実行できます。 N7 NERROR_OUT O オープンドレインのフェイルセーフ出力信号。非常に重大なフォルトが発 生していることを示すために、PMIC / プロセッサ / MCU に接続されてい ます。復帰にはリセットが必要です。 N6	NDMM_EN	I	デバッグ インターフェイス (ハードウェア イン ループ) イネーブル - アクテ ィブ Low 信号	N13、N5
NERROR_OUTオープンドレインのフェイルセーフ出力信号。非常に重大なフォルトが発 生していることを示すために、PMIC / プロセッサ / MCU に接続されていN6st。復帰にはリセットが必要です。N6	NERROR_IN	I	デバイスへのフェイルセーフ入力。他のデバイスからの NERROR 出力 は、デバイス内のエラー信号モニタモジュールに集約させることができ、フ ァームウェアによって適切なアクションを実行できます。	N7
	NERROR_OUT	О	オープンドレインのフェイルセーフ出力信号。非常に重大なフォルトが発生していることを示すために、PMIC / プロセッサ / MCU に接続されています。復帰にはリセットが必要です。	N6
PMIC_CLKOUT O PMIC のための AWR1843 デバイスからの出力クロック H13、K13、P9	PMIC_CLKOUT	0	PMIC のための AWR1843 デバイスからの出力クロック	H13、K13、P9
QSPI[0] IO QSPI データ ライン #0 (シリアル データ フラッシュと使用) R13	QSPI[0]	IO	QSPI データライン #0 (シリアル データフラッシュと使用)	R13
QSPI[1] IO QSPI データライン #1 (シリアル データフラッシュと使用) N12	QSPI[1]	IO	QSPI データ ライン #1 (シリアル データ フラッシュと使用)	N12
QSPI[2] I QSPI データライン #2 (シリアル データフラッシュと使用) R14	QSPI[2]	I	QSPI データライン #2 (シリアル データフラッシュと使用)	R14
QSPI[3] IO QSPI データ ライン #3 (シリアル データ フラッシュと使用) P12	QSPI[3]	IO	QSPI データ ライン #3 (シリアル データ フラッシュと使用)	P12
QSPI_CLK IO QSPI クロック (シリアル データ フラッシュと使用) R12	QSPI_CLK	IO	QSPI クロック (シリアル データ フラッシュと使用)	R12
QSPI_CLK_EXT I QSPI クロック (シリアル データ フラッシュと使用) H14	QSPI_CLK_EXT	I	QSPI クロック (シリアル データ フラッシュと使用)	H14
QSPI_CS_N IO QSPI チップ セレクト (シリアル データ フラッシュと使用) P11	QSPI_CS_N	IO	QSPI チップ セレクト (シリアル データ フラッシュと使用)	P11
RS232_RX I デバッグ UART (バスメインとして動作) - 受信信号 N4	RS232_RX	I	デバッグ UART (バス メインとして動作) - 受信信号	N4
RS232_TX O デバッグ UART (バスメインとして動作) - 送信信号 N5	RS232_TX	0	デバッグ UART (バスメインとして動作) - 送信信号	N5
SOP[0] I センスオンパワー - ライン #0 N13	SOP[0]	I	センスオン パワー - ライン #0	N13
SOP[1] I センスオンパワー - ライン #1 G13	SOP[1]	l	センスオン パワー - ライン #1	G13
SOP[2] I センスオン パワー - ライン #2 P9	SOP[2]	I	センスオン パワー - ライン #2	P9
SPIA_CLK IO SPI チャネル A - クロック E13	SPIA_CLK	IO	SPI チャネル A - クロック	E13
SPIA CS N IO SPI チャネル A - チップ セレクト E15	SPIA CS N	IO	SPI チャネル A - チップ セレクト	E15
 SPIA_MISO IO SPI チャネル A - メイン入力 / スレーブ出力 E14	SPIA_MISO	IO	SPI チャネル A - メイン入力 / スレーブ出力	E14
	SPIA MOSI	IO	SPI チャネル A - メイン出力 / スレーブ入力	D13
	SPIB CLK	IO	SPI チャネル В - 2 риу 2	F14, R12
	SPIB CS N	IO	SPI チャネル B チップ セレクト (インスタンス ID 0)	H14、P11
SPIB_CS_N_1 IO SPI チャネル B チップ セレクト (インスタンス ID 1) G13、J13、P13	SPIB_CS_N_1	IO	・ SPI チャネル B チップ セレクト (インスタンス ID 1)	G13、J13、P13
SPIB_CS_N_2 IO SPI チャネル B チップ セレクト (インスタンス ID 2) G13、J13、N12	SPIB_CS_N_2	IO	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	G13、J13、N12
SPIB_MISO IO SPI チャネル B - メイン入力 / スレーブ出力 G14、R13	SPIB_MISO	IO	, SPI チャネル B - メイン入力 / スレーブ出力	G14、R13
SPIB_MOSI IO SPI チャネル B - メイン出力 / スレーブ入力 F13、N12	SPIB_MOSI	IO	SPI チャネル B - メイン出力 / スレーブ入力	F13、N12

Copyright © 2024 Texas Instruments Incorporated

信号名	ピンの種類	説明	ボール番号
SPI_HOST_INTR	0	SPI 経由で通信中の外部ホストへの帯域外割り込み	P13
SYNC_IN	I	低周波数同期信号入力	P4
SYNC_OUT	0	低周波数同期信号出力	G13、J13、K13、P4
тск	I	JTAG テスト クロック	P10
TDI	I	JTAG テスト データ入力	R11
TDO	0	JTAG テスト データ出力	N13
TMS	I	JTAG テスト モード信号	N10
TRACE_CLK	0	デバッグトレース出力 - クロック	N15
TRACE_CTL	0	デバッグトレース出力 - 制御	N14
TRACE_DATA_0	0	デバッグトレース出力 - データライン	R4
TRACE_DATA_1	0	デバッグトレース出力 - データライン	P5
TRACE_DATA_2	0	デバッグトレース出力 - データライン	R5
TRACE_DATA_3	0	デバッグトレース出力 - データライン	P6
TRACE_DATA_4	0	デバッグトレース出力 - データライン	R7
TRACE_DATA_5	0	デバッグトレース出力 - データライン	P7
TRACE_DATA_6	0	デバッグトレース出力 - データライン	R8
TRACE_DATA_7	0	デバッグトレース出力 - データライン	P8
WARM_RESET	Ю	オープンドレインのフェイルセーフ ウォーム リセット信号。診断用として PMIC から駆動するか、または、デバイスがリセット中であることを示すステ ータス信号として使用できます。	N9

6.2.2 信号の説明 - アナログ

インターフェイス	信号名	ピンの種 類	説明	ボール番号
	TX1	0	シングルエンドトランスミッタ 1 o/p	B4
トランスミッタ	TX2	0	シングルエンド トランスミッタ 2 o/p	B6
	TX3	0	シングルエンドトランスミッタ 3 o/p	B8
	信号名 ピンの種類 説明 TX1 O シングルエンドトランスミッタ 1 o/p TX2 O シングルエンドトランスミッタ 2 o/p TX3 O シングルエンドトランスミッタ 3 o/p RX1 I シングルエンドレシーバ 1 i/p RX2 I シングルエンドレシーバ 2 i/p RX3 I シングルエンドレシーバ 3 i/p RX4 I シングルエンドレシーバ 4 i/p NRESET I チップのパワーオン リセット。アクティ: XTAL モード:リファレンス水晶振動子 外部クロック モード:シングルエンド入 CLKP I メTAL モード:リファレンス水晶振動子 ロSC_CLKOUT O PLL クリーンアップ後のクロック供給サ リファレンス クロック出力 (1.4V 出力電 VBGAP O デバイスのバンドギャップ リファレンス	シングルエンドレシーバ 1 i/p	M2	
	RX2	I	シングルエンドレシーバ 2 i/p	K2
	RX3	I	シングルエンドレシーバ 3 i/p	H2
	RX4	I	シングルエンドレシーバ 4 i/p	F2
リセット	NRESET	I	チップのパワーオンリセット。アクティブ Low	R3
川フーレンス発生の	CLKP	I	XTAL モード:リファレンス水晶振動子用入力 外部クロック モード:シングルエンド入力リファレンス クロ ック ポート	B15
リノアレンへ光振器	CLKM	I	XTAL モード::リファレンス水晶振動子用フィードバック 駆動 外部クロック モード:このポートはグランドに接続します。	C15
リファレンス クロック	OSC_CLKOUT	0	PLL クリーンアップ後のクロック供給サブシステムからの リファレンス クロック出力 (1.4V 出力電圧スイング)。	A14
バンドギャップ電圧	VBGAP	0	デバイスのバンドギャップリファレンス出力	B10

インターフェイス	信号名	ピンの種 類	説明	ボール番号
	VDDIN	電源	1.2V デジタル電源	H15、N11、P15、R6
	VIN_SRAM	信号名 ビック細 電源 説明 電源 1.2V デジタル電源 M 電源 内部 SRAM 用 1.2V 電源レール 電源 SRAM アレイのバック バイアス用 1.2V 電源レール 0 電源 (3.3) または 1.8V): すべての CMOS I/O はこ の電源で動作します。 3 電源 CMOS IO 用 1.8V 電源 LK 電源 レの アック モジュール用 1.8V 電源 BDIFF 電源 LVDS ボート用 1.8V 電源 電源 ビューズ チェーン用電源電圧 1.3V アナログおよび RF 電源、VIN_13RF1 と VIN_13RF2 が基板上で短路されている可能性がありま す。 F1 電源 1.3V アナログおよび RF 電源 B 電源 1.8V アナログ ベース バンド電源 CO<	G15	
	フェイス 信号名 ビンの電 戦別 VDDIN 電源 1.2V デジタル電源 VIN_SRAM 電源 内部 SRAM 用 1.2V 電源レール VINA 電源 内部 SRAM 用 1.2V 電源レール VINA 電源 の電源で動作します。 VION 電源 いの電源で動作します。 VION 電源 クロクチビジュール用 1.8V 電源 VIN_182 電源 CMOS IO 用 1.8V 電源 VIN_181F1 電源 LVD オート用 1.8V 電源 VIN_13RF1 電源 L=<	P14		
電源		R10、F15		
	VIOIN_18	電源	CMOS IO 用 1.8V 電源	R9
	VIN_18CLK	電源	クロック モジュール用 1.8V 電源	B11
	VIOIN_18DIFF	電源	LVDS ポート用 1.8V 電源	D15
	VPP	電源	ヒューズ チェーン用電源電圧	L13
	VIN_13RF1	電源	1.3V アナログおよび RF 電源、VIN_13RF1 と VIN_13RF2 が基板上で短絡されている可能性がありま す。	G5、H5、J5
	VIN_13RF2	電源	1.3V アナログおよび RF 電源	C2、D2
	VIN_18BB	電源	1.8V アナログ ベース バンド電源	K5、F5
	VIN_18VCO	電源	1.8V RF VCO 電源	B12
電源	VSS	グランド	デジタル グランド	L5、L6、L8、L10、 K7、K8、K9、K10、 K11、J6、J7、J8、 J10、H7、H9、H11、 G6、G7、G8、G10、 F9、F11、E5、E6、 E8、E10、E11、R15
	VSSA	グランド	アナログ グランド	A1, A3, A5, A7, A15, B1, B3, B5, B7, C1, C3, C4, C5, C6, C7, E1, E2, E3, F3, G1, G2, G3, H3, J1, J2, J3, K3, L1, L2, L3, M3, N1, N2, N3, R1, A13, C8, A9, B9, C9, B14, C14
	VOUT_14APLL	0	内部 LDO 出力	A10
	VOUT_14SYNTH	0	内部 LDO 出力	B13
内部 LDO 出力 / 入 力	VOUT_PA	Ю	内部 PA LDO を使用する場合、このピンは LDO の出力 電圧を供給します。内部 PA LDO がバイパスされ無効 になっている場合、1V 電源をこのピンに供給する必要 があります。3TX を同時に使用する事例では、これは必 須です。	A2、B2
目立明4公子 ~	アナログ テスト 1 / ADC1	Ю	ADC チャネル 1 ⁽¹⁾	P1
重座開始則フェース のテストおよびデバッ	アナログテスト2/ADC2	IO	ADC チャネル 2 ⁽¹⁾	P2
グ出力。量産ハードウ	アナログテスト3/ADC3	IO	ADC チャネル 3 ⁽¹⁾	P3
エノエ Cノイールト デバッグ用にピン出	アナログテスト 4 / ADC4	Ю	ADC チャネル 4 ⁽¹⁾	R2
力することが可能で	ANAMUX / ADC5	Ю	ADC チャネル 5 ⁽¹⁾	C13
7 0	VSENSE / ADC6	IO	ADC チャネル 6 ⁽¹⁾	D14

(1) 詳細については、セクション 8.4.1 を参照してください。

6.3 ピン属性

表 6-1. ピン属性 (ABL0161 パッケージ)

ボール番号[1]	ボール名 [2]	信号名 [3]	PINCNTL アドレス [4]	モード [5] [9]	タイプ [6]	ボールリセット状態 [7]	プルアップ / ダウン タイプ [8]
H13	GPIO_0	GPIO_13	0xFFFFEA04	0	IO	出力ディセーブル	プルダウン
		GPIO_0	1	1	IO	-	
		PMIC_CLKOUT	1	2	0	-	
		ADC_VALID	1	9	0	-	
		ePWM1b]	10	0		
		ePWM2a	1	11	0	-	
J13	GPIO_1	GPIO_16	0xFFFFEA08	0	IO	出力ディセーブル	プルダウン
		GPIO_1	1	1	IO	-	
		SYNC_OUT	1	2	0		
		ADC_VALID	1	7	0		
		DMM_MUX_IN	1	12	1	-	
		SPIB_cs_n_1	1	13	IO		
		SPIB_cs_n_2	1	14	IO		
		ePWM1SYNCI	1	15	1		
К13	GPIO_2	GPIO_26	0xFFFFEA64	0	IO	出力ディセーブル	プルダウン
		GPIO_2	1	1	IO	-	
		OSC_CLKOUT	1	2	0		
		MSS_uartb_tx	1	7	0		
		BSS_uart_tx	1	8	0		
		SYNC_OUT	1	9	0		
		PMIC_CLKOUT	1	10	0	-	
		CHIRP_START	1	11	0	-	
		CHIRP_END	1	12	0		
		FRAME_START	1	13	0	-	
R4	GPIO_31	TRACE_DATA_0	0xFFFFEA7C	0	0	出力ディセーブル	プルダウン
		GPIO_31]	1	IO		
		DMM0	1	2	1	-	
		MSS_uarta_tx	1	4	IO	-	
P5	GPIO_32	TRACE_DATA_1	0xFFFFEA80	0	0	出力ディセーブル	プルダウン
		GPIO_32	1	1	IO		
		DMM1	1	2	1	-	
R5	GPIO_33	TRACE_DATA_2	0xFFFFEA84	0	0	出力ディセーブル	プルダウン
		GPIO_33]	1	ю	1	
		DMM2]	2	1]	

ボール番号 [1]	ボール名 [2]	信号名 [3]	PINCNTL アドレス [4]	ጚ ード [5] [9]	タイプ [6]	ボールリセット状態 [7]	プルアップ / ダウン タイプ [8]
P6	GPIO_34	TRACE_DATA_3	0xFFFFEA88	0	0	出力ディセーブル	プルダウン
		GPIO_34	-	1	10	_	
		DMM3	-	2	1	_	
		ePWM3SYNCO	_	4	0	_	
R7	GPIO_35	TRACE_DATA_4	0xFFFFEA8C	0	0	出力ディセーブル	プルダウン
		GPIO_35		1	IO		
		DMM4		2	I		
		ePWM2SYNCO		4	0		
P7	GPIO_36	TRACE_DATA_5	0xFFFFEA90	0	0	出力ディセーブル	プルダウン
		GPIO_36		1	ю		
		DMM5		2	I		
		MSS_uartb_tx		5	0		
R8	GPIO_37	TRACE_DATA_6	0xFFFFEA94	0	0	出力ディセーブル	プルダウン
		GPIO_37		1	IO		
		DMM6		2	I		
		BSS_uart_tx		5	0		
P8	GPIO_38	TRACE_DATA_7	0xFFFFEA98	0	0	出力ディセーブル	プルダウン
		GPIO_38		1	Ю		
		DMM7		2	I		
		DSS_uart_tx		5	0		
N15	GPIO_47	TRACE_CLK	0xFFFFEABC	0	0	出力ディセーブル	プルダウン
		GPIO_47		1	Ю		
		DMM_CLK		2	I		
N14	DMM_SYNC	TRACE_CTL	0xFFFFEAC0	0	0	出力ディセーブル	プルダウン
		DMM_SYNC		2	I		
N8	MCU_CLKOUT	GPIO_25	0xFFFFEA60	0	ю	出力ディセーブル	プルダウン
		MCU_CLKOUT		1	0		
		CHIRP_START		2	0		
		CHIRP_END		6	0		
		FRAME_START		7	0		
		ePWM1a]	12	0]	
N7	nERROR_IN	nERROR_IN	0xFFFFEA44	0	1	入力	
N6	nERROR_OUT	nERROR_OUT	0xFFFFEA4C	0	0	Hi-Z (オープンドレ イン)	

表 6-1. ピン属性 (ABL0161 パッケージ) (続き)

