DLPC8445

DLPC8445 および DLPC8445V 高解像度コントローラ

1 特長

- DLP472TP デジタル マイクロミラー デバイス (DMD) を使用する DLPC8445 および DLPC8445V コントロ ーラは以下をサポートします。
 - 60Hz で最大 4K UHD
 - 240Hz (2D) および 120Hz (3D) で最大 1080p
- 1 ν – ν , 2 ν – ν , 4 ν – ν , 8 ν – ν 0 V-by-One $^{\otimes}$ HS ビデオ入力ポート×1
 - 最高 600MHz のピクセル クロックをサポート
 - 最大 3.0Gbps の入力伝送レート
- サポートされている入力形式
 - RGB および YCbCr
 - 4:4:4, 4:2:2
- 内蔵 Arm® プロセッサ
 - 52 本の構成可能な GPIO
 - PWM ジェネレータ
 - キャプチャタイマおよび遅延タイマ
 - USB 2.0 高速コントローラ
 - SPI コントローラ
 - I²C コントローラ
 - UART および割り込みコントローラ
- ワーピング エンジン
 - 1D および 2D キーストーン補正
 - ビデオ処理用の組み込み部分フレームメモリ
- 追加の画像処理
 - オーバーラップ カラー対応 (DLPC8445V のみ)
 - 可変リフレッシュ レート (VRR) 対応
 - DynamicBlack
 - HDR10 (PQ および HLG) をサポート
 - フレームレートの乗算
 - 色座標調整
 - 白色色温度調整
 - 逆ガンマ補正をプログラム可能
 - 読み出し側の空間分割/時分割多重化
 - **3D** ディスプレイの統合サポート
 - ローリング バッファによるフレーム レイテンシの短
- スプラッシュ スクリーン ディスプレイ
- マイクロプロセッサおよび PWM シーケンス用のシリア ル フラッシュ
- システム制御
 - DMD 電源およびリセットドライバ制御
 - DMD 画像の左右 / 上下反転
- JTAG バウンダリスキャン テストをサポート
- LED、レーザーベースのプロジェクタシステムをサポ -1

2 アプリケーション

- モバイル スマート TV
- モバイル プロジェクタ
- デジタル サイネージ
- レーザー TV


3 概要

DLPC8445 および DLPC8445V は、テキサス・インスツ ルメンツの DLP® 製品である 4K UHD ディスプレイ チッ プセット用のデジタル ディスプレイ コントローラです。 ディ スプレイ コントローラは、DLP472TP DMD と DLPA3085 または DLPA3082 電源管理 IC とともにチップセットを構 成します。このソリューションは、小型で高解像度と高輝度 を必要とするディスプレイ システムに適しています。信頼 性の高い動作を保証するために、DLPC8445 または DLPC8445V ディスプレイ コントローラは、常にアプリケー ションごとに DLP472TP DMD と DLPA3085 または DLPA3082 PMIC と組み合わせて使用する必要がありま

製品情報

部品番号	パッケージ ⁽¹⁾	パッケージ サイズ
DLPC8445AMD	FCCSP (484)	9.00mm × 9.00mm
DLPC8445VAMD	FCCSP (484)	9.00mm × 9.00mm

詳細については、「メカニカル、パッケージ、および注文情報」セク ションを参照してください。

4K UHD ディスプレイ チップセット

目次

1	特長	1
2	アプリケーション	1
3	概要	1
4	ピン構成および機能	3
	4.1 初期化、基板レベル テスト、デバッグ	3
	4.2 V-by-One インターフェイスの入力データおよび制御	5
	4.3 FPD-Link ポートの入力データおよび制御	
	(DLPC8445 および DLPC8445V ではサポートされ	
	ていません)	6
	4.4 DSI 入力データおよびクロック (DLPC8445 および	
	DLPC8445V ではサポートされていません)	
	4.5 DMD SubLVDS インターフェイス	
	4.6 DMD リセットおよび低速インターフェイス	. 10
	4.7 フラッシュ インターフェイス	. 10
	4.8 ペリフェラル インターフェイス	
	4.9 GPIO ペリフェラル インターフェイス	
	4.10 クロックおよび PLL のサポート	
	4.11 電源およびグランド	. 18
	4.12 I/O タイプのサブスクリプト定義	. 20
	4.13 内部プルアップおよびプルダウンの特性	.20
5	仕様	
	5.1 絶対最大定格	. 21
	5.2 ESD 定格	. 22
	5.3 推奨動作条件	. 23
	5.4 熱に関する情報	.24
	5.5 電源の電気的特性	
	5.6 ピンの電気的特性	
	5.7 DMD SubLVDS インターフェイスの電気的特性	
	5.8 DMD 低速インターフェイスの電気的特性	
	5.9 V-by-One インターフェイスの電気的特性	
	5.10 USB の電気的特性	
	5.11 システム発振器のタイミング要件	
	5.12 電源およびリセットのタイミング要件	.32
	5.13 V-by-One インターフェイスの一般的なタイミング要	
	件	.33
	5.14 フラッシュ インターフェイスのタイミング要件	34

	5.15 ソース フレームのタイミング要件	35
	5.16 同期シリアル ポート インターフェイスのタイミング要	
	件	36
	5.17 I2C インターフェイスのタイミング要件	38
	5.18 プログラマブル出力クロックのタイミング要件	39
	5.19 JTAG バウンダリ スキャン インターフェイスのタイミ	
	ング要件 (デバッグのみ)	40
	5.20 DMD 低速インターフェイスのタイミング要件	41
	5.21 DMD SubLVDS インターフェイスのタイミング要件	41
6	詳細説明	42
	6.1 概要	42
	6.2 機能ブロック図	42
	6.3 機能説明	
7	電源に関する推奨事項	56
	7.1 システムのパワーアップおよびパワーダウン シーケ	
	ンス	. 56
	7.2 DMD 高速パーク制御 (PARKZ)	. 58
	7.3 パワー マネージメント	
	7.4 ホットプラグの使用	
	7.5 未使用の入力ソース インターフェイスの電源	59
	7.6 電源	59
8	レイアウト	60
	8.1 レイアウトのガイドライン	60
	8.2 熱に関する注意事項	. 66
9	デバイスおよびドキュメントのサポート	67
	9.1 サード・パーティ製品に関する免責事項	67
	9.2 ドキュメントのサポート	67
	9.3ドキュメントの更新通知を受け取る方法	67
	9.4 サポート・リソース	67
	9.5 デバイスの命名規則	68
	9.6 商標	
	9.7 静電気放電に関する注意事項	68
	9.8 用語集	
1	0 改訂履歴	69
1	1 メカニカル、パッケージ、および注文情報	69

4 ピン構成および機能

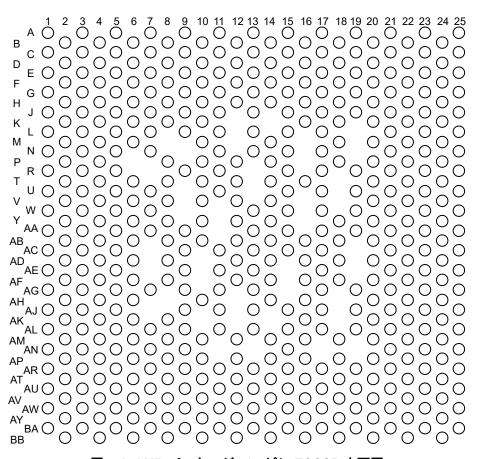


図 4-1. AMD パッケージ 484 ピン FCCSP 上面図

4.1 初期化、基板レベル テスト、デバッグ

表 4-1. 初期化、基板レベル テスト、デバッグ

צ	ピン		説明
名称	番号	I/O ⁽¹⁾	ריפ ביקה
PROJ_ON	AP2	11	通常ミラー パーキング要求 (アクティブ Low):ホストの PROJ_ON 出力によって駆動されます。この信号がロジック Low になると、コントローラは DMD をパークさせますが、DMD のパワーダウンは行いません (DLPA が代わりに行います)。最小 High 時間は200ms です。最小 Low 時間は200ms です。
RESETZ	P2	l1	パワーオンリセット (ヒステリシス バッファを備えたアクティブ Low 入力)。RESETZ で Low から High への遷移が検出されると、自己構成が開始されます。このリセットがデア サートされる前に、すべてのコントローラの電源とクロックが安定している必要があります。 RESETZ がアサートされている間は、どの信号もアクティブ状態ではありません。このピンは通常、DLPA PMIC の RESETZ ピンに接続されています。
PARKZ	AR1	l1	DMD 高速パーク制御 (ヒステリシスバッファを備えたアクティブ Low 入力)。電力損失が 迫っている場合に、この信号を使用して DMD を素早くパークさせることができます。 DMD の最長寿命は高速パーク動作では達成できない可能性があるため、この信号は 通常パーク動作が完了できない場合にのみアサートされることを意図しています。 PARKZ 信号は通常、DLPA 割り込み出力信号から供給されます。
JTAGTCK	V24	12	JTAG と ARM-ICE のシリアル データ クロック。この信号は、JTAG と ARM-ICE 間の動作 (テキサス・インスツルメンツのテストのみ) で共有されます。弱い内部プルダウンを含みます。
JTAGTMS1	U23	12	JTAG テスト モード選択。弱い内部プルアップを含みます。

表 4-1. 初期化、基板レベル テスト、デバッグ (続き)

ピン		110 (1)	av pr	
名称	番号	I/O ⁽¹⁾	説明	
JTAGTMS2	W25	12	ARM-ICE テスト モード選択 通常動作では、このピンはオープンのままにするか、未接続のままにする必要があります。弱い内部プルアップを含みます。	
JTAGTRSTZ	AA25	12	JTAG、ARM-ICE リセット。 通常動作では、このピンは 8kΩ 以下の外付け抵抗を介してグランドにプルする必要があります。通常動作中にこのピンを Low にしないと、起動時や初期化に問題が発生します。 JTAG バウンダリスキャンと ARM-ICE デバッグ動作では、このピンはプルアップするか、接続しないままにする必要があります。弱い内部プルアップとヒステリシスを含みます。	
JTAGTDI	Y24	12	JTAG、ARM-ICE、CPU MBIST:シリアル データ入力。弱い内部プルアップを含みます。	
JTAGTDO1	V22	B14	JTAG シリアル データ出力	
JTAGTDO2	W23	B14	ARM-ICE シリアル データ出力。通常動作では、このピンには ≤ 9.15kΩ の外付けプルアップ抵抗が必要です。	
ETM_TRACECLK	U25	O14	予約済みピン、未接続のままにする必要があります。	
ETM_TRACECTL	T24	O14	予約済みピン、未接続のままにする必要があります。	
TSTPT_0	T22	B14	テストピン 0 このピンには内部プルダウンがあり、≤ 9.15kΩ の外付けプルアップ抵抗 (プルアップなし:通常ブート、プルアップあり:ホストコマンド待機) が必要な場合があります。	
TSTPT_1	R25	B14	テストピン 1 このピンには、通常ブート動作用の内部プルダウンがあります。	
TSTPT_2	R23	B14	テストピン 2 このピンには内部プルダウンがあり、 ≤ 9.15 k Ω の外付けプルアップ抵抗 (プルアップなし: I^2 C アドレス = 0 x36、プルアップあり: I^2 C アドレス = 0 x34)が必要な場合があります。	
TSTPT_3	P24	B14	テストピン 3 このピンには内部プルダウンがあり、≤ 9.15kΩ の外付けプルアップ抵抗 (プルアップなし:ホストインターフェイスが USB または I ² C、プルアップあり:ホストインターフェイスが I ² C のみ) が必要な場合があります。	
TSTPT_4	N25	B14	テストピン 4 このピンには内部プルダウン抵抗があります。	
TSTPT_5	P22	B14	テストピン 5 このピンには内部プルダウン抵抗があります。	
TSTPT_6	N23	B14	テストピン 6 このピンには内部プルダウン抵抗があります。	
TSTPT_7	M24	B14	テストピン 7 このピンには内部プルダウン抵抗があります。	
GPTP0	AA23	B13	汎用テストピン 0 このピンには内部プルダウンがあり、≤ 9.15kΩ の外付けプルアップ抵抗 (プルアップなし:外部水晶振動子、プルアップあり:外部クロック) が必要な場合があります。	
GPTP1	AB22	B13	汎用テストピン 1 このピンには内部にプルダウン抵抗があります。	
GPTP2	AC25	B13	汎用テストピン 2 このピンには内部にプルダウン抵抗があります。	
ATB_0_H	AH4	PWR	予約済みピン、未接続のままにする必要があります。	
ATB_1_H	AJ5	PWR	予約済みピン、未接続のままにする必要があります。	
ATEST	G13	PWR	予約済みピン、未接続のままにする必要があります。	
CAP_VDDS_FLSH	AD22	PWR	外部バイアス容量	
CAP_VDDS_INTF	AJ21	PWR	外部バイアス容量	
IFORCE	L3	PWR	製造用途のみ。グランドに接続する必要があります。	

表 4-1. 初期化、基板レベル テスト、デバッグ (続き)

۲	ン	I/O (1)	±× oo
名称	番号	1/0 (1)	説明
VSENSE	K2	PWR	予約済みピン、未接続のままにする必要があります。
HWTEST_EN	Y22	12	予約済みピン。 通常動作では、この信号を PCB 上のグランドに直接接続する必要があります。弱い内部プルダウンとヒステリシスを含みます。

(1) I/O 定義の詳細については、セクション 4.12 を参照してください。

4.2 V-by-One インターフェイスの入力データおよび制御

ピン		I/O (1)	説明(2)(3)(4)	
名称	番号		就功	
P1_VX1_D0_P	AV8			
P1_VX1_D0_N	AU9			
P1_VX1_D1_P	BB8			
P1_VX1_D1_N	AY8			
P1_VX1_D2_P	BA9			
P1_VX1_D2_N	AW9			
P1_VX1_D3_P	BB10			
P1_VX1_D3_N	AY10		V-by-One インターフェイス データ レーン	
P1_VX1_D4_P	BA11	— I5		
P1_VX1_D4_N	AW11			
P1_VX1_D5_P	AV12			
P1_VX1_D5_N	AU13			
P1_VX1_D6_P	BB12			
P1_VX1_D6_N	AY12			
P1_VX1_D7_P	BA13			
P1_VX1_D7_N	AW13			
P1_HTPDN	AN3	O10	V-by-One インターフェイスのホット プラグ検出 (コントローラ レシーバはこの信号を Low にプルして、トランスミッタに存在を示します)。この信号はコントローラ出力のオープンドレインです。トランスミッタにはプルアップ抵抗が必要です。	
P1_LOCKN	AM4	O10	V-by-One インターフェイスのクロックがロックを検出します (コントローラ レシーバはこの 信号を Low にプルして、トランスミッタにクロック抽出ロックを示します)。この信号はコントローラ出力のオープン ドレインです。トランスミッタにはプルアップ抵抗が必要です。	
P1_RREF	AU11	PWR	V-by-One バイアス抵抗入力	

- (1) I/O 定義の詳細については、「I/O タイプのサブスクリプト定義」を参照してください。
- (2) このシステムは、入力ソースの帯域幅要件に基づいて、1レーン、2レーン、4レーン、8レーンでの動作をサポートしています。未使用のデータレーンの入力はオープンのままにする必要があります。
- (3) V-by-One ポートは、基板レイアウトの最適化に役立つよう、限定的なレーンの再マッピングをサポートしています。詳細については、「V-by-One インターフェイス」を参照してください。
- (4) 本書では、V-by-One と Vx1 という用語を同じ意味で使用しています。

4.3 FPD-Link ポートの入力データおよび制御 (DLPC8445 および DLPC8445V ではサポートされていません)

ピン		I/O (1)	概要(2)(3)(4)
名称	番号	1,0 (1)	恢安 (-) (+)
P2A_LVDS_C_P	BA17	14	₹ 66.5 4. 7.
P2A_LVDS_C_N	AW17	14	予約済み
P2A_LVDS_D0_P	BA15	14	
P2A_LVDS_D0_N	AW15	14	
P2A_LVDS_D1_P	BB16	14	
P2A_LVDS_D1_N	AY16	14	
P2A_LVDS_D2_P	AV16	14	Z.667x7
P2A_LVDS_D2_N	AU15	14	- 予約済み
P2A_LVDS_D3_P	BB18	14	
P2A_LVDS_D3_N	AY18	14	
P2A_LVDS_D4_P	AV18	14	
P2A_LVDS_D4_N	AU17	14	
P2A_LVDS_RPI	AT16	PWR	予約済み
P2B_LVDS_C_P	BA21	14	予約済み
P2B_LVDS_C_N	AW21	14	1/並り付め
P2B_LVDS_D0_P	BB20	14	
P2B_LVDS_D0_N	AY20	14	
P2B_LVDS_D1_P	AV20	14	
P2B_LVDS_D1_N	AU19	14	
P2B_LVDS_D2_P	AV22	14	- 予約済み
P2B_LVDS_D2_N	AU21	14	1. 東京位 4. など (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
P2B_LVDS_D3_P	BB22	14	
P2B_LVDS_D3_N	AY22	14	
P2B_LVDS_D4_P	BA23	14	
P2B_LVDS_D4_N	AW23	14	
P2B_LVDS_RPI	AT20	PWR	予約済み