ボール番号 [1]	ボール名 [2]	信号名 [3]	PINCNTL アドレス [4]	ጚ ード [5] [9]	タイプ [6]	ボールリセット状態 [7]	プルアップ / ダウン タイプ [8]
P9	PMIC_CLKOUT	SOP[2]	0xFFFFEA68	パワーアップ時	I	出力ディセーブル	プルダウン
		GPIO_27		0	IO	ボールリセット状態 [7] 出力ディセーブル コー コー<	
		PMIC_CLKOUT		1	0		
		CHIRP_START		6	0		
		CHIRP_END		7	0		
		FRAME_START		8	0		
		ePWM1b		11	0]	
		ePWM2a		12	0		
R13	QSPI[0]	GPIO_8	0xFFFFEA2C	0	IO	出力ディセーブル	プルダウン
		QSPI[0]		1	IO	1	
		SPIB_miso		2	IO]	
N12	QSPI[1]	GPIO_9	0xFFFFEA30	0	IO	出力ディセーブル	プルダウン
		QSPI[1]		1	IO		
		SPIB_mosi		2	IO		
		SPIB_cs_n_2		8	IO	1	
R14	QSPI[2]	GPIO_10	0xFFFFEA34	0	IO	出力ディセーブル	プルダウン
		QSPI[2]		1	1	1	
		CAN_FD_tx		8	0		
P12	QSPI[3]	GPIO_11	0xFFFFEA38	0	IO	出力ディセーブル	プルダウン
		QSPI[3]		1	IO	1	
		CAN_FD_rx		8	I]	
R12	QSPI_clk	GPI0_7	0xFFFFEA3C	0	IO	出力ディセーブル	プルダウン
		QSPI_clk		1	IO		
		SPIB_clk		2	0	1	
		DSS_uart_tx		6	0	1	
P11	QSPI_cs_n	GPIO_6	0xFFFFEA40	0	IO	出力ディセーブル	プルアップ
		QSPI_cs_n		1	IO]	
		SPIB_cs_n		2	IO		
N4	rs232_rx	GPIO_15	0xFFFFEA74	0	IO	入力イネーブル	プルアップ
		rs232_rx		1	I	1	
		MSS_uarta_rx		2	I]	
		BSS_uart_tx		6	IO	1	
		MSS_uartb_rx		7	IO		
		CAN_FD_rx		8	1		
		I2C_scl		9	10		
		ePWM2a	1	10	0	1	
		ePWM2b	1	11	0	1	
		ePWM3a	1	12	0	1	

ボール番号[1]	ボール名 [2]	信号名 [3]	PINCNTL アドレス [4]	ቺド [5] [9]	タイプ [6]	ボールリセット状態 [7]	プルアップ / ダウン タイプ [8]
N5	rs232_tx	GPIO_14	0xFFFFEA78	0	IO	出力イネーブル	
		rs232_tx	1	1	0	1	
		MSS_uarta_tx	1	5	IO		
		MSS_uartb_tx	1	6	IO	1	
		BSS_uart_tx	1	7	IO	1	
		CAN_FD_tx]	10	0]	
		I2C_sda]	11	ю]	
		ePWM1a]	12	0		
		ePWM1b]	13	0		
		NDMM_EN	1	14	1	1	
		ePWM2a]	15	0]	
E13	SPIA_clk	GPIO_3	0xFFFFEA14	0	ю	出力ディセーブル	プルアップ
		SPIA_clk]	1	Ю		
		CAN_rx]	6	I		
		DSS_uart_tx]	7	0		
E15	SPIA_cs_n	GPIO_30	0xFFFFEA18	0	ю	出力ディセーブル	プルアップ
		SPIA_cs_n		1	ю		
		CAN_tx]	6	0		
E14	SPIA_miso	GPIO_20	0xFFFFEA10	0	ю	出力ディセーブル	プルアップ
		SPIA_miso		1	ю		
		CAN_FD_tx		2	0		
D13	SPIA_mosi	GPIO_19	0xFFFFEA0C	0	Ю	出力ディセーブル	プルアップ
		SPIA_mosi		1	Ю		
		CAN_FD_rx		2	I		
		DSS_uart_tx		8	0		
F14	SPIB_clk	GPIO_5	0xFFFFEA24	0	Ю	出力ディセーブル	プルアップ
		SPIB_clk		1	Ю		
		MSS_uarta_rx		2	I		
		MSS_uartb_tx		6	0		
		BSS_uart_tx		7	0		
		CAN_FD_rx		8	I		
H14	SPIB_cs_n	GPIO_4	0xFFFFEA28	0	Ю	出力ディセーブル	プルアップ
		SPIB_cs_n		1	Ю		
		MSS_uarta_tx		2	0		
		MSS_uartb_tx		6	0		
		BSS_uart_tx		7	Ю		
		QSPI_clk_ext		8	1		
		CAN_FD_tx		9	0		

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック (ご意見やお問い合わせ)を送信 19

ボール番号 [1]	ボール名 [2]	信号名 [3]	PINCNTL アドレス [4]	ጚ ሾ [5] [9]	タイプ [6]	ボールリセット状態 [7]	プルアップ / ダウン タイプ [8]
G14	SPIB_miso	GPIO_22	0xFFFFEA20	0	IO	出力ディセーブル	プルアップ
		SPIB_miso		1	IO		
		I2C_scl		2	IO		
		DSS_uart_tx		6	0		
F13	SPIB_mosi	GPIO_21	0xFFFFEA1C	0	IO	出力ディセーブル	プルアップ
		SPIB_mosi		1	IO		
		I2C_sda		2	IO		
P13	SPI_HOST_INTR	GPIO_12	0xFFFFEA00	0	IO	出力ディセーブル	プルダウン
		SPI_HOST_INTR		1	0		
		ADC_VALID		2	0		
		SPIB_cs_n_1		6	IO		
P4	SYNC_in	GPIO_28	0xFFFFEA6C	0	IO	出力ディセーブル	プルダウン
		SYNC_IN		1	I	_	
		MSS_uartb_rx		6	IO		
		DMM_MUX_IN		7	I		
		SYNC_OUT		9	0		
G13	SYNC_OUT	SOP[1]	0xFFFFEA70	パワーアップ時	I	出力ディセーブル	プルダウン
		GPIO_29		0	IO	_	
		SYNC_OUT		1	0		
		DMM_MUX_IN		9	I		
		SPIB_cs_n_1		10	IO		
		SPIB_cs_n_2		11	IO		
P10	тск	GPIO_17	0xFFFFEA50	0	IO	入力イネーブル	プルダウン
		тск		1	I		
		MSS_uartb_tx		2	0		
		CAN_FD_tx		8	0		
R11	TDI	GPIO_23	0xFFFFEA58	0	IO	入力イネーブル	プルアップ
		TDI		1	I		
		MSS_uarta_rx		2	I		
N13	TDO	SOP[0]	0xFFFFEA5C	パワーアップ時	I	出力イネーブル	
		GPIO_24		0	IO		
		TDO		1	0		
		MSS_uarta_tx		2	0	_	
		MSS_uartb_tx		6	0	1	
		BSS_uart_tx		7	0	1	
		NDMM_EN		9	I	1	

ボール番号[1]	ボール名 [2]	信号名 [3]	PINCNTL アドレス [4]	ቺ ነኛ [5] [9]	タイプ [6]	ボールリセット状態 [7]	プルアップ / ダウン タイプ [8]
N10	TMS	GPIO_18	0xFFFFEA54	0	IO	入力イネーブル	プルダウン
		TMS]	1	I		
		BSS_uart_tx]	2	0		
		CAN_FD_rx]	6	I		
N9	Warm_Reset	Warm_Reset	0xFFFFEA48	0	10	Hi-Z 入力 (オープン ドレイン)	

以下は、表の列ヘッダーについて説明しています。

- 1. ボール番号:底面の各信号に関連付けられた底面側のボール番号。
- 2. ボール名:パッケージ デバイスのメカニカル名 (名前は muxmode 0 に由来します)。
- 3. 信号名: 各ボールで多重化された信号の名前 (ボールの名前は muxmode 0 での信号名であることにも注意)。
- 4. PINCNTL アドレス: PinMux 制御用 MSS アドレス
- 5. モード:多重化モード番号:このボール番号に対応する特定の信号名を選択するために PinMux 制御レジスタに書き込まれる値。モード列にはビット範囲値があります。
- 6. **タイプ:**信号の種類と方向:
 - **I**=入力
 - **O** = 出力
 - IO = 入出力
- 7. ボールリセット状態:パワーオンリセット時の端子の状態
- 8. プルアップ / ダウン タイプ:内部プルアップまたはプルダウン抵抗が存在することを示します。プルアップおよびプルダウン抵抗は、ソフトウェアによって有効化または無効化できます。
 - プルアップ:内部プルアップ
 - プルダウン:内部プルダウン
 - 空欄はプルアップ / ダウンがないことを意味します。
- 9. ピン多重化制御値はレジスタの下位4ビットに割り当てられています。

IO MUX レジスタは MSS メモリマップで使用可能で、それぞれのデバイスピンへのマッピングは以下の通りです。

デフォルトのピンノボール名	パッケージのボール / ピン (アドレス)	ピン多重化構成レジスタ
SPI_HOST_INTR	P13	0xFFFEA00
GPIO_0	H13	0xFFFEA04
GPIO_1	J13	0xFFFEA08
SPIA_MOSI	D13	0xFFFEA0C
SPIA_MISO	E14	0xFFFEA10
SPIA_CLK	E13	0xFFFEA14
SPIA_CN_EN	E15	0xFFFEA18
SPIB_MOSI	F13	0xFFFFEA1C
SPIB_MISO	G14	0xFFFEA20
SPIB_CLK	F14	0xFFFEA24
SPIB_CS_N	H14	0xFFFEA28
QSPI[0]	R13	0xFFFEA2C
QSPI[1]	N12	0xFFFEA30
QSPI[2]	R14	0xFFFEA34
QSPI[3]	P12	0xFFFEA38
QSPI_CLK	R12	0xFFFFEA3C
QSPI_CS_N	P11	0xFFFEA40
NERROR_IN	N7	0xFFFEA44
WARM_RESET	N9	0xFFFEA48
NERROR_OUT	N6	0xFFFFEA4C
ТСК	P10	0xFFFEA50
TMS	N10	0xFFFEA54
TDI	R11	0xFFFEA58
TDO	N13	0xFFFFEA5C
MCU_CLKOUT	N8	0xFFFEA60
GPIO_2	К13	0xFFFEA64
PMIC_CLKOUT	P9	0xFFFEA68
SYNC_IN	P4	0xFFFFEA6C
SYNC_OUT	G13	0xFFFEA70
RS232_RX	N4	0xFFFEA74

表 6-2. PAD IO 制御レジスタ

Copyright © 2024 Texas Instruments Incorporated

表 6-2. PAD IO 制御レジスタ (続き)				
デフォルトのピン / ボール名	パッケージのボール / ピン (アドレス)	ピン多重化構成レジスタ		
RS232_TX	N5	0xFFFEA78		
GPIO_31	R4	0xFFFEA7C		
GPIO_32	P5	0xFFFEA80		
GPIO_33	R5	0xFFFEA84		
GPIO_34	P6	0xFFFEA88		
GPIO_35	R7	0xFFFEA8C		
GPIO_36	P7	0xFFFEA90		
GPIO_37	R8	0xFFFEA94		
GPIO_38	P8	0xFFFEA98		
GPIO_47	N15	0xFFFEABC		
DMM_SYNC	N14	0xFFFEAC0		

レジスタのレイアウトは次の通りです。

表 6-3. PAD IO レジスタ ビットの説明

ビット	フィールド	タイプ	リセット (パワー オン デフォルト)	説明
31-11	NU	RW	0	予約済み
10	SC	RW	0	IO スルー レート制御: 0 = 高いスルーレート 1 = 低いスルーレート
9	PUPDSEL	RW	0	プルアップ / プルダウン選択 0 = プルダウン 1 = プルアップ (このフィールドは、プル禁止 が 0 に設定されている場合のみ有効)
8	PI	RW	0	プル禁止/プル ディセーブル 0 = イネーブル 1 = ディセーブル
7	OE_OVERRIDE	RW	1	出力オーバーライド
6	OE_OVERRIDE_CTRL	RW	1	出力オーバーライド制御: (ここで1が設定されている場合、この IO に関連付けられているペリフェラル ブロックハードウェア (例えば SPI チップ セレクト) によるいかなる出力操作もオーバーライドされます)
5	IE_OVERRIDE	RW	0	入力オーバーライド
4	IE_OVERRIDE_CTRL	RW	0	入力オーバーライド制御: (ここで1が設定されている場合、この IO の入力値は指定された値でオーバーライドされます)

表 6-3. PAD IO レジスタ ビットの説明 (続き)

ビット	フィールド	タイプ	リセット (パワー オン デフォルト)	説明
3-0	FUNC_SEL	RW	1	ピン多重化の機能選択 (「ピン多重化シート」を参照)

7 仕様

7.1 絶対最大定格

	パラメータ ^{(1) (2)}	最小値	最大値	単位
VDDIN	1.2V デジタル電源	-0.5	1.4	V
VIN_SRAM	内蔵 SRAM 用 1.2V 電源レール	-0.5	1.4	V
VNWA	SRAM アレイのバック バイアス用 1.2V 電源レール	-0.5	1.4	V
VIOIN	I/O 電源 (3.3V または 1.8V): すべての CMOS I/O はこの電源で動作します。	-0.5	3.8	V
VIOIN_18	CMOS IO 用 1.8V 電源	-0.5	2	V
VIN_18CLK	クロック モジュール用 1.8V 電源	-0.5	2	V
VIOIN_18DIFF	LVDS ポート用 1.8V 電源	-0.5	2	V
VIN_13RF1	1.3V アナログおよび RF 電源、VIN_13RF1 と VIN_13RF2 が基板	0.5	1 45	V
VIN_13RF2	上で短絡する可能性があります。	-0.5	1.45	v
VIN_13RF1 VIN_13RF2	1V 内部 LDO バイパス モード。デバイスは、外付けのパワー マネー ジメント ブロックが VIN_13RF1 と VIN_13RF2 レールに 1V を供給 できるモードをサポートしています。この構成では、デバイスの内部 LDO はバイパスされたままになります。	-0.5	1.4	V
VIN_18BB	1.8V アナログ ベースバンド電源	-0.5	2	V
VIN_18VCO 電源	1.8V RF VCO 電源	-0.5	2	V
RX1-4	RF 入力の外部印加電力		10	dBm
TX1-3	RF 出力の外部印加電力 ⁽³⁾		10	dBm
	デュアル電圧 LVCMOS 入力、3.3V または 1.8V (定常状態)	-0.3 V	VIOIN + 0.3	
入力および出力電圧範 囲	デュアル電圧 LVCMOS 入力。3.3V/1.8V (過渡オーバーシュート/アンダーシュート)または外部発振器入力 で動作します。	VIOIN + 20% 信号周期の 20% まで		V
CLKP、CLKM	リファレンス水晶振動子用入力ポート	-0.5	2	V
クランプ電流	それぞれの電源レールを 0.3V 上回るまたは下回る入力または出力 電圧。I/O の内部ダイオード保護セルを流れるクランプ電流を制限し ます。	-20	20	mA
TJ	動作ジャンクション温度範囲	-40	125	°C
T _{STG}	プリント基板に半田付けした後の保存温度範囲	-55	150	°C

(1) 絶対最大定格を上回るストレスが加わった場合、デバイスに永続的な損傷が発生する可能性があります。これらはあくまでもストレス評価であり、 データシートの「推奨動作条件」に示された値と等しい、またはそれを超える条件で本製品が正しく動作することを暗黙的に示すものではありません。絶対最大定格の状態が長時間続くと、デバイスの信頼性に影響を与える可能性があります。

(2) 特に記述のない限り、すべての電圧値は Vss を基準にしていします。

(3) この値は、TX に外部から印加される信号レベルに対応します。さらに、TX 出力にはガンマ=1までの反射係数を適用できます。

7.2 ESD 定格

			値	単位
V _(ESD) 静電放電	热雨 壮雨	人体モデル (HBM)、AEC Q100-002 準拠 ⁽¹⁾	±2000	V
		デバイス帯電モデル (CDM)、AEC Q100-011 準拠 ⁽²⁾	±500	- V

(1) AEC Q100-002 は、HBM ストレス試験を ANSI / ESDA / JEDEC JS-001 仕様に従って実施することを示しています。

(2) コーナーピンの定格は ±750V です

7.3 電源投入時間 (POH)

接合部温度 (T _j) ^{(1) (2)}	動作条件	公称 CVDD 電圧 (V)	パワーオン時間 [POH] (時間)	
-40°C	100% デューティサイ クル			600 (6%)
75°C		1.2	2000 (20%)	
95°C		1.2	6500 (65%)	
125°C			900 (9%)	

(1) この情報は、お客様の利便性のみを目的として提供されるものであり、テキサス・インスツルメンツの半導体製品に関する標準的な契約条件に基づいて提供される保証を拡張または変更するものではありません。

(2) POH の規定値は、デフォルトのファームウェアのゲイン表を使って Tx 出力電力を最大値に設定した場合に適用されます。 API を使用して Tx ゲイン表が上書きされた場合、POH の規定値は適用されません。

7.4 推奨動作条件

		最小值	公称值	最大値	単位	
VDDIN	1.2V デジタル電源	1.14	1.2	1.32	V	
VIN_SRAM	内蔵 SRAM 用 1.2V 電源レール	1.14	1.2	1.32	V	
VNWA	SRAM アレイのバック バイアス用 1.2V 電源レール	1.14	1.2	1.32	V	
VION	I/O 電源 (3.3V または 1.8V):	3.135	3.3	3.465	V	
	すべての CMOS I/O はこの電源で動作します。	1.71	1.8	1.89	v	
VIOIN_18	CMOS IO 用 1.8V 電源	1.71	1.8	1.9	V	
VIN_18CLK	クロック モジュール用 1.8V 電源	1.71	1.8	1.9	V	
VIOIN_18DIFF	LVDS ポート用 1.8V 電源	1.71	1.8	1.9	V	
VIN_13RF1	1.3V アナログおよび RF 電源。 VIN_13RF1 と VIN_13RF2 が基	1 23	13	1.36	V	
VIN_13RF2	板上で短絡する可能性があります。	1.20	1.0	1.00	v	
VIN_13RF1 (1V 内部 LDO バ イパス モード)		0.05	1	1.05	V	
VIN_13RF2 (1V 内部 LDO バ イパス モード)		0.93	·	1.00	v	
VIN18BB	1.8V アナログ ベースバンド電源	1.71	1.8	1.9	V	
VIN_18VCO	1.8V RF VCO 電源	1.71	1.8	1.9	V	
Maria	電圧入力 High (1.8V モード)	1.17			v	
[∨] IH	電圧入力 High (3.3 V モード)	2.25				
V	電圧入力 Low (1.8V モード)	0.3		0.3*VIOIN	V	
[∨] IL	電圧入力 Low (3.3V モード)			0.62	v	
V _{OH}	High レベル出力スレッショルド (I _{OH} = 6mA)	VIOIN - 450			mV	
V _{OL}	Low レベル出力スレッショルド(I _{OL} = 6mA)			450	mV	
	V _{IL} (1.8V モード)			0.2		
NRESET	V _{IH} (1.8V モード)	0.96				
SOP[2:0]	V _{IL} (3.3V モード)			0.3	v	
	V _{IH} (3.3V モード)	1.57				

7.5 電源仕様

表 7-1 では、AWR1843 デバイスの外部電源ブロックからの 4 つのレールについて説明します。

電源	その電源から電力を供給されるデバイスブロック	本デバイス内の関連 10				
1.8 V	シンセサイザおよび APLL の VCO、水晶発振器、IF アン プ段、ADC、LVDS	入力:VIN_18VCO、VIN18CLK、VIN_18BB、 VIOIN_18DIFF、VIOIN_18 LDO 出力:VOUT_14SYNTH、VOUT_14APLL				
1.3V (または、内部 LDO バ イパスモードの場合は 1V) ⁽¹⁾	パワー アンプ、低ノイズ アンプ、ミキサ、LO 分配	入力:VIN_13RF2、VIN_13RF1 LDO 出力: VOUT_PA				
3.3V (または、1.8V I/O モードの場合は 1.8V)	デジタル I/O	入力 VIOIN				
1.2 V	コア デジタルおよび SRAM	入力:VDDIN、VIN_SRAM				

表 7-1. 電源レールの特性:

(1) 3Tx 同時動作は、1V LDO バイパスおよび PA LDO 無効化モードのみでサポートしています。このモードでは、VOUT PA ピンに 1V 電源を供給する必要があります。

表 7-2 に示す 1.3V (1.0V) および 1.8V 電源リップル仕様は、RX で -105dBc (RF ピン = -15dBm) の目標スプリアスレベルを満たすように定義されています。 スプリアスレベルとリップル レベルには、dB 対 dB の関係があります。 たとえば、 電源リップルが 1dB 増加すると、スプリアスレベルは約 1dB 増加します。 記載された値は、指定された周波数で印加された正弦波入力の rms レベルです。

周波数 (kHz)	RF レール	VCO/IF レール	
	1.0V (内部 LDO バイパス) (µV _{RMS})	1.3V (μV _{RMS})	1.8V (μV _{RMS})
137.5	7	648	83
275	5	76	21
550	3	22	11
1100	2	4	6
2200	11	82	13
4400	13	93	19
6600	22	117	29

表 7-2. リップル仕様

7.6 消費電力の概略

表 7-3 および表 7-4 に、電源端子の消費電力をまとめます。

パラメータ	電源名	説明	最小値	標準値	最大値	単位
消費電流: ⁽¹⁾	VDDIN, VIN_SRAM, VNWA	1.2V レールによって駆動さ れる全ノードが消費する電 流の合計値	1000			
	VIN_13RF1、VIN_13RF2	1.3V または 1.0V レールで 駆動される全ノードが消費 する合計電流 (2TX、4RX 同時) ⁽²⁾			2000	mA
	VIOIN_18、VIN_18CLK、 VIOIN_18DIFF、VIN_18BB、 VIN_18VCO	1.8V レールによって駆動される全ノードが消費する電流の合計値			850	
	VIOIN	3.3V レールによって駆動さ れる全ノードが消費する電 流の合計値 ⁽³⁾		50		

表 7-3. 電源端子の最大電流定格

(1) 電流の規定値は、代表的な電源電圧レベルにおける値です。

(2) 3Tx 同時動作は、1V LDO バイパスおよび PA LDO 無効化モードのみでサポートしています。このモードでは、1V 電源を VOUT PA ピンに供給する必要があります。この場合、ピーク 1V 電源電流は 2500mA まで上昇します。LDO バイパスモードをイネーブルにするには、ミリ波デバイスファームウェア パッケージのインターフェイス制御のドキュメントを参照してください。

(3) 正確な VIOIN 電流は、使用するペリフェラルとその動作周波数によって異なります。

表 7-4. 電源端子の平均消費電力

パラメータ		条件		説明	最小值 標準値 最大値	単位
			1TX、4RX	使用事例:通常モード、6.4MSPS	1.29	
			2TX、4RX]複合トランシーバ、フレーム時間 25ms. チャープ数 128, 128 サ	1.36	
	1.0V 内部 LDO バイパス モード	25% デューティ サイクル	3TX、4RX	25ms、ナキーノ数 128、128 サ ンプル/チャープ、アイドル時間 5µs (25% デューティ サイクル)、 ADC 開始時間および超過ランプ 時間 3µs、DSP および HWA ア クティブ	25ms、 ティーク 数 120、 120 y ンプル/チャープ、アイドル時間 5µs (25% デューティ サイクル)、 ADC 開始時間および超過ランプ 1.43 時間 3µs、 DSP および HWA ア クティブ	1.43
半均伯貨 电刀			1TX、4RX	使用事例:通常モード、6.4MSPS	1.82	~~
		50% デューティ サイクル	2TX、4RX	複合トランシーバ、フレーム時間 25ms、チャープ数 256、128 サ ンプル/チャープ、アイドル時間 5µs (50% デューティ サイクル)、 ADC 開始時間および超過ランプ 時間 3µs、DSP および HWA ア クティブ	複合トランシーバ、フレーム時間 25ms チャープ数 256 128 サ 1.96	1.96
			3TX、4RX		2.08	

7.7 RF 仕様

推奨動作条件範囲内、ランタイムキャリブレーションイネーブル(特に記述のない限り)

	パラメータ		最小値	標準値	最大値	単位	
) ノブドに米4 (2)	76~77GHz		14		dD	
		77~81GHz	15			ЧD	
	1dB 圧縮ポイント(帯域外 / 10kHz で規定)	1)		-8		dBm	
	最大ゲイン			48		dB	
	ゲイン範囲			24		dB	
	ゲイン ステップ サイズ		2		dB		
	イメージ除去比 (IMRR)			30		dB	
	IF 帯域幅 ⁽³⁾				10	MHz	
	ADC サンプリング レート (実数 / 複素数 2x)				25	Msps	
	ADC サンプリング レート (複素数 1x)			12.5	Msps		
レシーバ	ADC の分解能		12		ビット		
	反射損失 (S11)			<-10		dB	
	ゲインミスマッチの変動(温度範囲全体)		±0.5		dB		
	位相ミスマッチの変動 (温度範囲全体)		±3		٥		
	带域内 IIP2	RX ゲイン = 30dB IF = 1.5、2MHz (-12dBFS において)		16		dBm	
	带域外 IIP2	RX ゲイン = 24dB IF = 10kHz (-10dBm におい て)、 1.9MHz (-30dBm において)		24		dBm	
	アイドル チャネル スプリアス			-90		dBFS	
レニンフミック	出力電力			12		dBm	
トノン <i>へ</i> ミツク	振幅ノイズ			-145		dBc/Hz	
	周波数範囲		76		81	GHz	
クロック サブシ	ランプ レート				100	MHz/µs	
ステム	1111-7 オフセットでの位却リイブ	76~77GHz		-95		dBc/Hz	
		77~81GHz		-93		- aBC/HZ	

(1) 1dB 圧縮ポイント(帯域外)は、HPF の最小カットオフ周波数よりも十分低い連続波トーン(10kHz)を供給することにより測定されます。

(2) 仕様は複素数 1x モードで記載しています。

(3) アナログ IF 段は、1 次ハイパスコーナー周波数を2つ個別に設定可能なハイパスフィルタ回路を備えています。一連の使用可能な HPF コーナーは次のように要約されます。

使用可能な HPF コーナー周波数 (kHz)

HPF1

HPF2

175、235、350、700

デジタル ベースバンド チェーンによるフィルタリングは、以下の特長を実現することを目的としています。

• パスバンドリップル/ドループ ±0.5dB 未満、および

• パスバンドにエイリアス バックする可能性のある任意の周波数に対して、60dB 以上のアンチエイリアシング減衰。

350, 700, 1400, 2800

図 7-1 に、設定されたレシーバ ゲインに対するノイズ指数と帯域内 P1dB パラメータのばらつきを示します。

図 7-1. ノイズ指数、帯域内 P1dB とレシーバ ゲインとの関係

7.8 CPU の仕様

推奨動作条件範囲内(特に記述のない限り)

	パラメータ	最小値	標準値	最大値	単位
	クロック速度		600		MHz
DSP サブシス	L1 コード メモリ		32		KB
テム (C674 ジ アミリ)	L1 データメモリ		32		KB
	L2 メモリー		256		KB
メイン サブシス	クロック速度		200		MHz
テム (R4F ファ	密結合メモリ - А (プログラム)		512		KB
ミリ)	密結合メモリ - В (データ)		192		KB
共有メモリ	共有 L3 メモリ		1024		KB

7.9 FCBGA パッケージの熱抵抗特性 [ABL0161]

熱評価基準 ⁽¹⁾		°C/W ^{(2) (3)}
RO _{JC}	接合部とケースとの間	4.2
RO _{JB}	接合部と基板との間	5.7
RO _{JA}	接合部と自由空気との間	20.9
RΘ _{JMA}	接合部と空気流との間	14.5 ⁽⁴⁾
Psi _{JT}	接合部とパッケージ上面との間	0.38
Psi _{JB}	接合部と基板との間	5.6

(1) 従来および最新の熱評価基準の詳細については、『半導体および IC パッケージの熱評価基準』アプリケーション レポートを参照してください。

(2) °C/W = 摂氏温度 / ワット。

(3) これらの値は、JEDEC により定義された 2S2P システム (JEDEC 定義の 1S0P システムによる θ JC [RO_{JC}] 値を除く) に基づいており、周囲環 境とアプリケーションによって変化します。詳細については、以下の EIA/JEDEC 規格を参照してください。

- ・ JESD51-2、『IC の熱テスト手法の環境条件 自然対流 (静止空気)』
- JESD51-3、『リード付き表面実装パッケージ用の有効熱伝導率の低いテスト基板』
- JESD51-7、『リード付き表面実装パッケージ用の有効熱伝導率の高いテスト基板』
- JESD51-9、『エリア アレイ表面実装パッケージの熱測定用テスト基板』
- (4) 空気流 = 1m/s

7.10 タイミングおよびスイッチング特性

7.10.1 電源シーケンスおよびリセット タイミング

AWR1843 デバイスは、リセットがデアサートされる前に、すべての外部電圧レール および SOP ライン が安定することを 想定しています。図 7-2 に、デバイス ウェークアップ シーケンスを示します。

A. MCU_CLK_OUT は、AWR1843 のアプリケーションがシリアル フラッシュからブートされる自律モードの場合、デフォルトでは、本デバイスのブートローダによって有効化されません。

図 7-2. デバイス ウェークアップ シーケンス

7.10.2 入力クロックおよび発振器

7.10.2.1 クロック仕様

AWR1843 は、初期ブートのため、そして本デバイスが内蔵している内部 APLL のリファレンスとして、外部クロック源 (すなわち、40MHz 水晶振動子)を必要とします。外部水晶振動子は、デバイスのピンに接続されています。図 7-3 に、水晶振動子の実装を示します。

図 7-3. 水晶振動子の実装

注

図 7-3 の負荷コンデンサ C_{f1} および C_{f2} は、式 1 が満足されるように選択する必要があります。この式の C_L は、水晶振動子のメーカーによって指定された負荷です。発振器回路の実装に使用されるすべてのディスクリート部品は、関連する発振器の CLKP および CLKM ピンのできるだけ近くに配置する必要があります。

$$C_{L} = C_{f1} \times \frac{C_{f2}}{C_{f1} + C_{f2}} + C_{P}$$

(1)

表 7-5 に、クロック水晶振動子の電気的特性を示します。

表 7-5. 水晶振動子の電気的特性 ((発振器モード)
----------------------	---------	---

名称	説明	最小值	標準値	最大值	単位
f _P	並列共振水晶振動子周波数		40		MHz
CL	水晶振動子の負荷容量	5	8	12	pF
ESR	水晶振動子の ESR			50	Ω
温度範囲	想定される動作温度範囲	-40		125	°C
周波数の許容誤差	水晶振動子周波数の許容誤差 (1) (2)	-200		200	ppm
励振レベル			50	200	μW

(1) 水晶振動子メーカーの仕様はこの要件を満たす必要があります。

(2) 水晶振動子の初期許容誤差、全温度範囲でのドリフト、経年劣化、不適切な負荷容量による周波数変動が含まれます。

外部クロックをクロック源として使用する場合、その信号は CLKP ピンにのみ入力し、CLKM はグランドに接続します。 40MHz クロックを外部から入力する場合、位相ノイズ要件は非常に重要です。表 7-6 に、外部クロック信号の電気的特性を示します。

		仕様						
~7 > — <i>9</i>		最小值	標準値	最大值	● 単位			
	周波数		40		MHz			
	AC 振幅	700		1200	mV (pp)			
	1kHz での位相ノイズ			-132	dBc/Hz			
ハリシロッシュ: 外部 AC 結合正弦波または DC 結合方	10kHz での位相ノイズ			-143	dBc/Hz			
形波の (点担) イズ (4004日~ 其)(注)	100kHz での位相ノイズ			-152	dBc/Hz			
12111/1~(401112 基平)	1MHz での位相ノイズ			-153	dBc/Hz			
	デューティサイクル	35		65	%			
	周波数の許容範囲	-100		100	ppm			

表 7-6. 外部クロック モード仕様

7.10.3 マルチバッファ付き / 標準シリアル ペリフェラル インターフェイス (MibSPI)

7.10.3.1 ペリフェラルの概要

SPI はテキサス・インスツルメンツの MibSPI プロトコルを使用しています。

MibSPI/SPI は高速な同期シリアル入出力ポートであり、プログラムされたビット転送速度で、プログラムされた長さ (2~ 16 ビット) のシリアル ビット ストリームをデバイスにシフトイン / シフトアウトできます。MibSPI/SPI は、マイクロコントローラ と、外部ペリフェラルや他のマイクロコントローラとの間の通信に使用されます。

標準的なモジュールと MibSPI モジュールの主な機能は次の通りです。

- 16 ビット シフト レジスタ
- 受信バッファレジスタ
- 8ビットボー クロック ジェネレータ
- SPICLK は、内部で生成される (コントローラ モード) か、外部クロック ソースから受信されます (ペリフェラル モード)。
- 転送される各ワードは、固有のフォーマットを持つことができます。
- 通信で使用されていない SPI I/O は、デジタル入出力信号として使用できます。

7.10.3.2 MibSPI 送信および受信 RAM の構成

マルチバッファ RAM は 256 個のバッファで構成されています。マルチバッファ RAM の各エントリは、16 ビットの送信フィールド、16 ビットの受信フィールド、16 ビットの制御フィールド、16 ビットのステータス フィールドという、4 つの部分で構成されています。マルチバッファ RAM は、それぞれ異なるバッファ数の複数の転送グループに分割できます。

セクション 7.10.3.2.2 とセクション 7.10.3.2.3 は、セクション 7.10.3.2.1 に記載された動作条件を前提としています。

7.10.3.2.1 SPI のタイミング条件

		最小値	標準値 最大値	単位
入力条件				
t _R	入力立ち上がり時間	1	3	ns
t _F	入力立ち下がり時間	1	3	ns
出力条件				
C _{LOAD}	出力負荷容量	2	15	pF

7.10.3.2.2 SPI コントローラ モードのスイッチング パラメータ (クロック位相 = 0、SPICLK = 出力、 SPISIMO = 出力、SPISOMI = 入力) ^{(1) (2) (3)}

番号		パラメータ	最小値	標準値 最大値	単位
1	t _{c(SPC)M}	サイクル時間、SPICLK ⁽⁴⁾	25	256 _{tc(VCLK)}	ns
2(4)	t _{w(SPCH)M}	パルス幅、SPICLK High (クロック極性 = 0)	0.5t _{c(SPC)M} - 4	$0.5t_{c(SPC)M} + 4$	ne
200	t _{w(SPCL)M}	パルス幅、SPICLK Low (クロック極性 = 1)	0.5t _{c(SPC)M} - 4	$0.5t_{c(SPC)M} + 4$	115
3(4)	t _{w(SPCL)M}	パルス幅、SPICLK Low (クロック極性 = 0)	0.5t _{c(SPC)M} - 4	$0.5t_{c(SPC)M} + 4$	ne
3.7	t _{w(SPCH)M}	パルス幅、SPICLK High (クロック極性 = 1)	0.5t _{c(SPC)M} - 4	0.5t _{c(SPC)M} + 4	115
A (4)	t _{d(SPCH-} SIMO)M	遅延時間、SPISIMO 有効から SPICLK Low まで (クロック極性 = 0)	0.5t _{c(SPC)M} - 3		
4 7	t _{d(SPCL-} SIMO)M	遅延時間、SPISIMO 有効から SPICLK High まで (クロック極性 = 1)	0.5t _{c(SPC)M} - 3		ns
E(4)	t _{v(SPCL-} SIMO)M	有効時間、SPICLK Low から SPISIMO データ有効の間 (クロ ック極性 = 0)	0.5t _{c(SPC)M} - 10.5		D 0
5 ⁽⁴⁾	t _{v(SPCH-} SIMO)M	有効時間、SPICLK High から SPISIMO データ有効の間 (クロ ック極性 = 1)	0.5t _{c(SPC)M} - 10.5		115