- (1) I/O 定義の詳細については、セクション 4.12 を参照してください。
- (2) 本書では、FPD および FPD リンクという用語は FPD リンク I を指します。
- (3) 未使用ポートの入力はグランドに接続するか、外付け抵抗を介してグランドにプルしてください。
- (4) これら2つのポートのうちの1つだけが必要な場合は、どちらかのポートを使用し、もう一方のポートは未使用ポートとして扱われます。

4.4 DSI 入力データおよびクロック (DLPC8445 および DLPC8445V ではサポートされていません)

ピン		I/O ⁽¹⁾	説明 ⁽²⁾
名称	番号	1,0 ()	
P3_DSI_C_P	BB6	16	文 约汶7、
P3_DSI_C_N	AY6	16	予約済み
P3_DSI_D0_P	BA5	16	
P3_DSI_D0_N	AW5	16	
P3_DSI_D1_P	BB4	16	
P3_DSI_D1_N	AY4	16	▼ 44.32r 7.
P3_DSI_D2_P	AV4	16	予約済み
P3_DSI_D2_N	AU5	16	
P3_DSI_D3_P	BA3	16	
P3_DSI_D3_N	AW3	16	
P3_DSI_RCALIB	AV6	PWR	予約済み

- (1) I/O 定義の詳細については、セクション 4.12 を参照してください。
- (2) 未使用ポートの入力はグランドに接続するか、外付け抵抗を介してグランドにプルしてください。

7

4.5 DMD SubLVDS インターフェイス

表 4-2. DMD SubLVDS インターフェイス

ピン		I/O (1)	DO NE
名称	番号		説明
DMD_HS0_CLK_P	B6	O15	チャネル 0 DMD SubLVDS クロック レーン
DMD_HS0_CLK_N	D6	O15	7 7 77/V O DIVID SUBLVDS 9 1299 V
DMD_HS0_WDATA0_P	A3	O15	
DMD_HS0_WDATA0_N	C3	O15	
DMD_HS0_WDATA1_P	F4	O15	
DMD_HS0_WDATA1_N	E5	O15	
DMD_HS0_WDATA2_P	B4	O15	
DMD_HS0_WDATA2_N	D4	O15	
DMD_HS0_WDATA3_P	A5	O15	
DMD_HS0_WDATA3_N	C5	O15	ー チャネル 0 DMD SubLVDS データレーン
DMD_HS0_WDATA4_P	F6	O15	- フャネル 0 DINID SUDLVDS ケータ レーン
DMD_HS0_WDATA4_N	E7	O15	
DMD_HS0_WDATA5_P	A7	O15	
DMD_HS0_WDATA5_N	C7	O15	
DMD_HS0_WDATA6_P	F8	O15	
DMD_HS0_WDATA6_N	E9	O15	
DMD_HS0_WDATA7_P	B8	O15	
DMD_HS0_WDATA7_N	D8	O15	
DMD_HS1_CLK_P	A13	O15	T. St. A DMD Oct. MDO 55 - 51
DMD_HS1_CLK_N	C13	O15	チャネル 1 DMD SubLVDS クロック レーン
DMD_HS1_WDATA0_P	B10	O15	
DMD_HS1_WDATA0_N	D10	O15	
DMD_HS1_WDATA1_P	A11	O15	
DMD_HS1_WDATA1_N	C11	O15	
DMD_HS1_WDATA2_P	F10	O15	
DMD_HS1_WDATA2_N	E11	O15	
DMD_HS1_WDATA3_P	B12	O15	
DMD_HS1_WDATA3_N	D12	O15	T. A. A. DMD Oct. MDO TO A. D.
DMD_HS1_WDATA4_P	B14	O15	- チャネル 1 DMD SubLVDS データレーン
DMD_HS1_WDATA4_N	D14	O15	
DMD_HS1_WDATA5_P	F12	O15	
DMD_HS1_WDATA5_N	E13	O15	
DMD_HS1_WDATA6_P	A15	O15	1
DMD_HS1_WDATA6_N	C15	O15	1
DMD_HS1_WDATA7_P	F14	O15	1
DMD_HS1_WDATA7_N	E15	O15	1
DMD_HS2_CLK_P	A19	O15	To day 2 DMD Cultiving the other
DMD_HS2_CLK_N	C19	O15	- チャネル 2 DMD SubLVDS クロック レーン

表 4-2. DMD SubLVDS インターフェイス (続き)

ピン		uo (1)	at nn
名称	番号	I/O ⁽¹⁾	説明
DMD_HS2_WDATA0_P	A17	O15	
DMD_HS2_WDATA0_N	C17	O15	
DMD_HS2_WDATA1_P	F16	O15	
DMD_HS2_WDATA1_N	E17	O15	
DMD_HS2_WDATA2_P	B18	O15	
DMD_HS2_WDATA2_N	D18	O15	
DMD_HS2_WDATA3_P	F18	O15	
DMD_HS2_WDATA3_N	E19	O15	チャネル 2 DMD SubLVDS データレーン
DMD_HS2_WDATA4_P	B20	O15	19 74A/V 2 DINID SUBLVDS 9 -9 V-9
DMD_HS2_WDATA4_N	D20	O15	
DMD_HS2_WDATA5_P	A21	O15	
DMD_HS2_WDATA5_N	C21	O15	
DMD_HS2_WDATA6_P	F20	O15	
DMD_HS2_WDATA6_N	E21	O15	
DMD_HS2_WDATA7_P	B22	O15	
DMD_HS2_WDATA7_N	D22	O15	
DMD_HS3_CLK_P	H24	O15	チャウル 2 DMD Cubl VDC カロッカー。 ン
DMD_HS3_CLK_N	J25	O15	チャネル 3 DMD SubLVDS クロック レーン
DMD_HS3_WDATA0_P	B24	O15	
DMD_HS3_WDATA0_N	C25	O15	
DMD_HS3_WDATA1_P	D24	O15	
DMD_HS3_WDATA1_N	E25	O15	
DMD_HS3_WDATA2_P	F22	O15	
DMD_HS3_WDATA2_N	E23	O15	
DMD_HS3_WDATA3_P	F24	O15	
DMD_HS3_WDATA3_N	G25	O15	To do a DMD Cubil/DC To do
DMD_HS3_WDATA4_P	H22	O15	チャネル 3 DMD SubLVDS データレーン
DMD_HS3_WDATA4_N	G23	O15	
DMD_HS3_WDATA5_P	K24	O15	
DMD_HS3_WDATA5_N	L25	O15	
DMD_HS3_WDATA6_P	K22	O15	
DMD_HS3_WDATA6_N	J23	O15	1
DMD_HS3_WDATA7_P	M22	O15	
DMD_HS3_WDATA7_N	L23	O15	

⁽¹⁾ I/O 定義の詳細については、セクション 4.12 を参照してください。

9

4.6 DMD リセットおよび低速インターフェイス

ピン		- I/O ⁽¹⁾	
名称	番号		説明
DMD_LS0_CLK_P	F2	O15	DMD (C) + Y-A - A - A - A - A - A - A - A - A - A
DMD_LS0_CLK_N	E1	O15	DMD 低速差動インターフェイス、ポート 0 クロック
DMD_LS0_WDATA_P	B2	O15	DMD 低速差動インターフェイス、ポート 0 書き込みデータ
DMD_LS0_WDATA_N	C1	O15	DIMD 仏迷左動インターノエイ人、ホートリ音さ込みケータ
DMD_LS1_CLK	G1	O12	DMD 低速シングルエンド インターフェイス、ポート 1 クロック
DMD_LS1_WDATA	E3	O12	DMD 低速シングルエンド インターフェイス、ポート 1 書き込みデータ
DMD_LS2_CLK	H2	O12	DMD 低速シングルエンド インターフェイス、ポート 2 クロック
DMD_LS2_WDATA	G3	O12	DMD 低速シングルエンド インターフェイス、ポート 2 書き込みデータ
DMD_LS0_RDATA	H4	I1	DMD、低速シングルエンド シリアル インターフェイス、ポート 0 読み取りデータ (2)
DMD_LS1_RDATA	J3	l1	DMD、低速シングルエンド シリアル インターフェイス、ポート 1 読み取りデータ ⁽²⁾ このポートを使用しない場合、この入力がフローティングにならないように、外部プルアップまたはブルダウンが必要です。
DMD_LS2_RDATA	M4	I1	DMD、低速シングルエンド シリアル インターフェイス、ポート 2 読み取りデータ ⁽²⁾ このポートを使用しない場合、この入力がフローティングにならないように、外部プルアップまたはプルダウンが必要です。
DMD_LS3_RDATA	K4	I1	DMD、低速シングルエンド シリアル インターフェイス、ポート 3 読み取りデータ (2)このポートを使用しない場合、この入力がフローティングにならないように、外部プルアップまたはプルダウンが必要です。
DMD_DEN_ARSTZ	J1	O10	DMDドライバイネーブル信号 / アクティブ Low 非同期リセット (1 = イネーブル、0 = リセット) この信号は、DMD がパークされた後、DMD から電源が切断される前に、Low に駆動されます。 コントローラの 1.8V 電源が DMD の 1.8V 電源から独立している場合、DMD 電源が供給されている間コントローラ電源が非アクティブになった場合に信号を Low に保持するために、外付けプルダウン抵抗を使用する必要があります。