AWR1843

JAJSGR3D – DECEMBER 2018 – REVISED SEPTEMBER 2024

番号	パラメータ			最小值	標準値 最大値	単位	
6(5)		セットアップ時間、CS アクティブから	CSHOLD = 0	(C2TDELAY+2)* t _{c(VCLK)} – 7.5	(C2TDELAY+2) * t _{c(VCLK)} + 7		
	+	SPICER High まで (クロック極性 = 0)	CSHOLD = 1	(C2TDELAY +3) * t _{c(VCLK)} – 7.5	(C2TDELAY+3) * t _{c(VCLK)} + 7		
0(-)	^I C2TDELAY	セットアップ時間、CS アクティブから	CSHOLD = 0	(C2TDELAY+2)* t _{c(VCLK)} – 7.5	(C2TDELAY+2) * t _{c(VCLK)} + 7	115	
		SPICLK Low まで (クロック極性 = 1)	(クロック極性 = 1)	CSHOLD = 1	(C2TDELAY +3) * t _{c(VCLK)} – 7.5	(C2TDELAY+3) * t _{c(VCLK)} + 7	
7(5)	t _{T2CDELAY}	ホールド時間、SPICLK Low から CS 非アクティブまで (クロック 極性 = 0)		0.5*t _{c(SPC)M} + (T2CDELAY + 1) *t _{c(VCLK)} – 7	0.5*t _{c(SPC)M} + (T2CDELAY + 1) * t _{c(VCLK)} + 7.5		
		ホールド時間、SPICLK High から CS 非 ク極性 = 1)	アクティブまで (クロッ	0.5*t _{c(SPC)M} + (T2CDELAY + 1) *t _{c(VCLK)} – 7	0.5*t _{c(SPC)M} + (T2CDELAY + 1) * t _{c(VCLK)} + 7.5	115	
o(4)	t _{su(SOMI-} SPCL)M	セットアップ時間、SPISOMI から SPICLK Low まで (クロック極性 = 0)		5		20	
0.7	t _{su(SOMI-} SPCH)M	セットアップ時間、SPISOMI から SPICLK High まで (クロック極性 = 1)		5		115	
Q(4)	t _{h(SPCL-} ホールド時間、SPICLK Low から SPISOMI データ有効の間 SOMI)M (クロック極性 = 0) t _{h(SPCH-} ホールド時間、SPICLK High から SPISOMI データ有効の間 SOMI)M (クロック極性 = 1)		3		ns		
			3		115		

(1) マスタビット (SPIGCRx.0) はセットされ、クロック位相ビット (SPIFMTx.16) はクリアされています (x = 0 または 1)。

(2) t_{c(MSS_VCLK)} = メイン サブシステム クロック時間 = 1 / f_(MSS_VCLK)。詳細については、『テクニカル リファレンス マニュアル』を参照してください。
 (3) SPI がコントローラ モードの場合、次の条件を満たす必要があります。PS 値が 1~255 の場合:t_{c(SPC)M} ≥ (PS + 1)t_{c(MSS_VCLK)} ≥ 25ns。ここ

で、PS は SPIFMTx.[15:8] レジスタビットで設定されたプリスケール値です。PS 値が 0 の場合:t_{c(SPC)M} = 2t_{c(MSS_VCLK)} ≥ 25ns。 (4) 基準となる SPICLK 信号のアクティブ エッジはクロック極性ビット (SPIFMTx.17) によって制御されます。

(4) 基準となる SPICLK 信号のアクティブ エッジはクロック極性ビット (SPIFMTx.17) に
 (5) C2TDELAY および T2CDELAY は、SPIDELAY レジスタでプログラムされます

図 7-4. SPI コントローラ モードの外部タイミング (クロック位相 = 0)

図 7-5. SPI コントローラ モードのチップ セレクト タイミング (クロック位相 = 0)

7.10.3.2.3 SPI コントローラ モードのスイッチング パラメータ (クロック位相 = 1、SPICLK = 出力、 SPISIMO = 出力、SPISOMI = 入力) ^{(1) (2) (3)}

番号	パラメータ			最小値	標準値 最大値	単位
1	t _{c(SPC)M}	サイクル時間、SPICLK ⁽⁴⁾		25	256t _{c(VCLK)}	ns
2 ⁽⁴⁾	t _{w(SPCH)M}	パルス幅、SPICLK High (クロック極性 = 0)		0.5t _{c(SPC)M} - 4	0.5t _{c(SPC)M} + 4	ns
	t _{w(SPCL)M}	パルス幅、SPICLK Low (クロック極性 = 1)		0.5t _{c(SPC)M} - 4	0.5t _{c(SPC)M} + 4	
3(4)	t _{w(SPCL)M}	パルス幅、SPICLK Low (クロック極性 = 0)		0.5t _{c(SPC)M} - 4	0.5t _{c(SPC)M} + 4	ns
	t _{w(SPCH)M}	パルス幅、SPICLK high (クロック極性 = 1)		0.5t _{c(SPC)M} - 4	0.5t _{c(SPC)M} + 4	
4(4)	t _{d(SPCH-} SIMO)M	遅延時間、SPISIMO 有効から SPICLK Low まで (クロック極性 = 0)		0.5t _{c(SPC)M} - 3		ns
	t _{d(SPCL-} SIMO)M	遅延時間、SPISIMO 有効から SPICLK High まで (クロック極性 = 1)		0.5t _{c(SPC)M} - 3		
5 ⁽⁴⁾	t _{v(SPCL-} SIMO)M	有効時間、SPICLK Low から SPISIMO データ有効の間 (クロック 極性 = 0)		0.5t _{c(SPC)M} - 10.5		ns
	t _{v(SPCH-} SIMO)M	有効時間、SPICLK High から SPISIMO データ有効の間 (クロッ ク極性 = 1)		0.5t _{c(SPC)M} - 10.5		
6(5)	^t C2TDELAY	セットアップ時間、CS アクティブから SPICLK High まで (クロック極性 = 0)	CSHOLD = 0	0.5*t _{c(SPC)M} + (C2TDELAY + 2)*t _{c(VCLK)} – 7	0.5*t _{c(SPC)M} + (C2TDELAY+2) * t _{c(VCLK)} + 7.5	- ns
			CSHOLD = 1	0.5*t _{c(SPC)M} + (C2TDELAY + 2)*t _{c(VCLK)} – 7	0.5*t _{c(SPC)M} + (C2TDELAY+2) * t _{c(VCLK)} + 7.5	
		セットアップ時間、CS アクティブから SPICLK Low まで (クロック極性 = 1)	CSHOLD = 0	0.5*t _{c(SPC)M} + (C2TDELAY+2)*t _{c(VCLK)} – 7	0.5*t _{c(SPC)M} + (C2TDELAY+2) * t _{c(VCLK)} + 7.5	
			CSHOLD = 1	0.5*t _{c(SPC)M} + (C2TDELAY+3)*t _{c(VCLK)} – 7	0.5*t _{c(SPC)M} + (C2TDELAY+3) * t _{c(VCLK)} + 7.5	
7 (5)	t _{T2CDELAY}	ホールド時間、SPICLK Low から CS 非アクティブまで (クロック極性 = 0)		(T2CDELAY + 1) *t _{c(VCLK)} – 7.5	(T2CDELAY + 1) *t _{c(VCLK)} + 7	ns
		ホールド時間、SPICLK High から CS 非アクティブまで (クロック 極性 = 1)		(T2CDELAY + 1) *t _{c(VCLK)} – 7.5	(T2CDELAY + 1) *t _{c(VCLK)} + 7	

番号		パラメータ	最小值	標準値 最大値	単位
8(4)	t _{su(SOMI-} SPCL)M	セットアップ時間、SPISOMI から SPICLK Low まで (クロック極性 = 0)	5		50
	t _{su(SOMI-} SPCH)M	セットアップ時間、SPISOMI から SPICLK High まで (クロック極性 = 1)	5		ns
9(4)	t _{h(SPCL-} SOMI)M	ホールド時間、SPICLK Low から SPISOMI データ有効の間 (クロック極性 = 0)	3		nc
	t _{h(SPCH-} SOMI)M	ホールド時間、SPICLK High から SPISOMI データ有効の間 (クロック極性 = 1)	3		115

(1) マスタビット (SPIGCRx.0) はセットされ、クロック位相ビット (SPIFMTx.16) はセットされています (x = 0 または 1)。

(2) t_{c(MSS_VCLK)} = メイン サブシステム クロック時間 = 1 / f_(MSS_VCLK) 詳細については、『テクニカル リファレンス マニュアル』を参照してください。
 (3) SPI がコントローラ モードの場合、次の条件を満たす必要があります。PS 値が 1~255 の場合:t_{c(SPC)M} ≥ (PS + 1)t_{c(MSS_VCLK)} ≥ 25ns。ここ

- で、PS は SPIFMTx.[15:8] レジスタビットで設定されたプリスケール値です。PS 値が 0 の場合:t_{c(SPC)M} = 2t_{c(MSS_VCLK)} ≥ 25ns。
- (4) 基準となる SPICLK 信号のアクティブ エッジはクロック極性ビット (SPIFMTx.17) によって制御されます。

(5) C2TDELAY および T2CDELAY は、SPIDELAY レジスタでプログラムされます

図 7-7. SPI コントローラ モードのチップ セレクト タイミング (クロック位相 = 1)

7.10.3.3 SPI ペリフェラル モードの I/O タイミング

7.10.3.3.1 SPI ペリフェラル モードのスイッチング パラメータ (SPICLK = 入力、SPISIMO = 入力、 SPISOMI = 出力) ^{(1) (2) (3)}

番号	パラメータ			標準値	最大値	単位
1	t _{c(SPC)S}	サイクル時間、SPICLK ⁽⁴⁾	25			ns
2 ⁽⁵⁾	t _{w(SPCH)S}	パルス幅、SPICLK High (クロック極性 = 0)	10			ns
	t _{w(SPCL)S}	パルス幅、SPICLK Low (クロック極性 = 1)	10			
3(5)	t _{w(SPCL)S}	パルス幅、SPICLK Low (クロック極性 = 0)	10			
	t _{w(SPCH)S}	パルス幅、SPICLK High (クロック極性 = 1)	10			115
A(5)	t _{d(SPCH-SOMI)} S	遅延時間、SPICLK High から SPISOMI 有効まで (ク ロック極性 = 0)			10	ns
	t _{d(SPCL-SOMI)} s	遅延時間、SPICLK Low から SPISOMI 有効まで (ク ロック極性 = 1)			10	113
5(5)	t _{h(SPCH-SOMI)} S	ホールド時間、SPICLK High から SPISOMI データ有 効の間 (クロック極性 = 0)	2			ns
	t _{h(SPCL-SOMI)} s	ホールド時間、SPICLK Low から SPISOMI データ有 効の間 (クロック極性 = 1)	2			113
4(5)	t _{d(SPCH-SOMI)} s	遅延時間、SPICLK High から SPISOMI 有効まで (ク ロック極性 = 0、クロック位相 = 0) または (クロック極性 = 1、クロック位相 = 1)			10	ns
4(0)	t _{d(SPCL-SOMI)} S	遅延時間、SPICLK Low から SPISOMI 有効まで (ク ロック極性 = 1、クロック位相 = 0) または (クロック極性 = 0、クロック位相 = 1)			10	
5 (5)	t _{h(SPCH-SOMI)} S	ホールド時間、SPICLK High から SPISOMI データ有 効の間 (クロック極性 = 0、クロック位相 = 0) または (ク ロック極性 = 1、クロック位相 = 1)	2			
5.0	t _{h(SPCL-SOMI)} S	ホールド時間、SPICLK Low から SPISOMI データ有 効の間 (クロック極性 = 1、クロック位相 = 0) または (ク ロック極性 = 0、クロック位相 = 1)	2			115
6(5)	t _{su(SIMO-SPCL)} S	セットアップ時間、SPISIMO から SPICLK Low まで (クロック極性 = 0、クロック位相 = 0) または (クロック極 性 = 1、クロック位相 = 1)	3			ne
6(3)	t _{su(SIMO-SPCH)} S	セットアップ時間、SPISIMO から SPICLK High まで (クロック極性 = 1、クロック位相 = 0) または (クロック極 性 = 0、クロック位相 = 1)	3			ns
- (5)	t _{h(SPCL-SIMO)S}	ホールド時間、SPICLK Low から SPISIMO データ有 効の間 (クロック極性 = 0、クロック位相 = 0) または (ク ロック極性 = 1、クロック位相 = 1)	1			ns
	t _{h(SPCL-SIMO)S}	ホールド時間、SPICLK High から SPISIMO データ有 効の間 (クロック極性 = 1、クロック位相 = 0) または (ク ロック極性 = 0、クロック位相 = 1)	1			115

(1) マスタビット (SPIGCRx.0) がクリアされます (x = 0 または 1)。

(2) クロック位相ビット (SPIFMTx.16) は、クロック位相 = 0 またはクロック位相 = 1 の場合、それぞれクリアまたはセットされます。

- (3) t_{c(MSS_VCLK)} = メイン サブシステム クロック タイム = 1 / f_(MSS_VCLK)。詳細については、『テクニカル リファレンス マニュアル』を参照してください。
- (4) SPI がペリフェラル モードの場合、次の条件を満たす必要があります。PS 値が 1~255 の場合:t_{c(SPC)S}≥ (PS +1)t_{c(MSS_VCLK)}≥ 25ns、ここでは、PS は SPIFMTx.[15:8] レジスタビットに設定されたプリスケール値です。PS 値が 0 の場合:t_{c(SPC)S} = 2t_{c(MSS_VCLK)}≥ 25 ns。
- (5) 基準となる SPICLK 信号のアクティブ エッジはクロック極性ビット (SPIFMTx.17) によって制御されます。

7.10.3.4 代表的なインターフェイス プロトコルの図 (ペリフェラル モード)

- 1. ホストは、CS が Low になる時点と SPI クロックの開始の間に、SPI クロック 2 つの遅延が存在するようにする必要が あります。
- 2. ホストは、SPIを経由する転送の 16 ビットごとに CS がトグルされるようにする必要があります。

図 7-10 に、標準的なインターフェイス プロトコルの SPI 通信タイミングを示します。

図 7-10. SPI 通信

7.10.4 LVDS インターフェイスの構成

サポートされている AWR1843 LVDS レーン構成は、2 つのデータレーン (LVDS_TXP/M)、1 つのビット クロックレーン (LVDS_CLKP/M)、1 つのフレーム クロックレーン (LVDS_FRCLKP/M) です。 LVDS インターフェイスはデバッグに使用 されます。 LVDS インターフェイスは、以下のデータレートをサポートしています。

- 900Mbps (450MHz DDR クロック)
- 600Mbps (300MHz DDR クロック)
- 450Mbps (225MHz DDR クロック)
- 400Mbps (200MHz DDR クロック)
- 300Mbps (150MHz DDR クロック)
- 225Mbps (112.5MHz DDR クロック)
- 150Mbps (75MHz DDR クロック)

ビットクロックは DDR 形式であるため、クロックのトグルの数はデータに相当します。

図 7-11. LVDS インターフェイスのレーン構成および相対タイミング

7.10.4.1 LVDS インターフェイスのタイミング

表 7-7. LVDS	の電気的特性
-------------	--------

パラメータ	テスト条件	最小値	標準値 最大値	単位
デューティサイクル要件	LVDS レーン上で最大 1pF の集中容量性 負荷	48%	52%	
出力差動電圧	差動ペア間に 100Ω の抵抗性負荷がある ピーク ツー ピークのシングルエンド	250	450	mV
出力オフセット電圧		1125	1275	mV
Trise と Tfall	20%~80%、900Mbps		330	ps
ジッタ (pk-pk)	900Mbps		80	ps

図 7-12. タイミング パラメータ

7.10.5 汎用入出力 (General-Purpose Input/Output)

セクション 7.10.5.1 に、出力タイミングのスイッチング特性と負荷容量との関係を示します。

7.10.5.1 出力タイミングと負荷容量 (CL) のスイッチング特性

パラメータ ^{(1) (2)}		テスト条件		VIOIN = 1.8V	VIOIN = 3.3V	単位	
			C _L = 20pF	2.8	3.0		
t _r	最大立ち上がり時間		C _L = 50pF	6.4	6.9	ns	
		フル_判御 - 0	C _L = 75pF	9.4	10.2		
			C _L = 20pF	2.8	2.8		
t _f	最大立ち下がり時間		C _L = 50pF	6.4	6.6	ns	
			C _L = 75pF	9.4	9.8		
			C _L = 20pF	3.3	3.3		
t _r	最大立ち上がり時間		C _L = 50pF	6.7	7.2	ns	
		フル	C _L = 75pF	9.6	10.5		
t _f			C _L = 20pF	3.1	3.1	ns	
	最大立ち下がり時間		C _L = 50pF	6.6	6.6		
			C _L = 75pF	9.6	9.6		

(1) PADxx_CFG_REG で設定されるスルー制御は、出力ドライバの挙動を変化させます (高速または低速の出力スルーレート)。

(2) 立ち上がり/立ち下がり時間は、VIOIN 電圧の 10% と 90% の間を信号が遷移するのに要する時間として測定されます。

7.10.6 コントローラ エリア ネットワーク インターフェイス (DCAN)

DCAN は、CAN 2.0B プロトコル規格をサポートし、最大 1Mbps の強力な通信速度で分散リアルタイム制御を効率的に サポートする、シリアルのマルチコマンダ通信プロトコルを使用します。 DCAN は、信頼性の高いシリアル通信や多重化 配線を必要とする、ノイズの多い過酷な環境で動作するアプリケーションに最適的です。

DCAN の特長は次のとおりです。

- CAN プロトコルバージョン 2.0 パート A および B をサポート
- 最大 1Mbps のビットレート
- 設定可能なメッセージオブジェクト
- 各メッセージオブジェクトに個別の識別子マスク
- メッセージ オブジェクト用のプログラム可能な FIFO モード
- デバッグをサポートするためのサスペンドモード
- プログラム可能なループバックモードによる自己テスト動作
- テストモードでメッセージ RAM に直接アクセス
- 2本の割り込みライン (レベル 0、レベル 1)をサポート
- メッセージ **RAM** の自動初期化

7.10.6.1 DCANx TX ピンおよび RX ピンの動的特性

	パラメータ	最小値	標準値	最大値	単位
t _{d(CAN_tx)}	遅延時間、送信シフトレジスタから CAN_tx ピンまで (1)			15	ns
t _{d(CAN_rx)}	遅延時間、CAN_rx ピンから受信シフトレジスタまで ⁽¹⁾			10	ns

(1) これらの値には、出力バッファの立ち上がり/立ち下がり時間は含まれていません。

7.10.7 CAN-FD (Controller Area Network - Flexible Data-rate)

CAN-FD モジュールは、従来型 CAN と CAN FD (フレキシブル なデータ レートの CAN) の両方の仕様をサポートして います。 CAN FD 機能により、データ フレームあたりのスループットが向上し、ペイロードが増加します。 従来型 CAN デバイスと CAN FD デバイスは、競合することなく、同じネットワーク上に共存できます。

CAN-FD の主な機能は次のとおりです。

- CAN プロトコル 2.0A、B、ISO 11898-1 に準拠
- 完全な CAN FD のサポート (フレームあたり最大 64 データバイト)
- AUTOSAR および SAE J1939 をサポート
- 最大 32 個の専用送信バッファ
- ・ 構成可能な送信 FIFO、最大 32 エレメント
- ・ 構成可能な送信キュー、最大 32 エレメント
- 構成可能な送信イベント FIFO、最大 32 エレメント
- 最大 64 個の専用受信バッファ
- 2 つの構成可能な受信 FIFO、それぞれ最大 64 エレメント
- 最大 128 の 11 ビット フィルタ素子
- 自己テスト用内部ループバックモード
- マスク可能割り込み、2本の割り込みライン
- 2 つのクロックドメイン (CAN クロック / ホストクロック)
- パリティ/ECC のサポート-メッセージ RAM のシングル エラー訂正およびダブル エラー検出 (SECDED) 機能
- ・ 全メッセージメモリ容量 (4352 ワード)。

7.10.7.1 CANx TX および RX ピンの動的特性

	最小值	標準値	最大値	単位	
t _{d(CAN_FD_tx)}	遅延時間、送信シフトレジスタから CAN_FD_tx ピンまで ⁽¹⁾			15	ns
t _{d(CAN_FD_rx)}	遅延時間、CAN_FD_rx ピンから受信シフトレジス タまで ⁽¹⁾			10	ns

(1) これらの値には、出力バッファの立ち上がり/立ち下がり時間は含まれていません。

7.10.8 シリアル通信インターフェイス (SCI)

SCIの特長は次のとおりです。

- 標準的な UART (Universal Asynchronous Receiver-Transmitter) 通信
- ・ 標準的な NRZ (non-return to zero) 形式
- ダブル バッファ付き受信および送信機能
- CLK ピンを使わない非同期または同期通信モード
- ダイレクトメモリアクセス (DMA) によるデータ送受信可能
- 2本の外部ピン:RS232_RX、RS232_TX

7.10.8.1 SCI のタイミング要件

	最小値	標準値	最大値	単位
f(ボー) サポートされているボーレート(20		921.6		kHz

7.10.9 I2C (Inter-Integrated Circuit Interface)

I2C (Inter-Integrated Circuit) モジュールは、Philips Semiconductors 社の I2C バス仕様バージョン 2.1 に準拠しかつ I²C-bus™ で接続されたデバイスの間のインターフェイスとして機能するマルチコントローラ通信モジュールです。このモ ジュールは、すべてのターゲットまたはコントローラ I2C 互換デバイスをサポートしています。

I2Cには次の特長があります。

- Philips I2C バス仕様 v2.1 (I2C 仕様、Philips ドキュメント番号 9398 393 40011) に準拠
 - ビット/バイト形式の転送
 - 7ビットおよび 10ビットのデバイス アドレッシング モード
 - ゼネラルコール
 - START バイト
 - マルチコントローラトランスミッタ/ターゲットレシーバモード
 - マルチコントローラレシーバ / ターゲット トランスミッタ モード
 - コントローラ送信/受信、受信/送信の組み合わせモード
 - 100kbps~最大 400kbps (Phillips ファーストモード)の転送レートをサポート
- フリー データ形式
- 2 つの DMA イベント (送信および受信)
- DMA イベントのイネーブル / ディセーブル機能
- モジュールのイネーブル / ディセーブル機能
- SDA と SCL を汎用 I/O として構成可能 (任意)
- 出力のスルーレート制御
- 出力のオープンドレイン制御
- 入力のプログラマブル プルアップ / プルダウン機能
- NACK 無視モードをサポート

注

この I2C モジュールは次の機能をサポートしていません。

- High-Speed (HS) モード
- C バス互換モード
- 10 ビット アドレス モードの複合フォーマット (I2C がターゲット アドレスの第1 バイトを送信するたびに、タ ーゲット アドレスの第2 バイトを送信する)

7.10.9.1 I2C のタイミング要件 ⁽¹⁾

		スタンダード モード ファスト モード		废夺		
		最小値	最大値	最小値	最大値	甲位
t _{c(SCL)}	サイクル時間、SCL	10		2.5		μs
t _{su(SCLH-SDAL)}	セットアップ時間、SCL High から SDA Low まで (繰り返しスタート条件の場合)	4.7		0.6		μs
t _{h(SCLL-SDAL)}	ホールド時間、SDA Low から SCL Low の間 (スタートおよび繰り返しスタート条件の場合)	4		0.6		μs
t _{w(SCLL)}	パルス幅、SCL low	4.7		1.3		μs
t _{w(SCLH)}	パルス幅、SCL high	4		0.6		μs
t _{su(SDA-SCLH)}	セットアップ時間、SDA 有効から SCL High まで	250		100		μs
t _{h(SCLL-SDA)}	ホールド時間、SCL low から SDA 有効の間	0	3.45 ⁽¹⁾	0	0.9	μs
t _{w(SDAH)}	パルス幅、ストップ条件とスタート条件の間の SDA High の 期間	4.7		1.3		μs
t _{su(SCLH-SDAH)}	セットアップ時間、SCL High から SDA High まで (ストップ条件の場合)	4		0.6		μs
t _{w(SP)}	パルス幅、スパイク (抑制が必要)			0	50	ns
C _b ^{(2) (3)}	各バスラインの容量性負荷		400		400	pF

(1) I2C ピンの SDA および SCL は、フェイルセーフ I/O バッファを備えていません。これらのピンは、デバイスの電源がオフのときに電流を引き出す 可能性があります。

- (2) I2C バス デバイスの th(SDA-SCLL) の最大値を満たす必要があるのは、SCL 信号の Low 期間 (tw(SCLL)) を本デバイスがストレッチ (延長) しない場合に限られます。
- (3) C_b=1本のバスラインの合計容量 (pF 単位)。ファストモード デバイスと混在する場合、より高速な立ち下がり時間が許容されます。

図 7-13. I2C タイミング図

注

- SCL 信号の立ち下がりエッジの未定義領域をブリッジするため、デバイスは SDA 信号のために (SCL 信 号の VIHmin を基準として) 300ns 以上のホールド時間を内部的に確保する必要があります。
- th(SDA-SCLL)の最大値を満たす必要があるのは、SCL 信号の Low 期間 (tw(SCLL))を本デバイスがストレッチ (延長)しない場合に限られます。ファーストモード I2C バス デバイスは、スタンダードモード I2C バスシステムでも使えますが、その場合、t_{su(SDA-SCLH)} ≧ 250nsの要件を満たす必要があります。本デバイスが SCL 信号の Low 期間をストレッチしない場合、これは自動的に当てはまります。そのようなデバイスが SCL 信号の Low 期間をストレッチする場合、次のデータビットを SDA ラインに tr max + t_{su(SDA-SCLH)}の間出力する必要があります。

Copyright © 2024 Texas Instruments Incorporated

7.10.10 クワッド シリアル ペリフェラル インターフェイス (QSPI)

本クワッド シリアル ペリフェラル インターフェイス (QSPI) モジュールは、外部 SPI デバイスへのシングル、デュアル、クワ ッドの読み取りアクセスを可能にする SPI モジュールの一種です。このモジュールは、メモリ マップ レジスタ インターフェ イスを備えており、外部 SPI デバイスからデータにアクセスするための直接インターフェイスとして機能するため、ソフトウ ェア要件が簡素化されます。 QSPI はコントローラとしてのみ動作します。 本デバイス内の QSPI は、クワッド SPI フラッシ ュメモリからの高速ブートを主な目的としています。

QSPIは、以下の機能をサポートしています。

- プログラマブルなクロック分周回路
- 6ピンインターフェイス
- 転送されるワード長をプログラム可能 (1~128 ビット)
- 転送されるワード数をプログラム可能 (1~4096)
- 3 ピン、4 ピン、6 ピンの SPI インターフェイスをサポート
- ワードまたはフレーム (ワード数) 完了時の任意の割り込み生成
- チップ セレクトのアクティブ化と出力データの間の遅延をプログラム可能 (0~3 QSPI クロック サイクル)

セクション 7.10.10.2 とセクション 7.10.10.3 は、セクション 7.10.10.1 に記載された動作条件を前提としています。

7.10.10.1 QSPI のタイミング条件

		最小値	標準値 最大値	単位
入力条件				
t _R	入力立ち上がり時間	1	3	ns
t _F	入力立ち下がり時間	1		ns
出力条件				
C _{LOAD}	出力負荷容量	2	15	pF

7.10.10.2 QSPI 入力 (読み取り) タイミングのタイミング要件 (1) (2)

		最小値	標準値	最大值	単位
t _{su(D-SCLK)}	セットアップ時間、d[3:0] 有効から sclk 立ち下がりエッジまで (Q12)	7.3			ns
t _{h(SCLK-D)}	ホールド時間、sclk 立ち下がりエッジから d[3:0] 有効の間 (Q13)	1.5			ns
t _{su(D-SCLK)}	セットアップ時間、最後の d[3:0] ビット有効から最後の sclk 立ち下がりエ ッジまで	7.3 - P ⁽³⁾			ns
t _{h(SCLK-D)}	ホールド時間、最後の sclk 立ち下がりエッジから最後の d[3:0] ビット有効の間	1.5 + P ⁽³⁾			ns

(1) クロック モード 0 (clk 極性 = 0、 clk 位相 = 0) が動作モードです。

(2) 従来の立ち上がりクロック エッジとは対照的に、本デバイスはクロック モード 0 の立ち下がりクロック エッジでデータを取り込みます。立ち下がりエ ッジに基づく本デバイスのセットアップおよびホールド時間タイミングは標準ではありませんが、クロック モード 0 の立ち下がりエッジでデータを出 力する標準 SPI デバイスと接続できるように設計されています。

(3) P = SCLK 周期 (ns 単位)。

7.10.10.3 QSPI スイッチング特性

番号		パラメータ	最小値	標準値 最大値	単位
Q1	t _{c(SCLK)}	サイクル時間、sclk	25		ns
Q2	t _{w(SCLKL)}	パルス幅、 sclk Low	0.5*P – 3 ⁽¹⁾		ns
Q3	t _{w(SCLKH)}	パルス幅、sclk High	0.5*P – 3		ns
Q4	t _{d(CS-SCLK)}	遅延時間、sclk 立ち下がりエッジから cs アクティブ エッ ジまで	-M*P - 1 ⁽²⁾	-M*P + 2.5 ⁽²⁾	ns
Q5	t _{d(SCLK-CS)}	遅延時間、sclk 立ち下がりエッジから cs 非アクティブ エ ッジまで	N*P – 1 ⁽²⁾	N*P + 2.5 ⁽²⁾	ns
Q6	t _{d(SCLK-D1)}	遅延時間、sclk 立ち下がりエッジから d[0] 遷移まで	-3.5	7	ns
Q7	t _{ena(CS-D1LZ)}	イネーブル時間、cs アクティブ エッジから d[0] 駆動 (ロ ー インピーダンス)まで	-P - 4 ⁽²⁾	-P + 1 ⁽²⁾	ns
Q8	t _{dis(CS-D1Z)}	ディセーブル時間、cs アクティブ エッジから d[0] トライス テート (ハイ インピーダンス)まで	-P - 4 ⁽²⁾	-P + 1 ⁽²⁾	ns
Q9	t _{d(SCLK-D1)}	遅延時間、最初の sclk 立ち下がりエッジから最初の d[1] 遷移まで (PHA = 0 の場合のみ)	-3.5 - P ⁽²⁾	7 - P ⁽²⁾	ns

(1) P = SCLK 周期 (ns 単位)。

SPRS85v TIMING OSPI1 02

図 7-14. QSPI 読み出し (クロック モード 0)

AWR1843 JAJSGR3D – DECEMBER 2018 – REVISED SEPTEMBER 2024

SPRS85v_TIMING_OSPI1_04

図 7-15. QSPI 書き込み (クロック モード 0)

7.10.11 ETM トレース インターフェイス

セクション 7.10.11.2 と1は、セクション 7.10.11.1 に記載された推奨動作条件を前提としています。

7.10.11.1 ETMTRACE のタイミング条件

		最小値	標準値 最大値	単位
出力条件				
C _{LOAD}	出力負荷容量	2	20	pF

7.10.11.2 ETM TRACE のスイッチング特性

番号		パラメータ	最小值	標準値	最大値	単位
1	t _{cyc(ETM)}	サイクル時間、TRACECLK 周期	20			ns
2	t _{h(ETM)}	パルス幅、TRACECLK High	9			ns
3	t _{I(ETM)}	パルス幅、TRACECLK Low	9			ns
4	t _{r(ETM)}	クロック!データの立ち上がり時間			3.3	ns
5	t _{f(ETM)}	クロックノデータの立ち下がり時間			3.3	ns
6	t _{d(ETMTRACE} CLKH- ETMDATAV)	遅延時間、ETM トレース クロック High から ETM データ有効まで	1		7	ns
7	t _{d(ETMTRACE} CLKI- ETMDATAV)	遅延時間、ETM トレース クロック Low から ETM データ有効まで	1		7	ns

図 7-16. ETMTRACECLKOUT のタイミング

図 7-17. ETMDATA のタイミング

7.10.12 データ変更モジュール (DMM)

データ変更モジュール (DMM) により、デバイスメモリに外部データを書き込むことができます。

DMM の特長は次のとおりです。

- バスコントローラとして動作するため、CPUを介さずに4GBのアドレス空間への直接書き込みが可能
- 受信パケットで指定されたメモリ位置への書き込み (RAM トレース ポート [RTP] モジュールのトレース モードで定義 されたパケットを利用)
- DMM が指定した連続するアドレスへの受信データの書き込み (RTP モジュールの直接データ モードで定義された パケットを利用)
- ・ 構成可能なポート幅 (1、2、4、8、16 ピン)
- 最大 65 Mbit/s のピン データレート

7.10.12.1 DMM のタイミング要件

		最小值	標準値 最大値	単位
t _{cyc(DMM)}	クロック周期	15.4		ns
t _R	クロック立ち上がり時間	1	3	ns
t _F	クロック立ち下がり時間	1	3	ns
t _{h(DMM)}	High パルス幅	6		ns
t _{I(DMM)}	Low パルス幅	6		ns
t _{ssu(DMM)}	SYNC アクティブから CLK 立ち下がりエッジまでのセットア ップ時間	2		ns
t _{sh(DMM)}	DMM CLK 立ち下がりエッジから SYNC 非アクティブまで のホールド時間	3		ns
t _{dsu(DMM)}	データ有効から DMM CLK 立ち下がりエッジまでのセット アップ時間	2		ns
t _{dh(DMM)}	DMM CLK 立ち下がりエッジからデータ有効の間のホール ド時間	3		ns

図 7-18. DMMCLK のタイミング

7.10.13 JTAG インターフェイス

セクション 7.10.13.2 とセクション 7.10.13.3 は、セクション 7.10.13.1 に記載された動作条件を前提としています。

7.10.13.1 JTAG のタイミング条件

		最小値	標準値 最大値	単位
入力条件				
t _R	入力立ち上がり時間	1	3	ns
t _F	入力立ち下がり時間	1	3	ns
出力条件				
C _{LOAD}	出力負荷容量	2	15	pF

7.10.13.2 IEEE 1149.1 JTAG のタイミング要件

番号			最小值	標準値	最大値	単位
1	t _{c(TCK)}	サイクル時間 TCK	66.66			ns
1a	t _{w(TCKH)}	パルス幅、TCK High (tc の 40%)	26.67			ns
1b	t _{w(TCKL)}	パルス幅、TCK Low (tc の 40%)	26.67			ns
	t _{su(TDI-TCK)}	入力セットアップ時間、TDI 有効から TCK High まで	2.5			ns
3	t _{su(TMS-TCK)}	入力セットアップ時間、TMS 有効から TCK High ま で	2.5			ns
4	t _{h(TCK-TDI)}	入力ホールド時間、TCK High から TDI 有効の間	18			ns
4	t _{h(TCK-TMS)}	入力ホールド時間、TCK High から TMS 有効の間	18			ns

7.10.13.3 IEEE 1149.1 JTAG の推奨動作条件に対するスイッチング特性

番号	パラメータ		最小値	標準値	最大值	単位
2	t _{d(TCKL-TDOV)}	遅延時間、TCK LOW から TDO 有効まで	0		25	ns

図 7-20. JTAG のタイミング

8 詳細説明

8.1 概要

AWR1843 デバイスには、ミリ波ブロック全体と、2 個のトランスミッタと4 個のレシーバのためのアナログ ベースバンド シ グナル チェーン、およびお客様がプログラム可能な MCU が含まれています。このデバイスは、メモリ、処理能力、アプリ ケーション コード サイズの要件が厳しくない使用事例において、オンチップ レーダーとして使用できます。これらの使用 事例には、24GHz 狭帯域実装から進化しつつあるコスト重視の車載用アプリケーションおよび新たに出現した単純な超 短距離レーダー アプリケーションが含まれます。このデバイスの代表的なアプリケーション例として、基本的なブラインド スポット検出やパーキングアシストなどがあります。

拡張性の観点から見ると、AWR1843 デバイスは、より大きいアプリケーション ソフトウェア フットプリントのための追加のメ モリと、より速いインターフェイスとを必要とする場合があるより複雑なアプリケーションに対応するため、外付けのローエン ド MCU と組み合わせて使用できます。 AWR1843 デバイスは、シリアル LVDS などの高速データ インターフェイスも搭 載しているので、より高性能な外部処理ブロックとのインターフェイスに適しています。ここでシステム設計者は、 AWR1843 を選択して ADC の未加工データを提供できます。

8.2 機能ブロック図

* Up to 512kB of Radar Data Memory can be switched to the Main R4F program and data RAMs