- (1) I/O 定義の詳細については、セクション 4.12 を参照してください。
- (2) すべての制御インターフェイスの読み取りは、シングルエンドの低速信号を使用します。読み取りデータは、低速の差動書き込みクロックによってクロックされます。

4.7 フラッシュ インターフェイス

ピン		I/O ⁽¹⁾	説明	
名称	番号	1/O \ /	ניליבענו	
FLSH_CSZ	AG23	B16	チップ セレクト:ブート FLASH のみ (ブート FLASH はこのチップ セレクトを使用する必要があります)	
FLSH_CLK	AG25	B16	フラッシュ クロック	
FLSH_DATA0	AH22	B16	アドレス ビット 0 (LSB)	
FLSH_DATA1	AH24	B16	アドレス ビット 1	
FLSH_DATA2	AJ25	B16	アドレス ビット 2	
FLSH_DATA3	AJ23	B16	6 アドレスビット 3	

(1) I/O 定義の詳細については、セクション 4.12 を参照してください。

Copyright © 2024 Texas Instruments Incorporated

4.8 ペリフェラル インターフェイス

ピン		I/O ⁽¹⁾	説明	
名称	番号		10 <u>7.6.1</u>	
IIC0_SCL	AL25	B18	120 ポート 0 (プライマリ - セカンダリ)、通常はホストからコントローラへのコマンドおよび	
IIC0_SDA	AK24	B18	制御用としてセカンダリ、SCL (双方向、オープンドレイン):外部プルアップが必要です。このプルアップの最小許容値は 470Ω です。	
SSP0_DO	AP24	O17	SSP/SPI ポート 0 データ出力 (プライマリ): 送信データ ピン。	
SSP0_DI	AN23	13	SSP/SPI ポート 0 データ入力 (プライマリ): 受信データ ピン。	
SSP0_CLK	AN25	017	SSP/SPI ポート 0 クロック (プライマリ):クロック ピン。	
SSP0_CSZ_0	AM22	017	SPI ポート 0 チップ セレクト 0 (プライマリ):チップセレクト (アクティブ Low)。 外部デバイスへのチップ セレクト入力がフローティングにならないように、外付けプル プ抵抗 (≤ 10kΩ) を推奨します。	
USB_DAT_P	AU1	B7	- USB OTG データレーン	
USB_DAT_N	AW1	B7	038 016 7 - 9 0 - 9	
USB_VBUS	AP4	B7	USB OTG 5V 電源検出	
USB_ID	AT2	17	USB OTG ミニレセプタクルの識別。	
USB_TXRTUNE	AR3	PWR	RTTRIM USB OTG リファレンス抵抗: オンチップ抵抗のキャリブレーション用外付けリファレンス抵抗は、499Ω の値で接続する必要があります。	
HOST_IRQ	AK22	O17	ホスト割り込み (出力): HOST_IRQ は、DLPC の自動初期化が進行中であること、および最も重要なのはその完了時を示します。また、HOST_IRQ はコマンド処理中にも切り替わり、実行中であることを示します。このピンはリセット中にトライステートになります。この信号には外付けプルアップを接続する必要があります。	

(1) I/O 定義の詳細については、セクション 4.12 を参照してください。

4.9 GPIO ペリフェラル インターフェイス

表 4-3. GPIO ペリフェラル インターフェイス

ピン		I/O ⁽¹⁾	説明 (2) (3) (4)		
名称	番号	1,0	Mn31		
GPIO_00	AR25	B17	汎用 I/O 00: オプション: 1.Alt 0: SSP1_SCLK (O-P/I-S) 2. Alt 1: XY_IF_SCLK (I) 3. SW GPIO (B)		
GPIO_01	AU25	B17	汎用 I/O 01: オプション: 1.Alt 0: SSP1_DI (I) 2. Alt 1: XY_IF_DI(I) 3. SW GPIO (B)		
GPIO_02	AW25	B17	汎用 I/O 02: オプション: 1.Alt 0: SSP1_DO (O) 2. Alt 1: XY_IF_DO (O) 3. SW GPIO (B)		
GPIO_03	AT24	B17	汎用 I/O 03: オプション: 1.Alt 0:SSP1_CSZ_0 (O-P/I-S) 2.Alt 1: XY_IF_CSZ (I) 3. SW GPIO (B)		
GPIO_04	AV24	B17	汎用 I/O 04: オプション:1. Alt 0: SSP1_CSZ_1 (O-P/I-S) 2.Alt 1:該当なし 3.SW GPIO (B)		
GPIO_05	AR23	B17	汎用 I/O 05: オプション: 1.Alt 0:SSP1_CSZ_2 (O-P/I-S) 2.Alt 1:該当なし 3.SW GPIO (B)		
GPIO_06	AP22	B17	汎用 I/O 06: オプション: 1.Alt 0:SSP0_BCSZ (O-P/I-S) 2.Alt 1:SSP1_BCSZ (O-P/I-S) 3.SW GPIO (B)		
GPIO_07	AL23	B17	汎用 I/O 07: オプション: 1.Alt 0: IIC1_SCL (B) 2. Alt 1:該当なし 3.SW GPIO (B)		
GPIO_08	AM24	B17	汎用 I/O 08: オプション: 1.Alt 0:IIC1_SDA (B) 2.Alt 1:該当なし 3.SW GPIO (B)		
GPIO_09	N3	B10	汎用 I/O 09: オプション: 1.Alt 0:WPC_COLOR_SENSOR_VSYNC(O) 2.Alt 1: MEMAUX_1(O) 3. SW GPIO (B)		

English Data Sheet: DLPS253

ピン		I/O ⁽¹⁾	説明 (2) (3) (4)			
名称	番号		B0091			
GPIO_10	P4	B9	汎用 I/O 10: オプション: 1.Alt 0:UART1_RSTZ (O) 2.Alt 1:該当なし 3.SW GPIO (B)			
GPIO_11	T4	B10	汎用 I/O 11: オプション: 1.Alt 0: UART1_CTSZ(I) 2. Alt 1:該当なし 3.SW GPIO (B)			
GPIO_12	V4	B10	汎用 I/O 12: オプション: 1.Alt 0: DMD_PWR_EN (O) 2. Alt 1: RC_CHARGE (O) 3. SW GPIO (B)			
GPIO_13	AD24	B14	汎用 I/O 13: オプション: 1.Alt 0:PAUX0 (O) 2.Alt 1:LED_SEL0 (O) 3.SW GPIO (B)			
GPIO_14	AC23	B14	汎用 I/O 14: オプション: 1.Alt 0:PAUX1 (O) 2.Alt 1:LED_SEL1 (O) 3.SW GPIO (B)			
GPIO_15	AE25	B14	汎用 I/O 15: オプション: 1.Alt 0:PAUX2 (O) 2.Alt 1:LED_SEL2 (O) 3.SW GPIO (B)			
GPIO_16	AE23	B14	汎用 I/O 16: オプション: 1.Alt 0:PAUX3 (O) 2.Alt 1:LED_SEL3 (O) 3.SW GPIO (B)			
GPIO_17	AF24	B13	汎用 I/O 17: オプション: 1.Alt 0:PAUX4 (O) 2.Alt 1:LED_SEL4 (O) 3.SW GPIO (B)			
GPIO_18	AF22	B13	汎用 I/O 18: オプション: 1.Alt 0:PAUX5 (O) 2.Alt 1:LED_SEL5 (O) 3.SW GPIO (B)			
GPIO_19	R1	B10	汎用 I/O 19: オプション: 1.Alt 0: PAUX6 (O) 2.Alt 1: 該当なし 3.SW GPIO (B)			
GPIO_20	R3	B10	3.SW GPIO (B) 汎用 I/O 20: オプション: 1.Alt 0: PAUX7 (O) 2.Alt 1: SL_Trigger (I) 3. SW GPIO (B)			