図 8-1. 機能ブロック図

8.3 サブシステム

8.3.1 RF およびアナログ サブシステム

RF / アナログ サブシステムには RF 回路とアナログ回路 (つまり、シンセサイザ、PA、LNA、ミキサ、IF、ADC) が含まれま す。このサブシステムには水晶発振器と温度センサも含まれます。3 つの送信チャネルは、必要に応じて送信ビームフォ ーミングの目的で最大 2 つまで同時に動作させることができます。一方、4 つの受信チャネルはすべて同時に動作させる ことができます。

8.3.1.1 クロック サブシステム

AWR1843 のクロック サブシステムは、40MHz 水晶振動子の入力リファレンスから 76~81GHz を生成します。このサブ システムは、発振器回路と、それに続くクリーンアップ PLL および RF シンセサイザ回路を内蔵しています。 次に、RF シ ンセサイザの出力は X4 逓倍器で処理され、76~81GHz の範囲の必要な周波数を生成します。 RF シンセサイザの出 力は、効果的なセンサ動作に必要な波形を生成するため、タイミング エンジン ブロックによって変調されます。

システムのウェークアップ後、クリーンアップ PLL はホスト プロセッサにも基準クロックを提供します。

クロック サブシステムには、水晶振動子の存在を検出し、生成されたクロックの品質を監視するための機能も内蔵されて います。

図 8-2 に、クロック サブシステムを示します。

図 8-2. クロック サブシステム

8.3.1.2 送信サブシステム

AWR1843の送信サブシステムは3つの並列送信チェーンで構成され、それぞれが独立して位相および振幅制御を行います。3つのトランスミッタはすべて同時に使用できます。AWR1843の場合、追加の位相シフタがTx チャネルに関連付けられており、チャープごとにプログラムできます。

各送信チェーンは、PCBのアンテナポートで最大 12dBm を供給できます。送信チェーンは、システムを最適化するためのプログラム可能なバックオフもサポートしています。

図 8-3 に、送信サブシステムを示します。

図 8-3. 送信サブシステム (チャネルごと)

8.3.1.3 **受信**サブシステム

AWR1843 の受信サブシステムは、4 つの並列チャネルで構成されています。1 つの受信チャネルは LNA、ミキサ、IF フィルタ、ADC 変換、デシメーションで構成されています。4 つの受信チャネルはすべて同時に動作させることができ、個別のパワーダウン オプションも使用できて、システムの最適化が可能です。

従来型の実数のみのレシーバとは異なり、AWR1843 デバイスは複素ベースバンド アーキテクチャをサポートしており、 直交ミキサおよびデュアル IF と ADC チェーンを使用して、各レシーバ チャネルに複素数の I および Q 出力を提供しま す。AWR1843 は、高速チャープ システムを対象としています。バンドパス IF チェーンは下側カットオフ周波数を 175kHz よりも高く設定でき、最大 10 MHz の帯域幅をサポートできます。

Saturation Self Test -DAC Loopback Path Package $\Delta \Sigma M$ Chip PCB mage Rejection Correction Decimation Buffer RSSI 50 Ω LO GSG ADC õ ΔΣΜ DAC 図 8-4. 受信サブシステム (チャネルごと)

図 8-4 に、受信サブシステムを示します。

Copyright © 2024 Texas Instruments Incorporated

8.3.2 プロセッサ サブシステム

図 8-5. プロセッサ サブシステム

図 8-5 に、AWR1843 デバイスのカスタマー プログラマブル プロセッサ サブシステムのブロック図を示します。 概念的には、2 つのカスタマー プログラマブル プロセッサ サブシステムが存在し、図に示すように点線で区切られています。 左側は DSP サブシステムを示しており、 テキサス・インスツルメンツの高性能 C674x DSP、高度なパフォーマンスを可能にする高帯域幅インターコネクト (128 ビット、200MHz)、 および関連ペリフェラル (データ転送用 DMA 4 つ) が搭載されています。 測定データ出力用の LVDS インターフェイス、L3 レーダー データ キューブ メモリ、 ADC バッファ、 CRC エンジン、 データ ハンドシェイク メモリ (インターコネクト上に搭載された追加メモリ)。

図の右側はメイン サブシステムを示しています。メイン サブシステムは、その名の通り、デバイスの頭脳であり、デバイスの すべてのペリフェラルとハウスキーピング動作を制御します。メイン サブシステムには、Cortex-R4F (メイン R4F) プロセッ サと関連ペリフェラルおよびハウスキーピング コンポーネント (例:DMA、CRC、および PCR (ペリフェラル セントラル リソ ース) インターコネクトを介してメイン インターコネクトに接続されたペリフェラル (I²C、UART、SPI、CAN、PMIC クロック モジュール、PWM など)) が含まれます。

DSP CPU コアの詳細については、https://www.ti.com/product/TMS320C6748 を参照してください。

両方のサブシステムには HIL モジュールが示されており、RF サブシステムを介さずに、外部からデバイスにキャプチャし たデータを供給するレーダー動作を実行するために使用できます。メイン SS 上の HIL は構成の制御用、DSPSS 上の HIL はデバイスへの高速 ADC データ入力用です。どちらの HIL モジュールもデバイス上で同じ IO を使用しており、追 加の IO (DMM_MUX_IN) を 1 つ使用することで、2 つのうちのいずれかを選択できます。

8.3.3 車載用インターフェイス

AWR1843 は、以下のメイン インターフェイスを介して車載ネットワークと通信します。

• CAN および CAN-FD

8.3.4 メイン サブシステム Cortex-R4F メモリ マップ

表 8-1 に、メイン サブシステム、Cortex-R4F メモリ マップを示します。

注

メイン サブシステムには、別個の Cortex-R4F アドレスと DMA MSS アドレスがあります。詳細なリストについては、『テクニカル リファレンス マニュアル』を参照してください。

表 8-1. メイン サブシステム、Cortex-R4F メモリ マップ

反册	フレーム アドレス (HEX)		サイブ	光明
2日175	START	終了	- 91^	前先吗门
CPU 密結合メモリ				
TCMA ROM	0x0000_0000	0x0001_FFFF	128KiB	プログラム ROM
TCM RAM-A	0x0020_0000	0x0023_FFFF (または 0x0027_FFFF)	512KiB	256/512KB バリアントに基づく
TCM RAM-B	0x0800_0000	0x0802_FFFF	192KB	データ RAM
ソフトウェア スクラッチ	ペッド メモリ			
SW_Buffer	0x0C20_0000	0x0C20_1FFF	8KB	ソフトウェア スクラッチパッド メモリ
システム ペリフェラル	I			,
メール ボックス	0xF060_1000	0xF060_17FF	2KB	RADARSS から MSS へのメールボックス メモリ領域
MSS<->RADARSS	0xF060_2000	0xF060_27FF		MSS から RADARSS へのメールボックス メモリ領域
	0xF060_8000	0xF060_80FF	188B	MSS から RADARSS へのメールボックス構成レジス タ
	0xF060_8060	0xF060_86FF		RADARSS から MSS へのメールボックスの構成レジ スタ
メールボックス	0xF060_4000	0xF060_47FF	2KB	DSPSS から MSS へのメールボックス メモリ領域
MSS<->DSPSS	0xF060_5000	0xF060_57FF		MSS から DSPSS へのメールボックス メモリ領域
	0xF060_8400	0xF060_84FF	188B	MSS から DSPSS へのメールボックス構成レジスタ
	0xF060_8300	0xF060_83FF		DSPSS から MSS へのメールボックス構成レジスタ
メールボックス RADARSS<-	0xF060_6000	0xF060_67FF	2KB	RADARSS から DSPSS へのメールボックス メモリ領域
>DSPSS	0xF060_7000	0xF060_7FFF		DSPSS から RADARSS へのメールボックス メモリ領域
	0xF060_8200	0xF060_82FF	188B	RADARSS から DSPSS へのメールボックスの構成レ ジスタ
	0xF060_8100	0xF060_81FF		DSPSS から RADARSS へのメールボックス構成レジ スタ
PRCM および制御モ	0xFFFF_E100	0xFFFF_E2FF	756B	トップレベルのリセット、クロック管理レジスタ
ジュール	0xFFFF_FF00	0xFFFF_FFF	256B	MSSリセット、クロック管理レジスタ
	0xFFFF_EA00	0xFFFF_EBFF	512KB	IO マルチプレクサ モジュール レジスタ
	0xFFFF_F800	0xFFFF_FBFF	352B	汎用制御レジスタ
GIO	0xFFF7_BC00	0xFFF7_BDFF	180B	GIO モジュール構成レジスタ
DMA-1	0xFFFF_F000	0xFFFF_F3FF	1KB	DMA-1 モジュール構成レジスタ
DMA-2	0xFCFF_F800	0xFCFF_FBFF	1KB	DMA-2 モジュール構成レジスタ
DMM-1	0xFCFF_F700	0xFCFF_F7FF	472B	DMM-1 モジュール構成レジスタ
DMM-2	0xFCFF_F600	0xFCFF_F6FF	472B	DMM-2 モジュール構成レジスタ
VIM	0xFFFF_FD00	0xFFFF_FEFF	512B	VIM モジュール構成レジスタ
RTI-A/WD	0xFFFF_FC00	0xFFFF_FCFF	192B	RTI-A モジュール構成レジスタ
RTI-B	0xFFFF_EE00	0xFFFF_EEFF	192B	RTI-B モジュール構成レジスタ
シリアル インターフェイ	スと接続性	1	1	

表 8-1. メイン サブシステム、Cortex-R4F メモリ マップ (続き)

ta the	フレーム アドレス (HEX)		11. 0	38 田	
名称	START	終了	<u><u> </u></u>	121.97	
QSPI	0xC000_0000	0xC07F_FFFF	8MB	QSPI – フラッシュ メモリ領域	
	0xC080_0000	0xC0FF_FFFF	116B	QSPI モジュール構成レジスタ	
MIBSPI-A	0xFFF7_F400	0xFFF7_F5FF	512B	MIBSPI-A モジュール構成レジスタ	
MIBSPI-B	0xFFF7_F600	0xFFF7_F7FF	512B	MIBSPI-B モジュール構成レジスタ	
SCI-A	0xFFF7_E500	0xFFF7_E5FF	148B	SCI-A モジュール構成レジスタ	
SCI-B	0xFFF7_E700	0xFFF7_E7FF	148B	SCI-B モジュール構成レジスタ	
CAN	0xFFF7_DC00	0xFFF7_DDFF	512B	CAN モジュール構成レジスタ	
CAN_FD (MCAN)	0xFFF7_C800	0xFFF7_CFFF	768B	CAN-FD モジュール構成レジスタ	
	0xFFF7_A000	0xFFF7_A1FF	452B	MCAN ECC モジュール レジスタ	
12C	0xFFF7_D400	0xFFF7_D4FF	112B	I2C モジュール構成レジスタ	
インターコネクト				1	
PCR-1	0xFFF7_8000	0xFFF7_87FF	1KiB	PCR-1 インターコネクト構成ポート	
PCR-2	0xFCFF_1000	0xFCFF_17FF	1KiB	PCR-2 インターコネクト構成ポート	
安全モジュール					
CRC	0xFE00_0000	0xFEFF_FFFF	16KiB	CRC モジュール構成レジスタ	
PBIST	0xFFFF_E400	0xFFFF_E5FF	464B	PBIST モジュール構成レジスタ	
STC	0xFFFF_E600	0xFFFF_E7FF	284B	STC モジュール構成レジスタ	
DCC-A	0xFFFF_EC00	0xFFFF_ECFF	44B	DCC-A モジュール構成レジスタ	
DCC-B	0xFFFF_F400	0xFFFF_F4FF	44B	DCC-B モジュール構成レジスタ	
ESM	0xFFFF_F500	0xFFFF_F5FF	156B	ESM モジュール構成レジスタ	
CCMR4	0xFFFF_F600	0xFFFF_F6FF	136B	CCMR4 モジュール構成レジスタ	
セキュリティ モジュール					
暗号化	0xFD00_0000	0XFDFF_FFF	3KiB	暗号化モジュール構成レジスタ	
その他のサブシステム					
DSS_TPTC0	0x5000 0000	0x5000 0317	792B	TPTC0 モジュール構成領域	
DSS_REG	0x5000 0400	0x5000 075F	864B	DSPSS 制御モジュール レジスタ	
DSS_TPTC1	0x5000 0800	0x5000 0B17	792B	TPTC1 モジュール構成領域	
DSS_REG2	0x5000 0C00	0x5000 0EA3	676B	DSPSS 制御モジュール レジスタ	
DSS_TPCC0	0x5001 0000	0x5001 3FFF	16KB	TPCC0 モジュール構成領域	
DSS_RTIA/WDT	0x5002 0000	0x5002 00BF	192B	DSS_RTIA/WDT 構成領域	
DSS_SCI	0x5003 0000	0x5003 0093	148B	SCI メモリ領域	
DSS_STC	0x5004 0000	0x5004 011B	284B	STC モジュール構成領域	
DSS_CBUFF	0x5007 0000	0x5007 0233	564B	共通バッファ モジュール構成レジスタ	
DSS_TPTC2	0x5009 0000	0x5009 0317	792B	TPTC2 モジュール構成領域	
DSS_TPTC3	0x5009 0400	0x5009 0717	792B	TPTC3 モジュール構成領域	
DSS_TPCC1	0x500A 0000	0x500A 3FFF	16KB	TPCC1 モジュール構成領域	
DSS_ESM	0x500D 0000	0x500D 005B	92B	ESM モジュール構成レジスタ	
DSS_RTIB	0x500F 0000	0x500F 00BF	192B	RTI-B モジュール構成レジスタ	
DSS_L3RAM 共有メ モリ	0x5100 0000	0x511F FFFF	2MB ⁽¹⁾	L3 共有メモリ領域	
DSS_ADCBUF バッフ ア	0x5200 0000	0x5200 7FFF	32KB	ADC バッファ メモリ領域	

Copyright © 2024 Texas Instruments Incorporated

表 8-1. メイン サブシステム、Cortex-R4F メモリ マップ (続き)

友我	フレーム アドレス (HEX)		サイブ	彩田
石桥	START	終了	91^	<u> </u>
DSS_CBUFF_FIFO	0x5202 0000	0x5202 3FFF	16KB	共通バッファ FIFO 領域
DSS_HSRAM1	0x5208 0000	0x5208 7FFF	32KB	ハンドシェイク メモリ領域
DSS_DSP_L2_UMA P1	0x577E 0000	0x577F FFFF	128KB	L2 RAM 領域
DSS_DSP_L2_UMA P0	0x5780 0000	0x5781 FFFF	128KB	L2 RAM 領域
DSS_DSP_L1P	0x57E0 0000	0x57E0 7FFF	32KB	L1 プログラム メモリ領域
DSS_DSP_L1D	0x57F0 0000	0x57F0 7FFF	32KB	L1 データメモリ領域
ペリフェラル メモリ (システムおよび非システム)				
CAN RAM	0xFF1E_0000	0xFF1F_FFFF	128KB	CAN RAM メモリ領域
CAN-FD RAM	0xFF50_0000	0xFF51_FFFF	68KB	CAN-FD RAM メモリ領域
DMA1 RAM	0xFFF8_0000	0xFFF8_0FFF	4KB	DMA1 RAM メモリ領域
DMA2 RAM	0xFCF8 1000	0xFCF8_0FFF	4KB	DMA2 RAM メモリ領域
VIM RAM	0xFFF8_2000	0xFFF8_2FFF	2KB	VIM RAM メモリ領域
MIBSPIB-TX RAM	0xFF0C_0000	0xFF0C_01FF	0.5KB	MIBSPIB-TX RAM メモリ領域
MIBSPIB-RX RAM	0xFF0C_0200	0xFF0C_03FF	0.5KB	MIBSPIB-RX RAM メモリ領域
MIBSPIA-TX RAM	0xFF0E_0000	0xFF0E_01FF	0.5KB	MIBSPIA-TX RAM メモリ領域
MIBSPIA-RX RAM	0xFF0E_0200	0xFF0E_03FF	0.5KB	MIBSPIA-RX RAM メモリ領域
デバッグ モジュール				
デバッグ サブシステム	0xFFA0_0000	0xFFAF_FFFF	244KB	デバッグ サブシステムのメモリ領域およびレジスタ

(1) 768KB のメモリ (2MB のメモリ領域内)

8.3.5 DSP サブシステムのメモリ マップ

表 8-2 に、DSP C674x メモリ マップを示します。

表 8-2. DSP C674x メモリ マップ

名称	フレーム アドレス (16 進)		サイズ	概要	
	START	End			
DSP メモリ					
DSP_L1D	0x00F0_0000	0x00F0_7FFF	32KiB	L1 データメモリ領域	
DSP_L1P	0x00E0_0000	0x00E0_7FFF	32KiB	L1 プログラム メモリ領域	
DSP_L2_UMAP0	0x0080_0000	0x0081_FFFF	128KiB	L2 RAM 領域	
DSP_L2_UMAP1	0x007E_0000	0x007F_FFFF	128KiB	L2 RAM 領域	
EDMA					
TPCC0	0x0201_0000	0x0201_3FFF	16KiB	TPCC0 モジュール構成領 域	
TPCC1	0x020A_0000	0x020A_3FFF	16KiB	TPCC1 モジュール構成領 域	
ТРТС0	0x0200 0000	0x0200 03FF	1KiB	TPTC0 モジュール構成領 域	
TPTC1	0x0200 0800	0x0200 0BFF	1KiB	TPTC1 モジュール構成領 域	
TPTC2	0x0209_0000	0x0209_03FF	1KiB	TPTC2 モジュール構成領 域	

表 8-2. DSP C674x メモリ マップ (続き)