13

名称	番号	I/O ⁽¹⁾	説明 ^{(2) (3) (4)}			
GPIO_21	U1	B10	汎用 I/O 21: オプション: 1.Alt 0:PAUX8 (O) 2.Alt 1:該当なし 3.SW GPIO (B)			
GPIO_22	T2	В9	汎用 I/O 22: オプション: 1.Alt 0:PAUX9 (O) 2.Alt 1:CW_INDEX0 (I) 3.SW GPIO (B)			
GPIO_23	U3	B10	汎用 I/O 23: オプション: 1.Alt 0:PAUX10 (O) 2.Alt 1:PWM_OUT_CW0 (O) 3.SW GPIO (B)			
GPIO_24	W1	B10	汎用 I/O 24: オプション: 1.Alt 0:PAUX11 (O) 2.Alt 1:PWM_OUT_CW1 (O) 3.SW GPIO (B)			
GPIO_25	V2	B10	汎用 I/O 25: オプション: 1.Alt 0: PWM_OUT_RLED (O) 2. Alt 1: CMP_MSEL_0 (O) 3.SW GPIO (B)			
GPIO_26	W3	B10	汎用 I/O 26: オプション: 1.Alt 0: PWM_OUT_GLED (O) 2. Alt 1: CMP_PWM (O) 3. SW GPIO (B)			
GPIO_27	AA1	B10	汎用 I/O 27: オプション: 1.Alt 0: PWM_OUT_BLED (O) 2. Alt 1: CMP_OUT (I) 3. SW GPIO (B)			
GPIO_28	Y4	B10	汎用 I/O 28: オプション: 1.Alt 0: PWM_OUT_IRLED (O) 2. Alt 1: LS_PWR (O) 3. SW GPIO (B)			
GPIO_29	Y2	B10	汎用 I/O 29: オプション:1.Alt 0: PWM_OUT_UVLED (O) 2. Alt 1:CW_INDEX_1 (I) 3.SW GPIO (B)			
GPIO_30	AA3	B11	汎用 I/O 30: オプション: 1.Alt 0: HBT_CLKOUT (O) 2. Alt 1: 該当なし 3.SW GPIO (B)			
GPIO_31	AB4	B10	汎用 I/O 31: オプション: 1.Alt 0: HBT_DO (O) 2. Alt 1:該当なし 3.SW GPIO (B)			

ピン		I/O ⁽¹⁾	説明 (2) (3) (4)			
名称	番号		RT 193 (-7 (-7 (-7			
GPIO_32	AC1	B10	汎用 I/O 32: オプション: 1.Alt 0: HBT_CLKIN_0 (I) 2.Alt 1: 該当なし 3.SW GPIO (B)			
GPIO_33	AB2	B10	汎用 I/O 33: オプション: 1.Alt 0:HBT_DI_0 (I) 2.Alt 1:該当なし 3.SW GPIO (B)			
GPIO_34	AC3	В9	汎用 I/O 34: オプション: 1.Alt 0:HBT_CLKIN_1 (I) 2.Alt 1:GP_CLK2 (O) 3.SW GPIO (B)			
GPIO_35	AD4	B10	汎用 I/O 35: オプション: 1.Alt 0:HBT_DI_1 (I) 2.Alt 1: CAL_PWR(O) 3. SW GPIO (B)			
GPIO_36	AE1	B10	汎用 I/O 36: オプション: 1.Alt 0:HBT_CLKIN_2 (I) 2.Alt 1:該当なし 3.SW GPIO (B)			
GPIO_37	AD2	B10	汎用 I/O 37: オプション: 1.Alt 0:HBT_DI_2 (I) 2.Alt 1:該当なし 3.SW GPIO (B)			
GPIO_38	AE3	B10	汎用 I/O 38: オプション: 1.Alt 0: EFSYNC (O)/DASYNC(I) 2. Alt 1:該当なし 3.SW GPIO (B)			
GPIO_39	AG1	B10	汎用 I/O 39: オプション: 1.Alt 0:SEQ_SYNC (B - オープンドレイン) 2.Alt 1:該当なし 3.SW GPIO (B)			
GPIO_40	AF4	B10	汎用 I/O 40: オプション: 1.Alt 0:AWC0_DACCLK_0_1 (O) 2.Alt 1:該当なし 3.SW GPIO (B)			
GPIO_41	AF2	B11	汎用 I/O 41: オプション: 1.Alt 0:AWC0_DACCLK_0_1 (O) 2.Alt 1:該当なし 3.SW GPIO (B)			
GPIO_42	AJ1	B10	汎用 I/O 42: オプション: 1.Alt 0:AWC0_DACS_PWMA_0 (O) 2.Alt 1:該当なし 3.SW GPIO (B)			

ピン		L(O(1)	± π (2) (3) (Δ)			
名称	番号	- I/O ⁽¹⁾	説明 (2) (3) (4)			
GPIO_43	AG3	B10	汎用 I/O 43: オプション: 1.Alt 0:AWC0_DACD_PWMB_0 (O) 2.Alt 1:PWM_OUT_BLED_2 (O) 3.SW GPIO (B)			
GPIO_44	AH2	B10	汎用 I/O 44: オプション: 1.Alt 0:AWC0_DACS_PWMA_1 (O) 2.Alt 1:PAUX_INT0 (O) 3.SW GPIO (B)			
GPIO_45	AJ3	B10	汎用 I/O 45: オプション: 1.Alt 0:AWC0_DACD_PWMB_1 (O) 2.Alt 1:PAUX_INT1 (O) 3.SW GPIO (B)			
GPIO_46	AL1	B10	汎用 I/O 46: オプション: 1.Alt 0:該当なし 2.Alt 1:PAUX_INT2 (O) 3.SW GPIO (B)			
GPIO_47	AK4	B11	汎用 I/O 47: オプション: 1.Alt 0:AWC1_DACCLK_0_1 (O) 2.Alt 1:PAUX_INT3 (O) 3.SW GPIO (B)			
GPIO_48	AK2	B10	汎用 I/O 48: オプション: 1.Alt 0:AWC1_DACS_PWMA_0 (O) 2.Alt 1:SF_SEL_0 (O) 3.SW GPIO (B)			
GPIO_49	AN1	B10	汎用 I/O 49: オプション: 1.Alt 0:AWC1_DACD_PWMB_0 (O) 2.Alt 1:SF_SEL_1 (O) 3.SW GPIO (B)			
GPIO_50	AL3	B10	汎用 I/O 50: オプション: 1.Alt 0:AWC1_DACS_PWMA_1 (O) 2.Alt 1:SF_SEL_2 (O) 3.SW GPIO (B)			
GPIO_51	AM2	B10	汎用 I/O 51: オプション: 1.Alt 0:AWC1_DACD_PWMB_1 (O) 2.Alt 1:SF_SEL_3 (O) 3.SW GPIO (B)			

4.10 クロックおよび PLL のサポート

ピン		I/O ⁽¹⁾	説明
名称	番号		נילי מינו
REFCLK_I	N1	18	水晶振動子入力:リファレンス クロックの水晶振動子入力 (2)(3)
REFCLK_O	L1	O8	水晶振動子出力:リファレンス クロックの水晶振動子出力 (2) (5)

English Data Sheet: DLPS253

ピン		- I/O ⁽¹⁾	94. DD
名称	番号		説明
OCLKA	AB24	O14	汎用出力クロック A (4) カラー ホイール モーター コントローラ駆動用。周波数はソフトウェアでプログラム可能で、パワーアップ時のデフォルト周波数は 0.99MHz です。 注:出力周波数は、パワーアップ以外のリセット動作の影響を受けません (システムは電源がサイクルされるまで、最後にプログラムされた値を保持します)。

- (1) I/O 定義の詳細については、「I/O テーブル」を参照してください。
- (2) この信号の詳細については、「システム発振器のタイミング」を参照してください。
- (3) 水晶振動子の代わりに外部発振器を使用するアプリケーションでは、発振器を使用してこのピンを駆動します。
- (4) この信号の詳細については、「プログラマブル出力クロックタイミング」を参照してください。
- (5) 水晶振動子の代わりに外部発振器を使用するアプリケーションでは、このピンを接地する必要があります。

資料に関するフィードバック(ご意見やお問い合わせ)を送信

17

4.11 電源およびグランド

表 4-4. 電源およびグランド

ピン		- I/O ⁽¹⁾	説明	
名称	番号	1,0 (1)	ניפי ביינה	
VDDA18_PLLM	AL11	PWR	メイン I/F PLL 用 1.8V (公称)	
VDDA18_PLLD	J13	PWR	DMD I/F PLL 用 1.8V (公称)	
VDD_CORE	AA13, AA15, AA21, AB16, AC13, AD6, AD8, AD18, AD20, AE9, AE11, AF14, AF16, AF20, AG7, AH6, AJ11, AL9, AL13, AL17, AL19, K8, K18, L9, L13, M6, M20, N15, N17, T6, T12, T14, T20, U19, V8, V10, Y6, Y20	PWR		
VDDAR_CORE	AB10、AB12、AJ9、 AJ13、AJ15、AJ17、 AJ19、AK8、N11、 N13、P8、P18、R9、 R19、W15、W17	PWR		
VDDA_CORE_DSI	AR7	PWR		
VDDA_CORE_FPD	AM16、AM18、AM20	PWR	FPD コア用 0.8V (公称) 固定電源	
VDDA_CORE_USB	AM6	PWR	USB コントローラ用 0.8V (公称)	
VDDA_CORE_Vx1	AM10、AM14	PWR	Vx1 コア用 0.8V (公称) 固定電源	
VDDA18_DDI	J7、J9、J11、J15、 J17、J19	PWR	SubLVDS DMD インターフェイス用 1.8V (公称) 固定 IO 電源	
VDDA18_DSI	AP8	PWR	DSI 用 1.8V (公称)	
VDDA18_FPD	AN15、AP16、AP18、 AR19	PWR	FPD I/O 用 1.8V (公称) 固定電源	
VDDA18_USB	AN7	PWR	USB PHY 用 1.8V (公称)	
VDDA18_Vx1	AM12、AP10、AP14	PWR	Vx1 I/O 用 1.8V (公称) 固定電源	
VDDA33_USB	AP6	PWR	USB PHY 用 3.3V (公称)	
VDDS18_LVCMOS1	AA5、AE5、AG5、 AL5、W5			
VDDS18_LVCMOS2	N21, R21, U21, W21			
VDDS18_OSC	U5	PWR	リファレンス発振器 I/O 用 1.8V (公称) 固定電源	
VDDSHV_FLSH	AC21, AE21	PWR	クワッドシリアル フラッシュ インターフェイス用 1.8V または 3.3V (公称) マルチ電圧 IO 電源	
VDDSHV_INTF	AG21、AL21	PWR	PMIC I/O の代わりに PAD1000 をサポートするための、SPI および I ² C I/O 用 1.8V または 3.3V (公称) マルチ電圧 IO 電源 (GPIO[8:0] を含む)。また、HOST_IRQ。	

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: DLPS253

表 4-4. 電源およびグランド (続き)

ピン		I/O ⁽¹⁾ 説明	-¥2.nu
名称	番号	1/0 (1)	説明
VSS	A1, A9, A23, A25, AA7, AA9, AA17, AA19, AB6, AB8, AB14, AB18, AB20, AC5, AC9, AC11, AC15, AC17, AD12, AD14, AD16, AE13, AE17, AF6, AF8, AF12, AF18, AG9, AG11, AG13, AG17, AG19, AH10, AH14, AH16, AH20, AK6, AK16, AK20, AL7, AL15, AM8, AN5, AN9, AN21, AP12, AP20, AR5, AR9, AR11, AR13, AR15, AR17, AR21, AT4, AT6, AT8, AT10, AT12, AT14, AT18, AT22, AU3, AU7, AU23, AV2, AV10, AV14, AW7, AW19, AY2, AY14, AY24, B16, BA1, BA7, BA19, BA25, BB2, BB14, BB24, C9, C23, D2, D16, G5, G7, G9, G11, G15, G17, G19, G21, H6, H8, H10, H12, H14, H16, H18, H20, J5, J21, K6, K10, K16, K20, L5, L7, L11, L15, L17, M2, M10, M14, M18, N5, N7, P10, P12, P14, P20, R5, R11, R15, R17, T8, T10, T16, U7, U11, U15, U17, V6, V12, V14, V20, W7, W13, W19, Y8, Y10, Y12, Y14, Y18	RTN	グランド、パッケージ レベルではすべてのグランドは VSS に接続
VPP	L21	RTN	製造用途のみ (eFuse)。グランドに接続する必要があります。

⁽¹⁾ I/O 定義の詳細については、セクション 4.12 を参照してください。

19

4.12 I/O タイプのサブスクリプト定義

	I/O		
サブスクリプト	説明	電源リファレンス	ESD 構造
1	LVCMOS 1.8V のみ	VDDS18_LVCMOS1	電源レールと GND への ESD ダイオード
2	LVCMOS 1.8V のみ	VDDS18_LVCMOS2	電源レールと GND への ESD ダイオード
3	LVCMOS 1.8/3.3V	VDDSHV_INTF	電源レールと GND への ESD ダイオード
4	差動 FPD LVDS	VDDA18_FPD	電源レールと GND への ESD ダイオード
5	差動 V-by-One	VDDA18_VX1	電源レールと GND への ESD ダイオード
6	差動 DSI	VDDA18_DSI	電源レールと GND への ESD ダイオード
7	USB 2.0	VDDA18_USB、 VDDA33_USB	電源レールと GND への ESD ダイオード
8	基準発振器入力	VDDS18_OSC	電源レールと GND への ESD ダイオード
9	LVCMOS 1.8V のみ 6.5mA	VDDS18_LVCMOS1	電源レールと GND への ESD ダイオード
10	LVCMOS 1.8V のみ 8mA	VDDS18_LVCMOS1	電源レールと GND への ESD ダイオード
11	LVCMOS 1.8V のみ 12mA	VDDS18_LVCMOS1	電源レールと GND への ESD ダイオード
12	LVCMOS 1.8V のみ 24mA	VDDS18_LVCMOS1	電源レールと GND への ESD ダイオード
13	LVCMOS 1.8V のみ 6.5mA	VDDS18_LVCMOS2	電源レールと GND への ESD ダイオード
14	LVCMOS 1.8V のみ 8mA	VDDS18_LVCMOS2	電源レールと GND への ESD ダイオード
15	差動 SubLVDS 1.8V	VDDA18_DDI	電源レールと GND への ESD ダイオード
16	LVCMOS 1.8/3.3V 8mA	VDDSHV_FLSH	電源レールと GND への ESD ダイオード
17	LVCMOS 1.8/3.3V 7.5mA	VDDSHV_INTF	電源レールと GND への ESD ダイオード
18	i ² c 1.8/3.3V3mA@3.3V	VDDSHV_INTF	電源レールと GND への ESD ダイオード
タイプ			
I	入力		
0	出力		
В	双方向	該当なし	
PWR	電源		
RTN	グランド リターン		

4.13 内部プルアップおよびプルダウンの特性

内部プルアップ抵抗およびプルダウン抵抗の特性(1)	条件	最小値	最大値	単位
弱いプルアップ抵抗 - FLSH_CSZ	VDD_FLSH = 3.3V	42	59	kΩ
弱いプルアップ抵抗 - SSP0_CSZ_0	VDD_INTF = 3.3V	18	26	kΩ
弱いプルアップ抵抗 - JTAGTRSTZ、JTAGTDI、 JTAGTMS1、JTAGTMS2、	VDD18 = 1.8 V	31	84	kΩ
弱いプルダウン抵抗 - JTAGTCK、HWTEST_EN、 TSTPT_0、TSTPT_1、TSTPT_2、TSTPT_3、 TSTPT_4、TSTPT_5、TSTPT_6、TSTPT_7、 GPTP0、GPTP1、GPTP2	VDD18 = 1.8 V	31	71	kΩ

(1) 5.7kQ 以下の外付けプルアップ抵抗またはプルダウン抵抗 (必要な場合) は、どの電圧条件でも、関連する内部プルアップ抵抗またはプルダウン抵抗を適切に無効化するのに十分です。

資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated

5 仕様

5.1 絶対最大定格

自由気流での動作温度範囲内 (特に記述のない限り)(1)