名称	フレーム アドレス (16 進)		サイズ	概要	
	START	End			
TPTC3	0x0209_0400	0x0209_07FF	1KiB	TPTC3 モジュール構成領 域	
制御レジスタ					
DSS_REG	0x0200_0400	0x0200_07FF	864B	DSPSS 制御モジュール レ ジスタ	
DSS_REG2	0x0200_0C00	0x0200_0FFF	624B	DSPSS 制御モジュール レ ジスタ	
システム メモリ					
ADC バッファ	0x2100_0000	0x2100_7FFC	32KiB	ADC バッファ メモリ領域	
CBUFF-FIFO	0x2102_0000	0x2102_3FFC	16KiB	共通バッファ FIFO 領域	
L3 共有メモリ ⁽¹⁾	0x2000_0000	0x201F_FFFF	2MB	L3 共有メモリ領域	
HS-RAM	0x2108_0000	0x2108_7FFC	32KiB	ハンドシェイク メモリ領域	
システム ペリフェラル				I	
RTI-A/WD	0x0202_0000	0x0202_00FF	192B	RTI-A モジュール構成レジ スタ	
RTI-B	0x020F_0000	0x020F_00FF	192B	RTI-B モジュール構成レジ スタ	
CBUFF	0x0207_0000	0x0207_03FF	564B	共通バッファ モジュール構 成レジスタ	
メールボックス MSS<->RADARSS	0x5060_1000	0x5060_17FF	2KiB	RADARSS から MSS への メールボックス メモリ領域	
	0x5060_2000	0x5060_27FF		MSS から RADARSS への メールボックス メモリ領域	
	0x0460_8000	0x0460_80FF	188B	MSS から RADARSS への メールボックス構成レジスタ	
	0x0460_8060	0x0460_86FF		RADARSS から MSS への メールボックス構成レジスタ	
メールボックス MSS<->DSPSS	0x5060_4000	0x5060_47FF	2KiB	DSPSS から MSS へのメー ルボックス メモリ領域	
	0x5060_5000	0x5060_57FF		MSS から DSPSS へのメー ルボックス メモリ領域	
	0x0460_8400	0x0460_84FF	188B	MSS から DSPSS へのメー ルボックス構成レジスタ	
	0x0460_8300	0x0460_83FF		DSPSS から MSS へのメー ルボックス構成レジスタ	
メールボックス RADARSS<->DSPSS	0x5060_6000	0x5060_67FF	2KiB	RADARSS から DSPSS へ のメールボックス メモリ領域	
	0x5060_7000	0x5060_7FFF		DSPSS から RADARSS へ のメールボックス メモリ領域	
	0x0460_8200	0x0460_82FF	188B	RADARSS から DSPSS へ のメールボックス構成レジス タ	
	0x0460_8100	0x0460_81FF		DSPSS から RADARSS へ のメールボックス構成レジス タ	
安全モジュール		1	1		
ESM	0x020D_0000		92B	ESM モジュール構成レジス タ	

表 8-2. DSP C674x メモリ マップ (続き)

名称	フレーム アドレス (16 進)		サイズ	概要			
	START	End					
CRC	0x2200_0000	0x2200_03FF	1KiB	CRC モジュール構成レジス タ			
STC	0x0204_0000	0x0204_01FF	284B	STC モジュール構成レジス タ			
非システム ペリフェラル							
SCI	0x0203_0000	0x0203_00FF	148B	SCI モジュール構成レジスタ			

(1) 2MB メモリ領域内の 768KB メモリ

8.4 その他のサブシステム

8.4.1 ユーザー アプリケーション向け ADC チャネル (サービス)

AWR1843 デバイスには、ユーザー アプリケーション向け ADC サービスのための装備が含まれています。

ここでは、デバイス内部に搭載された GPADC エンジンを使って、最大 6 つの外部電圧を測定できます。この目的で、 ADC1、ADC2、ADC3、ADC4、ADC5、ADC6 の各ピンを使用します。

- ADC 自体は、BIST サブシステム内で実行されるテキサス・インスツルメンツのファームウェアによって制御され、ユー ザーが外部電圧を監視するためのアクセスは、BIST サブシステムに転送される「監視 API」コールによって行われま す。この API は、MSS R4F で動作しているユーザー アプリケーションとリンクさせることができます。
- BIST サブシステム ファームウェアは、これらの測定とともに、他の RF やアナログ監視動作を内部でスケジュールしま す。この API を使用すると、セトリング時間 (スキップする ADC サンプル数)と取得する連続サンプル数を設定できま す。フレームの最後に、監視対象の各電圧について、測定値の最小値、最大値、平均値が報告されます。

GPADC Specifications:

- 625Ksps SAR ADC
- 入力範囲:0~1.8V
- **10** ビット分解能
- 6個の入力のうち5個について、オプションの内部バッファを使用できます。バッファがない場合、ADCには、5pFのサンプリング容量と12pFの寄生容量でモデル化されたスイッチトキャパシタ入力負荷があります (GPADCチャネル6では内部バッファは利用できません)。

A. GPADC 構造は、内部温度センサの出力を測定するために使われます。これらの測定の精度は、±7℃です。

図 8-6. ADC パス

8.4.1.1 GP-ADC パラメータ

自由気流での動作温度範囲内(特に記述のない限り)

パラメータ	標準値	単位
ADC 電源	1.8	V
ADC の入力電圧範囲 (バッファなし)	0~1.8	V
ADC の入力電圧範囲 (バッファ付き) ⁽¹⁾	0.4~1.3	V
ADC の分解能	10	ビット
ADC のオフセット誤差	±5	LSB
ADC のゲイン誤差	±5	LSB
ADC O DNL	-1/+2.5	LSB
ADC O INL	±2.5	LSB
ADC のサンプリング レート ⁽²⁾	625	kSPS
ADC のサンプリング時間 ⁽²⁾	400	ns
ADC の内部コンデンサ	10	pF
ADCの入力静電容量	2	pF
ADC の入力リーク電流	3	μA

(1) 規定の範囲を外れると、バッファ出力は非線形になります。

(2) ADC 自体は、BIST サブシステム内で動作するテキサス・インスツルメンツ製ファームウェアによって制御されます。詳細については、API コール を参照してください。

9 監視と診断

9.1 監視と診断のメカニズム

表 9-1 に、機能安全準拠デバイスで使用可能な主な監視および診断メカニズムのリストを示します。

表 9-1. 機能安全準拠デバイス向けの監視と診断のメカニズム

NO	機能	説明
1	MSS R4F コアおよび関連 VIM 用ブート時 LBIST	デバイス アーキテクチャは、ハードウェア ロジック BIST (LBIST) エンジン セルフ テスト コントロー ラ (STC) をサポートしています。このロジックを使って、MSS R4F CPU コアとベクタ割り込みモジュ ール (VIM) において、トランジスタ レベルで非常に高い診断範囲 (>90%) を実現しています。 CPU および VIM 用の LBIST は、機能安全アプリケーションを開始する前に、アプリケーション コ ードによってトリガする必要があります。CPU は、フォルトが検出されると、ループ内にとどまり、それ 以上処理を進めることはありません。
2	MSS R4F TCM メモリ用ブート 時 PBIST	MSS R4F には、TCMA、TCMB0、TCMB1 の 3 つの密結合メモリ (TCM) が搭載されています。 デバイスのアーキテクチャは、ハードウェア プログラマブル メモリ BIST (PBIST) エンジンをサポー トしています。実装されている MSS R4F TCM において、このロジックを使って、トランジスタ レベル で非常に高い診断範囲 (March-13n) を実現しています。 TCM メモリの PBIST は、フラッシュまたはペリフェラル インターフェイスからアプリケーションのダウ ンロードを開始する前のブート時にブートローダによってトリガされます。CPU は、フォルトが検出さ れると、ループ内にとどまり、それ以上処理を進めることはありません。
3	MSS R4F TCM メモリ用エンド ツー エンド ECC	TCM の診断は、シングル エラー訂正ダブル エラー検出 (SECDED) ECC 診断によってサポートされています。64 ビットのデータ バスで計算された ECC データを保存するために 8 ビットのコード ワードが使用されます。ECC の評価は、CPU 内部の ECC 制御ロジックによって行われます。この 方式により、CPU と TCM 間の通信においてエンド ツー エンドの診断が可能になります。CPU は、 シングル ビットおよびダブル ビットのエラー状態に対して、あらかじめ決められた応答 (無視または 中止)を行うように構成できます。
4	MSS R4F TCM ビット多重化	論理 TCM ワードとそれに関連する ECC コードは分割され、2 つの物理的な SRAM バンクに保存 されます。この方式では、物理的な SRAM バンクのアドレス デコード障害に対する固有の診断メカ ニズムが提供されます。バンク アドレッシングのフォルトは、CPU によって ECC フォルトとして検出 されます。 さらに、論理 (CPU) ワードを生成するためにアクセスされるビットが物理的に隣接しないように、ビッ ト多重化方式が実装されています。この方式は、物理的なマルチビット フォルトに起因して論理的な マルチビット フォルトが発生する可能性を低減し、その代わりに、複数のシングルビット フォルトとし て現れるようにします。SECDED TCM ECC は論理ワード内のシングルビットフォルトを修正できる ので、この方式により TCM ECC 診断の有用性が向上します。 これらの機能はどちらもハードウェア機能であり、アプリケーション ソフトウェアで有効または無効に することはできません。
5	クロック モニタ	デバイスアーキテクチャは、3 つのデジタル クロック コンパレータ (DCC) と1 つの内部 RCOSC をサポートしています。これらのモジュールでは、クロック検出とクロック監視という2 つの機能が使 用できます。 DCCint は、ブート時にリファレンス クロックの可用性 / 範囲をチェックするために使用されます。そう でない場合は、デバイスはリンプ モードに移行します (デバイスはブートを続けますが、RCOSC ク ロック ソースは 10MHz です。この状態ではデバッグ機能が提供されます)。DCCint はブート時に ブートローダーによってのみ使用されます。APLL がイネーブルになり、ロックされると、このブロック はディセーブルになります。 DCC1 は APLL ロック検出監視専用であり、デバイスのリファレンス入力クロックと分周された APLL 出力を比較します。最初に (APLL の構成前)、ブートローダは DCC1 を使用して、内蔵 RCOSC ク ロック ソースに対するリファレンス入力クロックの正確な周波数を識別します。DCC1 に障害が検出 されると、デバイスはリンプ モードに移行します。 DCC2 モジュールは、ユーザー ソフトウェアで利用できるものです。詳細仕様に記載されているクロ ック オプションのリストから、任意の 2 つのクロックを比較することです。フォルトが検出されると、エラ ー信号モジュール (ESM) により MSS R4F CPU に通知されます。

表 9-1. 機能安全準拠デバイス向けの監視と診断のメカニズム (続き)

NO	機能	説明
7	MSS R4F 用 RTI/WD	デバイスアーキテクチャは、リアルタイム割り込み (RTI) モジュールに実装された内部ウォッチドッグ の使用をサポートしています。内部ウォッチドッグには、デジタル ウォッチドッグ (DWD) とデジタル ウィンドウ付きウォッチドッグ (DWWD) という 2 つの動作モードがあります。これらの動作モードは相 互に排他的です。設計者はいずれかのモードを選択できますが、同時に両方のモードを使用するこ とはできません。 ウォッチドッグは、障害を検出すると、内部 (ウォーム) システム リセットまたは CPU マスク不可割り 込みのいずれかを発行できます。 ウォッチドッグは、ブート時にブートローダによって DWD モードでイネーブルになり、ブートプロセス を追跡します。アプリケーション コードが制御を開始した後、特定の顧客要件に基づいて、ウォッチ ドッグのモードおよびタイミングを再構成できます。
8	MSS R4F 用 MPU	Cortex-R4F CPU には MPU が搭載されています。 MPU ロジックを使用すると、 デバイス メモリ内 のソフトウェア タスクを空間的に分離できます。 Cortex-R4F MPU は 12 の領域をサポートしていま す。 オペレーティング システムが MPU を制御し、各タスクのニーズに基づいて MPU 設定を変更 するよう想定されています。 構成済みメモリ保護ポリシーに違反すると、 CPU が停止します。
9	ペリフェラル インターフェイス SRAM 用 PBIST - SPI、CAN	デバイスアーキテクチャは、ペリフェラル SRAM 用ハードウェア プログラマブル メモリ BIST (PBIST) エンジンもサポートしています。 ペリフェラル SRAM メモリ用 PBIST は、アプリケーションによってトリガできます。ユーザーは、 PBIST 診断に割り当てられる実行時間に基づいて、1 つの SRAM に対して PBIST を実行する か、複数の SRAM に対して実行するかを選択できます。PBIST テストはメモリ内容を破壊する可能 性があるため、通常はブート時にのみ実行されます。ただし、ペリフェラル通信が妨げられる可能性 がある場合は、いつでもテストを開始できます。 PBIST によってフォルトが検出された場合、PBIST ステータス レジスタにエラーが示されます。
10	ペリフェラル インターフェイス SRAM 用 ECC – SPI、CAN	ペリフェラル インターフェイス SRAM の診断は、シングル エラー訂正ダブル エラー検出 (SECDED) ECC 診断によってサポートされています。シングル ビットまたはダブル ビット エラーが 検出されると、ESM (エラー信号モジュール) 経由で MSS R4F に通知されます。この機能はリセッ ト後はディセーブルになっています。ソフトウェアは、ペリフェラル および ESM モジュールでこの機 能を設定して、イネーブルにする必要があります。ECC 障害 (シングル ビット訂正済みエラーとダブ ルビット訂正不可能エラーの両方) は、ESM モジュール経由の割り込みとして MSS R4F に通知さ れます。
11	メイン SS ペリフェラルの構成レ ジスタ保護	すべてのメイン SS ペリフェラル (SPI、CAN、I2C、DMA、RTI/WD、DCC、IOMUX など) は、ペリフ ェラル セントラル リソース (PCR) 経由で相互接続されています。これにより、ペリフェラルへのアク セスを制限できる 2 つの診断メカニズムが提供されます。ペリフェラルは、PCR 内のペリフェラル チ ップ セレクトによってクロックをゲートできます。これを利用すれば、未使用の機能を無効にして干渉 を回避できます。また、トランザクションの特権レベルに基づいてアクセスを制限するように、各ペリフ ェラルのチップ セレクトをプログラムできます。この機能を使用すると、すべてのペリフェラルへのアク セスを、特権付きオペレーティング システム コードのみに制限できます。 これらの診断メカニズムは、リセット後はディセーブルになっています。ソフトウェアは、これらのメカニ ズムを設定して、有効にする必要があります。また、保護違反が発生すれば、「エラー」を生成して、 MSS R4F を停止させたり、あるいは、DMA などの他のペリフェラルに対するエラー応答を発生させ たりします。
12	巡回冗長検査 - メイン SS	 デバイスアーキテクチャは、メイン SS でハードウェア CRC エンジンをサポートし、以下の多項式を 実装しています。 CRC16 CCITT - 0x10 CRC32 Ethernet - 0x04C11DB7 CRC64 CRC 32C - CASTAGNOLI - 0x1EDC6F4 CRC32P4 - E2E Profile4 - 0xF4ACFB1 CRC-8 - H2F Autosar - 0x2F CRC-8 - VDA CAN - 0x1D CRC への SRAM 内容の読み取り動作は、CPU または DMA によって行うことができます。結果の 比較、フォルトの表示、およびフォルト応答は、テストを管理するソフトウェアの責任となります。
13	DMA 用 MPU	デバイスアーキテクチャは、メイン SS DMA の MPU をサポートしています。MPU によって障害が 検出されると、ESM 経由の割り込みとして MSS R4F CPU コアに通知されます。 DSPSS の高性能 EDMA では、読み取りポートと書き込みポートの両方に MPU が搭載されていま す。EDMA MPU は 8 つの領域をサポートしています。MPU によって障害が検出されると、ローカ ル ESM 経由の割り込みとして DSP コアに通知されます。

表 9-1. 機能安全準拠デバイス向けの監視と診断のメカニズム (続き)

NO	機能	説明
14	BIST R4F コアおよび関連 VIM 用ブート時 LBIST	デバイスアーキテクチャは、BIST R4F コアおよび関連する VIM モジュールでもハードウェア ロジ ック BIST (LBIST) をサポートしています。このロジックは、BIST R4F CPU コアおよび VIM におい て、非常に高い診断範囲 (>90%) を実現しています。 これは、MSS R4F ブートローダによってブート時にトリガされ、フォルトが検出された場合、それ以 上処理を進めることはありません。
15	BIST R4F TCM メモリ用ブート 時 PBIST	デバイスのアーキテクチャは、BIST R4F TCM 用ハードウェア プログラマブル メモリ BIST (PBIST) エンジンをサポートしており、BIST R4F TCM で非常に高い診断範囲 (March-13n) を実現してい ます。 PBIST は、MSS R4F ブートローダによってブート時にトリガされ、フォルトが検出された場合、それ 以上処理を進めることはありません。
16	BIST R4F TCM メモリ用エンド ツー エンド ECC	BIST R4F TCM の診断は、シングル エラー訂正ダブル エラー検出 (SECDED) ECC 診断によっ てサポートされています。シングル ビット エラーは BIST R4F CPU に対して、ダブル ビット エラー は MSS R4F に対して、割り込みとして通知されるので、アプリケーションコードはこれを認識し、適 切なアクションを実行します。
17	BIST R4F TCM ビット多重化	論理 TCM ワードとそれに関連する ECC コードは分割され、2 つの物理的な SRAM バンクに保存 されます。この方式では、物理的な SRAM バンクにおけるアドレス デコード障害の固有の診断メカ ニズムが提供され、物理的なマルチビット フォルトに起因して論理的なマルチビット フォルトが発生 する可能性を低減します。
18	BIST R4F 用 RTI/WD	デバイスアーキテクチャは、BIST R4F 用の内部ウォッチドッグをサポートしています。MSS R4F への割り込みを通じてタイムアウト状態を通知します。その先はアプリケーション コードに任せて、BIST SS の SW リセット、またはデバイスの障害状態を解消するためのウォーム リセットのいずれかを実施できます。
19	L1P、L1D、L2、L3 メモリのブー ト時 PBIST	デバイスアーキテクチャは、DSPSSのL1P、L1D、L2、L3メモリBIST (PBIST) エンジンをサポートしており、非常に高い診断範囲 (March-13n) を実現しています。 PBIST は、MSS R4F ブートローダによってブート時にトリガされ、フォルトが検出された場合、それ以上処理を進めることはありません。
20	L1P のパリティ	デバイス アーキテクチャは、DSP の L1P メモリでパリティ診断をサポートします。パリティ エラーは、 割り込みとして CPU に通知されます。 注:L1D メモリは、パリティまたは ECC の対象ではないので、アプリケーション レベルの診断で対応 する必要があります。
21	DSP の L2 メモリの ECC	デバイスアーキテクチャは、DSP の L2 メモリにおいて、パリティとシングル エラー訂正ダブル エラ ー検出 (SECDED) ECC 診断の両方をサポートします。L2 メモリは、DSP のプログラム セクション とデータ セクションを保存するために使用される統合型 256KB のメモリです。256 ビットのデータ バス (論理命令フェッチ サイズ) に対して計算された ECC データを保存するために、12 ビットのコ ード ワードを使用します。L2 アクセスの ECC ロジックは DSP 内に配置されており、DSP 内部の ECC 制御ロジックを使用して評価を行います。この方式により、DSP とL2 の間の送信について、 エンド ツー エンドの診断が可能になります。バイト整列パリティメカニズムは、データ セクションを処 理するために L2 でも利用できます。
22	レーダー データキューブ (L3) メモリの ECC	L3 メモリは、デバイスのレーダー データ セクションとして使用されます。デバイス アーキテクチャ は、L3 メモリにおいて、シングル エラー訂正ダブル エラー検出 (SECDED) ECC 診断をサポート しています。64 ビットのデータバスで計算された ECC データを保存するために、8 ビットのコードワ ードを使用します。 ECC ロジックで障害が検出されると、ESM 経由の割り込みとして MSS R4F CPU コアに通知され ます。
23	DSP コア用 RTI/WD	デバイスアーキテクチャは、リアルタイム割り込み (RTI) モジュールに実装された BIST R4F の内部ウォッチドッグの使用をサポートしています。このウォッチドッグは、メイン SS で使用されるのと同じモジュールの複製です。このモジュールは、MSS/BIST R4F 用 RTI /WD と同じ機能をサポートしています。 このウォッチドッグは、ユーザーのアプリケーション コードによって有効化され、MSS R4F への割り込みを通じてタイムアウト状態を通知します。その先は MSS R4F のアプリケーション コードに任せて、DSP SS の SW リセット、または、デバイスの障害状態を解消するためのウォーム リセットのいずれかを実施できます。