パラ	メータ	最小値	標準値 最大値	単位
電源電圧 ⁽²⁾				
VDD_CORE	コア ロジック用 0.8V (公称)	-0.3	1.05	V
VDDAR_CORE	SRAM コア (0.8V 公称)	-0.3	1.05	V
VDDS18_LVCMOS1	1.8V (公称) 固定 IO 電源、左側	-0.3	2.2	V
VDDS18_LVCMOS2	1.8V (公称) 固定 IO 電源、右側	-0.3	2.2	V
VDDA_CORE_DSI	DSI 用 0.8V (公称)	-0.3	1.05	V
VDDA18_DSI	DSI 用 1.8V (公称)	-0.3	2.2	V
VDDA_CORE_FPD	FPD コア用 0.8V (公称) 固定電源	-0.3	1.05	V
VDDA18_FPD	FPD I/O 用 1.8V (公称) 固定電源	-0.3	2.2	V
VDDA_CORE_Vx1	Vx1 コア用 0.8V (公称) 固定電源	-0.3	1.05	V
VDDA18_Vx1	Vx1 I/O 用 1.8V (公称) 固定電源	-0.3	2.2	V
VDDA_CORE_USB	USB コントローラ用 0.8V (公称)	-0.3	1.05	V
VDDA18_USB	USB PHY 用 1.8V (公称)	-0.3	2.2	V
VDDA33_USB	USB PHY 用 3.3V (公称)	-0.3	3.6	V
VDDSHV_INTF	PMIC I/O の代わりに PAD1000 をサポートする ための、SPI および I ² C I/O 用 1.8V または 3.3V (公称) マルチ電圧 IO 電源 (GPIO[8:0] を 含む)。また、HOST_IRQ。	-0.3	3.8	V
VDDSHV_FLSH	クワッドシリアル フラッシュ インターフェイス用 1.8V または 3.3V (公称) マルチ電圧 IO 電源	-0.3	3.8	V
VDDA18_DDI	SubLVDS DMD インターフェイス用 1.8V (公称) 固定 IO 電源	-0.3	2.2	V
VDDS18_OSC	リファレンス発振器 I/O 用 1.8V (公称) 固定電源	-0.3	2.2	V
VDDA18_PLLM	メイン I/F PLL 用 1.8V (公称)	-0.3	2.2	V
VDDA18_PLLD	DMD I/F PLL 用 1.8V (公称)	-0.3	2.2	V
LDO INTF				
CAP_VDDS_INTF	3.3V/1.8V デュアル電圧インターフェイス I/O 用 外付けコンデンサ		1.8 1.98 V	٧
CAP_VDDS_FLSH	3.3V/1.8V デュアル電圧フラッシュ I/O 用外付け部コンデンサ		1.0 1.90 V	V
一般				
ТЈ	動作時接合部温度	-30	115	°C
Τ _C	動作時のケース温度	-30	105	°C
IO ピンの過渡オーバーシュートおよびアンダー シュート	信号周期の最大 20% にわたって IO 電源電圧 の 20% (図 5-1、IO 過渡電圧範囲を参照)		0.2×VDD	V
T_{stq}	保管温度範囲	-40	125	°C

- (1) 「絶対最大定格」の範囲外の動作は、デバイスの永続的な損傷の原因となる可能性があります。「絶対最大定格」は、これらの条件において、または「推奨動作条件」に示された値を超える他のいかなる条件でも、本製品が正しく動作することを意味するものではありません。「絶対最大定格」の範囲内であっても「推奨動作条件」の範囲外であると、デバイスが完全に機能しない可能性があり、デバイスの信頼性、機能、性能に影響を及ぼし、デバイスの寿命を縮める可能性があります。
- (2) すべての電圧値は、GND を基準としたものです。

21

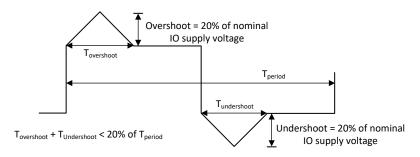


図 5-1. IO 過渡電圧範囲

5.2 ESD 定格

ANSI/ESDA/JEDEC JS-002

		パラメータ	値	単位
V	静電放電	人体モデル (HBM)、ANSI/ESDA/JEDEC JS-001 に準拠、 すべてのピン ⁽¹⁾	±1000	V
V _(ESD)		デバイス帯電モデル (CDM)、ANSI/ESDA/JEDEC JS-002 に準拠 ⁽²⁾	±250	'

- (1) JEDEC のドキュメント JEP155 に、500V HBM では標準の ESD 管理プロセスで安全な製造が可能であると規定されています。
- (2) JEDEC のドキュメント JEP157 に、250V CDM では標準の ESD 管理プロセスで安全な製造が可能であると規定されています。

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: DLPS253

5.3 推奨動作条件

	パラメータ	許容誤差	最小値	標準値	最大値	単位
電源電圧					-	
VDD_CORE	コア ロジック用 0.8V (公称)		0.76	8.0	0.84	V
VDDAR_CORE	SRAM コア (0.8V 公称)		0.76	0.8	0.84	V
VDDS18_LVCMOS1	1.8V (公称) 固定 IO 電源、左側		1.647	1.8	1.953	V
VDDS18_LVCMOS2	1.8V (公称) 固定 IO 電源、右側		1.647	1.8	1.953	V
VDDA_CORE_DSI	DSI 用 0.8V (公称)		0.76	0.8	0.84	V
VDDA18_DSI	DSI 用 1.8V (公称)		1.647	1.8	1.953	V
VDDA_CORE_FPD	FPD コア用 0.8V (公称) 固定電源		0.76	0.8	0.84	V
VDDA18_FPD	FPD I/O 用 1.8V (公称) 固定電源		1.647	1.8	1.953	V
VDDA_CORE_Vx1	Vx1 コア用 0.8V (公称) 固定電源		0.76	0.8	0.84	V
VDDA18_Vx1	Vx1 I/O 用 1.8V (公称) 固定電源		1.647	1.8	1.953	V
VDDA_CORE_USB	USB コントローラ用 0.8V (公称)		0.76	0.8	0.84	V
VDDA18_USB	USB PHY 用 1.8V (公称)		1.647	1.8	1.953	V
VDDA33_USB	USB PHY 用 3.3V (公称)		3.02	3.3	3.52	V
VDDSHV_INTF	PMIC I/O の代わりに PAD1000 をサポート するための、SPI および I ² C I/O 用 1.8V ま たは 3.3V (公称) マルチ電圧 IO 電源 (GPIO[8:0] を含む)。また、HOST_IRQ。		1.647	1.8	1.953	V
VDDSHV_INTF	3.3V 動作		3.02	3.3	3.52	V
VDDSHV_FLSH	クワッドシリアル フラッシュ インターフェイス 用 1.8V または 3.3V (公称) マルチ電圧 IO 電源		1.647	1.8	1.953	V
VDDSHV_FLSH	3.3V 動作		3.02	3.3	3.52	V
VDDA18_DDI	SubLVDS DMD インターフェイス用 1.8V (公称) 固定 IO 電源		1.647	1.8	1.953	٧
VDDS18_OSC	リファレンス発振器 I/O 用 1.8V (公称) 固定 電源		1.647	1.8	1.953	V
VDDA18_PLLM	メイン I/F PLL 用 1.8V (公称)		1.647	1.8	1.953	V
VDDA18_PLLD	DMD I/F PLL 用 1.8V (公称)		1.647	1.8	1.953	V
一般			1		1	
T _J	動作時接合部温度		-30		115	°C
T _C	動作時のケース温度		-30		94	°C
T _A	動作時周囲温度(1)(2)		-30		85	°C

⁽¹⁾ 動作時周囲温度範囲の値は、JEDEC JESD51 規格のテストカードや環境を使用するのではなく、「一般的なレイアウトガイドライン」に記載されている基板の設計パラメータに基づいて、プロセス、電圧、温度に対する最小および最大の推定消費電力を考慮して決定されたものです。R_{θJA}に影響する周囲の熱条件は、アプリケーションによって異なります。そのため、最大動作時周囲温度はアプリケーションによって異なります。T_{a_min} = T_{j_min} − (P_{d_min} × R_{θJA}) = 0°C − (host_min_valueW × host_value°C/W) = −host_value°C/W) = −host_calculated_value°C T_{a_max} = T_{j_max} − (P_{d_max} × R_{θJA}) = +115°C − (host_max_valueW × host_value°C/W) = +host_calculated_value°C

23

⁽²⁾ 動作時周囲温度は、システムの熱設計に依存します。動作時のケース温度は、周囲温度条件において指定範囲を超えてはなりません。

5.4 熱に関する情報

			FCCSP	
烈	 評価基準⁽¹⁾	テスト条件	484 ピン	単位
R _{JC}	接合部からケースへの熱抵抗		3.3	°C/W
		強制エアフローが 0m/s のとき ⁽²⁾	19.5	
$R_{\theta JA}$	接合部から空気への熱抵抗	強制エアフローが 1m/s のとき ⁽²⁾	12.9	°C/W
		強制エアフローが 2m/s のとき ⁽²⁾	11.8	
ΨЈТ	接合部からパッケージ上面の中心	温度までの温度変化、単位消費電力あたり	0.04	°C/W

5.5 電源の電気的特性

自由空気での動作温度範囲内 (特に記述のない限り)

	パラメータ	テスト条件	最小値 標準値 (1)	最大値	単位
V _(Supply08)	0.8V DVH 電源	コア電源	1.48		Α
V _(Supply18)	1.8V DVH 電源	IO 電源、VbyOne、SubLVDS、GPIO	180		mA
V _(Supply33)	3.3V DVH 電源	USB サプライ	1		mA

(1) 標準的な消費電力は、周囲温度 25°Cで、SMPTE カラー バー画像を使用した標準的な使用事例 3840×2160 CVT タイミングに基づいています。これらの値は、ソフトウェアの更新やお客様による変更が消費電力性能に与える影響を考慮したものではありません。

Product Folder Links: DLPC8445

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2024 Texas Instruments Incorporated

5.6 ピンの電気的特性

	パラメータ	10 のタイプ	テスト条件	最小値	標準値	最大値	単位
		9	LVCMOS 1.8V のみ / 6.5mA	1.26	1.8	1.98	V
		10	LVCMOS 1.8V のみ / 8mA	1.26	1.8	1.98	V
V_{IH}	High レベル入力スレッショルド電圧	11	LVCMOS 1.8V のみ / 12mA	1.26	1.8	1.98	V
	17/11 時/工	17	LVCMOS (1.8 または 3.3V)/7.5mA	1.26	1.8	1.98	V
		16	LVCMOS (1.8 または 3.3V)/8mA	1.26	1.8	1.98	V
		9	LVCMOS 1.8V のみ / 6.5mA	-0.3		1.98 1.98 1.98 1.98	V
		10	LVCMOS 1.8V のみ / 8mA	-0.3		0.58	V
V_{IL}	l .	11	LVCMOS 1.8V のみ / 12mA	-0.3		0.58	V
	17/11 中山上	17	LVCMOS (1.8 または 3.3V)/7.5mA	-0.3		0.49	V
	High レベル入力スレッショルド電圧 High レベル出力スレッショルド電圧 Low レベル出力スレッショルド電圧 High レベル入力電流 Low レベル入力電流	16	LVCMOS (1.8 または 3.3V)/8mA	-0.3		0.49	V
		9	LVCMOS 1.8V のみ / 6.5mA	1.35		8 1.98 8 1.98 8 1.98 8 1.98 0.58 0.58 0.49 0.49 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	V
		10	LVCMOS 1.8V のみ / 8mA	1.35			V
High レベル出力スレッシ	11	LVCMOS 1.8V のみ / 12mA	1.35			V	
V ОН	ョルド電圧	12	LVCMOS 1.8V のみ / 24mA	1.35			V
		17	LVCMOS (1.8 または 3.3V)/7.5mA	1.35			V
		16	LVCMOS (1.8 または 3.3V)/8mA	1.35	V		
		9	LVCMOS 1.8V のみ / 6.5mA			0.45	V
		10	LVCMOS 1.8V のみ / 8mA			0.45	V
		11	LVCMOS 1.8V のみ / 12mA			0.45	V
√ _{OL}		12	LVCMOS 1.8V のみ / 24mA			0.45	V
	コルト 电江	± 17	LVCMOS (1.8 または 3.3V)/7.5mA			0.45	V
		16	LVCMOS (1.8 または 3.3V)/8mA			0.45 0.45	V
		18	I ² C セル 1.8V/3.3V – 3mA@3.3V			0.4	V
		9	LVCMOS 1.8V のみ / 6.5mA			10	μΑ
		10	LVCMOS 1.8V のみ / 8mA			10	μΑ
	High Long J 古香冰	11	LVCMOS 1.8V のみ / 12mA			10	μΑ
ІІН	High レベル人刀竜流	17	LVCMOS (1.8 または 3.3V)/7.5mA			10	μΑ
		16	LVCMOS (1.8 または 3.3V)/8mA			10	μΑ
		18	I ² C セル 1.8V/3.3V – 3mA@3.3V			0.58 0.58 0.49 0.49 0.45 0.45 0.45 0.45 0.45 0.45 10 10 10 10	μΑ
		9	LVCMOS 1.8V のみ / 6.5mA	-10			μΑ
		10	LVCMOS 1.8V のみ / 8mA	-10			μΑ
ı	1	11	LVCMOS 1.8V のみ / 12mA	-10			μΑ
IL	LOWレベル人刀電流	17	LVCMOS (1.8 または 3.3V)/7.5mA	-10			μA
		16	LVCMOS (1.8 または 3.3V)/8mA	-10			μΑ
		18	I ² C セル 1.8V/3.3V – 3mA@3.3V	-10			μΑ
		9	LVCMOS 1.8V のみ / 6.5mA			6.5	mA
		10	LVCMOS 1.8V のみ / 8mA			8	mA
l	Uigh Lixat 出土帝法	11	LVCMOS 1.8V のみ / 12mA			12	mA
ОН	High レベル出力電流	17	LVCMOS (1.8 または 3.3V)/7.5mA			6	mA
		16	LVCMOS (1.8 または 3.3V)/8mA			8	mA
		18	I ² C セル 1.8V/3.3V – 3mA@3.3V			3	mA

25

5.6 ピンの**電気的特性** (続き)

	パラメータ	10 のタイプ	テスト条件	最小値	標準値	最大値	単位
		9	LVCMOS 1.8V のみ / 6.5mA			6.5	mA
		10	LVCMOS 1.8V のみ / 8mA			8	mA
loL Low レベル出力電流	11	LVCMOS 1.8V のみ / 12mA			12	mA	
	17	LVCMOS (1.8 または 3.3V)/7.5mA			6	mA	
		16	LVCMOS (1.8 または 3.3V)/8mA			8	mA
		18	I ² C セル 1.8V/3.3V - 3mA@3.3V			3	mA

5.7 DMD SubLVDS インターフェイスの電気的特性

自由空気での温度範囲内で動作 (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
V _{CM}	定常状態の同相電圧		0.8	0.9	1	V
V _{CM} (Δp.p)	V _{CM} 変動のピークツー ピーク				75	mV
V _{CM} (Δss)	V _{CM} 変動の定常状態		-10		10	mV
V _{OD}	差動出力電圧の大きさ		170	250	350	mV
V _{OD} (Δ)	V _{OD} 変動 (ロジック状態間)		-10		10	mV
V _{OH}	シングルエンド出力電圧 High		0.825	1.025	1.175	V
V _{OL}	シングルエンド出力電圧 Low		0.625	0.775	0.975	V
Tx _{term}	内部差動終端		80	100	120	Ω
Tx _{load}	100Ω の差動 PCB トレース (50Ω 伝送ライン)		0.25		10	インチ

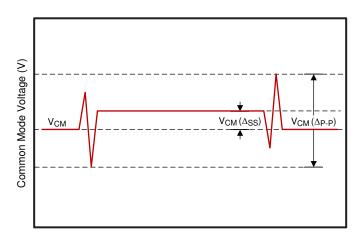


図 5-2. 同相電圧

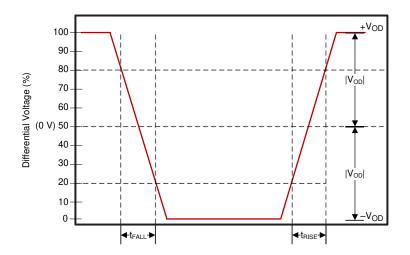


図 5-3. 差動出力信号

27

5.8 DMD 低速インターフェイスの電気的特性

	パラメータ	テスト条件	最小値	標準値	最大値	単位
Tx _{load}	100Ω の差動 PCB トレース (50Ω 伝送ライン)				10	インチ
V _{OH(DC)}	DC シングルエンド出力電圧 High	0.7 × VDDS18_LVCMOSX	1.35			V
V _{OL(DC)}	DC シングルエンド出力電圧 Low	0.3 × VDDS18_LVCMOSX			0.45	V
V _{OH(AC)} (1)	AC シングルエンド出力電圧 High		1.1			V
V _{OL(AC)} (2)	AC シングルエンド出力電圧 Low	-0.5, 0.2 × VDDS18_LVCMOSX			0.6	V

- (1) V_{OH(AC)}の最大値はオーバーシュートに適用されます。DMD_LSX_WDATA ラインと DMD_LSX_CLK ラインに適切な 43Ω 直列終端抵抗が含まれている場合、DMD は LPSDR 入力 AC 仕様内で動作します。
- (2) $V_{OH(AC)}$ の最小値はアンダーシュートに適用されます。 DMD_LS_WDATA ラインと DMD_LS_CLK ラインに適切な 43Ω 直列終端抵抗が含まれている場合、 DMD は LPSDR 入力 AC 仕様内で動作します。

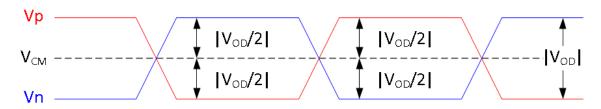


図 5-4. DMD 低速差動電圧パラメータ

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: DLPS253

5.9 V-by-One インターフェイスの電気的特性

自由空気での動作温度範囲内 (特に記述のない限り)

	パラメータ ⁽¹⁾	最小値	公称值	最大値	単位
V_{DIFF}	入力ピークツー ピーク 差動	2×V _{ID}			mVppd
V _{ID}	差動入力電圧	50			mV
Rx _{term}	内部差動終端	80	100	120	Ω

(1) 詳細は、『V-by-One インターフェイス規格』を参照してください。