表 9-1. 機能安全準拠デバイス向けの監視と診断のメカニズム (続き)

NO	機能	説明
24	DSP サブシステムの CRC	 デバイスアーキテクチャは、DSPSS で専用ハードウェア CRC をサポートし、以下の多項式を実装しています。 CRC16 CCITT - 0x10 CRC32 Ethernet - 0x04C11DB7 CRC64 CRC への SRAM 内容の読み取りは、DSP CPU または DMA によって行うことができます。結果の比較 フォルトの表示 およびフォルト広答は テストを管理するソフトウェアの責任とたります
25	DSP Ø MPU	デバイス アーキテクチャは、DSP メモリアクセス (L1D、L1P、L2) 用の MPU をサポートします。L2 メモリは 64 の領域、L1P および L1D はそれぞれ 16 の領域をサポートしています。MPU によって 障害が検出されると、処理中断として DSP コアに通知されます。
26	温度センサ	デバイスアーキテクチャは、デバイス全体にわたってさまざまな温度センサ (PA や DSP などの電力消費の多いモジュールの付近に配置) をサポートします。これらは、フレームとフレームの間の期間中に監視されます。 ⁽¹⁾
27	TX 電力モニタ	デバイス アーキテクチャは、Tx 出力での電力検出器をサポートしています。 ⁽²⁾
28	エラー信号 エラー出力	診断で故障が検出された場合は、エラーを通知する必要があります。デバイスアーキテクチャは、 エラー信号モジュール (ESM) と呼ばれるペリフェラル ロジックを使用して、内部の監視 / 診断メカ ニズムからのフォルト通知をまとめて処理します。ESM は、重大度によってフォルトを分類するメカニ ズムを備えており、プログラム可能なエラー応答が実現できます。 ESM モジュールは、ユーザーのアプリケーションコードの設定により、特定のエラー信号の有効ま たは無効を選択して、MSS R4F CPU への割り込み (低 / 高優先度)を生成することができます。 デバイスは nERROR 出力信号 (IO)をサポートしています。この信号を外部で監視することにより、 R4F では処理できなかった重大度の高い異常を識別できます。
29	シンセサイザ (チャープ) 周波 数のモニタ	シンセサイザの周波数ランプにおいて、(分周) クロック サイクルをカウントし、理想的な周波数ランプ と比較して監視します。特定のしきい値を超える過剰な周波数エラーが検出された場合、報告され ます。
30	TX ポート用ボール破損検出 (TX ボール破損のモニタ)	デバイスアーキテクチャは、TX 出力のインピーダンス測定に基づくボール破損検出メカニズムをサポートしており、ボール破損を示している可能性のある大きな偏差を検出して報告します。 監視は、BIST R4F で実行されるテキサス・インスツルメンツのコードによって行われ、障害はメール ボックスを介して MSS R4F に通知されます。 BIST R4F からのメッセージに基づいて、適切なアクションを決定することは、ユーザーの SW に完 全に任されています。
31	RX ループバック テスト	TX から RX へのループバックを内蔵しており、ゲイン、RX 間バランスなど、RX パスの障害を検出 できます。
32	IF ループバックテスト	内蔵の IF (方形波) テストトーン入力により、IF フィルタの周波数応答を監視して障害を検出します。
33	RX 飽和検出	過大な受信信号レベルや干渉による ADC 飽和を検出する機能。
34	DSP コア用のブート時 LBIST	デバイスは、DSP コア用のブート時 LBIST をサポートしています。LBIST は、ブート時に MSS R4F アプリケーション コードでトリガできます。

(1) 監視は、BIST R4F で実行されるテキサス・インスツルメンツのコードによって行われます。

ユーザー アプリケーションによって API を介して検出された温度を報告するように構成できる 2 つのモードがあります。

- a. Nフレームごとに検出された温度を報告します。
- b. 温度がプログラムされたスレッショルドを超えた場合、その状態を通知します。

BIST R4F からメールボックス経由のメッセージに基づいて適切なアクションを決定することは、ユーザーの SW に完全に任されています。 (2) 監視は、BIST R4F で実行されるテキサス・インスツルメンツのコードによって行われます。

ユーザー アプリケーションによって API を介して検出された出力電力を報告するように構成できる 2 つのモードがあります。

- a. Nフレームごとに検出された電力を報告します。
- b. 設定されたスレッショルドを超えて出力電力が低下した場合、その状態を通知します。

BIST R4F からのメッセージに基づいて、適切なアクションを決定することは、ユーザーの SW に完全に任されています。

注

すべての診断機能の適用可能性の詳細については、『デバイス安全マニュアル』またはその他の関連資料を 参照してください。認証の詳細については、デバイスの製品フォルダを参照してください。

9.1.1 エラー通知モジュール

診断でフォルトが検出された場合は、エラーを表示する必要があります。AWR1843のアーキテクチャは、エラー通知モジ ュール (ESM) と呼ばれるペリフェラル ロジックを使用して、内部診断メカニズムからのフォルト表示をまとめて示します。 ESM は、重大度によってフォルトを分類するメカニズムを備えており、プログラム可能なエラー応答が実現できます。以下 に、ESM の概略ブロック図を示します。

図 9-1. ESM のブロック図

10 アプリケーション、実装、およびレイアウト

注

以下のアプリケーションに関するセクションの情報は、テキサス・インスツルメンツの部品仕様の一部ではなく、 テキサス・インスツルメンツはこれらの情報の正確性や完全性を保証しません。個々の目的に対する製品の適 合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテスト することで、システムの機能を確認する必要があります。

10.1 アプリケーション情報

以下のアプリケーションにおけるデバイスの主な機能は次の通りです。

- レーダー フロント エンドとプログラマブル MCU の統合
- 柔軟なブートモード:シリアルフラッシュを使用した自律アプリケーションのブート、または SPI 経由の外部ブート。

10.2 短距離および中距離レーダー

10.3 リファレンス回路図

リファレンス回路図と電源に関する情報は、『AWR1843 EVM 資料』に掲載されています。

ご参考までに、PCBの設計ファイル、回路図、レイアウト、スタックアップを以下に示します。

- Altium AWR1843 EVM 設計ファイル
- AWR1843 EVM の回路図、組立図、部品表
11 デバイスおよびドキュメントのサポート

テキサス・インスツルメンツでは、幅広い開発ツールを提供しています。ツールおよびソフトウェアは、デバイスの性能評価や、コードの生成に使用され、それに従ってソリューションの開発が行われます。

11.1 デバイスの命名規則

製品開発サイクルの段階を示すために、テキサス・インスツルメンツではマイクロプロセッサ (MPU) とサポート ツールのす べての型番に接頭辞が割り当てられています。各デバイスには3 つ接頭辞 X、P、空白 (接頭辞なし) (たとえば、 AWR1843 の場合) のいずれかがあります。テキサス・インスツルメンツでは、サポート ツールについては、使用可能な3 つの接頭辞のうち TMDX および TMDS の2 つを推奨しています。これらの接頭辞は、製品開発の進展段階を表しま す。段階には、エンジニアリング プロトタイプ (TMDX)から、完全認定済みの量産デバイス/ツール(TMDS)まであります。

デバイスの開発進展フロー:

- X 実験的デバイス。最終デバイスの電気的特性を必ずしも表さず、量産アセンブリフローを使用しない可能性があります。
- P プロトタイプ デバイス。最終的なシリコン ダイとは限らず、最終的な電気的特性を満たさない可能性があります。

空白 認定済みのシリコン ダイの量産バージョン。

サポートツールの開発進展フロー:

TMDX 開発サポート製品。テキサス・インスツルメンツの社内認定試験はまだ完了していません。

TMDS 完全に認定済みの開発サポート製品です。

X および P デバイスと TMDX 開発サポートツールは、以下の免責事項の下で出荷されます。

「開発中の製品は、社内での評価用です。」

量産デバイスおよび TMDS 開発サポートツールの特性は完全に明確化されており、デバイスの品質と信頼性が十分に示されています。テキサス・インスツルメンツの標準保証が適用されます。

プロトタイプ デバイス(X または P)の方が標準的な量産デバイスに比べて故障率が大きいと予測されます。これらのデバイスは予測される最終使用時の故障率が未定義であるため、テキサス・インスツルメンツではそれらのデバイスを量産システムで使用しないよう推奨しています。認定済みの量産デバイスのみを使用する必要があります。

テキサス・インスツルメンツのデバイスの命名規則には、デバイスファミリ名の接尾辞も含まれます。この接尾辞は、パッケージのタイプ (例: ABL0161 ALB0161) と温度範囲を表しています (たとえば、空白はデフォルトの民生用温度範囲を示します)。 図 11-1 に、AWR1843 デバイスについて、完全なデバイス名を読み取るための凡例を示します。

AWR1843 デバイスの注文可能な部品番号 (ABL0161 パッケージ タイプ) については、本書の「パッケージ オプション についての付録」、テキサス・インスツルメンツの Web サイト (www.ti.com)、またはテキサス・インスツルメンツの販売代理 店にお問い合わせください。

ダイに対するデバイス命名規則マーキングの詳細説明については、『AWR1843 デバイス エラッタ』を参照してください。

B= Functional Safety-Compliant, ASIL-B

図 11-1. デバイスの命名規則

11.2 ツールとソフトウェア

モデル

AWR1843 BSDL モ 個別デバイスの IEEE 1149.1 でテスト可能な入力および出力ピンのバウンダリスキャン データ デル ベース。

AWR1843 IBIS モデ デバイスの IO バッファの IO バッファ情報モデル。基板上でのシミュレーションについては、IBIS ル Open Forum を参照してください。

11.3 ドキュメントのサポート

ドキュメントの更新についての通知を受け取るには、www.tij.co.jpのデバイス製品フォルダを開いてください。[通知]をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

DSP、関連ペリフェラル、その他の技術的事項を説明した最新のドキュメントを以下に示します。

エラッタ

AWR1843 デバイス正誤表 シリコンに関する既知の勧告、制限、注意事項を説明し、回避策を示しています。

11.4 サポート・リソース

テキサス・インスツルメンツ E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツ ルメンツの使用条件を参照してください。

11.5 商標

テキサス・インスツルメンツ E2E[™] is a trademark of Texas Instruments. Arm[®] and Cortex[®] are registered trademarks of ARM Limited. すべての商標は、それぞれの所有者に帰属します。

11.6 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずか に変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

11.7 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

12 改訂履歴

Changes from DECEMBER 31, 2021 to SEPTEMBER 11, 2024 (from Revision C (December 2021) to Revision D (September 2024))

20	021) to Revision D (September 2024))	Page
•	(RF 仕様):ノイズ指数、帯域内 P1dB とレシーバ ゲインとの関係を更新	29

Page

Changes from MAY 1, 2020 to DECEMBER 31, 2021 (from Revision B (May 2020) to Revision C (December 2021))

<u>`</u>	"	<u> </u>
•	グローバル:機能安全準拠を反映するように更新	1
•	グローバル:「A2D」を「ADC」に置き換え、マスタ サブシステムおよびマスタ R4F をメイン サブシステムおよびメイン	/
	R4Fに変更、マスタ/スレーブの用語をより包括的な言葉遣いに移行	1
•	(特長):機能安全準拠認証資料を更新。ミリ波センサ固有の動作温度範囲について記載。「デバイスのセキュリティ	」の
	詳細情報を更新。	1
•	(製品情報):ミリ波センサにセキュア量産部品を追加	2
•	機能ブロック図を包括的な用語に更新 / 変更	3
•	(デバイスの比較):機能安全準拠の行を削除し、代わりに機能安全および LVDS インターフェイスに関する表の注意	を
	追加。デバイスのセキュリティに関する情報を追加	5
•	(信号の説明): CLKP および CLKM の説明を更新 / 変更	.14
•	(絶対最大定格): RF 入力 (TX および RX) に外部から供給される電源のエントリを追加し、TX に適用される信号レ	~べ
	ルに表注を追加。	.25
•	(<i>電源端子の平均消費電力</i>):標準の平均電力値を更新 / 変更	.28
•	(RF 仕様):導入段落と「ノイズ指数、帯域内 P1dB とレシーバ ゲインとの関係」の画像を追加。	. 29
•	(クロックの仕様):デバイスの適切な動作温度範囲を反映するように表 7-5 を更新 / 変更。	32
•	(表外部クロック モードの仕様):周波数の許容誤差の仕様を ±50 から ±100ppm に変更	. 32
•	「DSP C674x メモリ マップ」の L3 共有メモリに脚注を追加	.61
•	(監視と診断のメカニズム):機能安全準拠を反映するように表のヘッダーと説明を更新 / 変更。安全関連の資料への	の
	参照についての注を追加	. 65
•	(リファレンス回路図):デバイス EVM のドキュメントの付属資料へのウェブリンクを追加	.72
•	(デバイスの命名規則):「デバイスの命名規則」を更新 / 変更	.73

13 メカニカル、パッケージ、および注文情報 13.1 パッケージ情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、指定のデバイスに使用できる最新のデータです。このデータは、予告なく、このドキュメントを改訂せずに変更される場合があります。本 データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

ABL0161B

PACKAGE OUTLINE

FCBGA - 1.17 mm max height

PLASTIC BALL GRID ARRAY

NOTES:

All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
This drawing is subject to change without notice.

www.ti.com

ABL0161B

EXAMPLE BOARD LAYOUT

FCBGA - 1.17 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).

www.ti.com

ABL0161B

EXAMPLE STENCIL DESIGN

FCBGA - 1.17 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

www.ti.com

資料に関するフィードバック(ご意見やお問い合わせ)を送信 81

13.2 のトレイ情報

Chamfer on Tray corner indicates Pin 1 orientation of packed units.

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ(データシートを含みます)、設計リソース(リファレンスデザインを含みます)、アプリケーショ ンや設計に関する各種アドバイス、Webツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性 および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否しま す。

これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種 規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
AWR1843ABGABLQ1	ACTIVE	FCCSP	ABL	161	176	RoHS & Green	(6) Call TI	Level-3-260C-168 HR	-40 to 125	AWR1843 IG 502AD	Samples
AWR1843ABGABLRQ1	ACTIVE	FCCSP	ABL	161	1000	RoHS & Green	Call TI	Level-3-260C-168 HR	-40 to 125	AWR1843 IG 502AD D	Samples
AWR1843ABSABLQ1	ACTIVE	FCCSP	ABL	161	176	RoHS & Green	Call TI	Level-3-260C-168 HR	-40 to 125	AWR1843 IS 502AD	Samples
AWR1843ABSABLRQ1	ACTIVE	FCCSP	ABL	161	1000	RoHS & Green	Call TI	Level-3-260C-168 HR	-40 to 125	AWR1843 IS 502AD	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

www.ti.com

PACKAGE OPTION ADDENDUM

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

Texas

NSTRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

1	*All dimensions are nominal												
	Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	AWR1843ABGABLRQ1	FCCSP	ABL	161	1000	330.0	24.4	10.7	10.7	1.65	16.0	24.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

7-Dec-2024

'All o	dimensions	are	nominal
--------	------------	-----	---------

Device Package Type		Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
AWR1843ABGABLRQ1	FCCSP	ABL	161	1000	336.6	336.6	41.3	

TEXAS INSTRUMENTS

www.ti.com

TRAY

7-Dec-2024

Chamfer on Tray corner indicates Pin 1 orientation of packed units.

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	K0 (µm)	P1 (mm)	CL (mm)	CW (mm)
AWR1843ABGABLQ1	ABL	FCCSP	161	176	8 x 22	150	315	135.9	7620	13.4	16.8	17.2

ABL 161

GENERIC PACKAGE VIEW

FCBGA - 1.17 mm max height

10.4 x 10.4, 0.65 mm pitch

PLASTIC BALL GRID ARRAY

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

重要なお知らせと免責事項

TIは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや 設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供してお り、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的に かかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプ リケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載す ることは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを 自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供され ています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありま せん。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated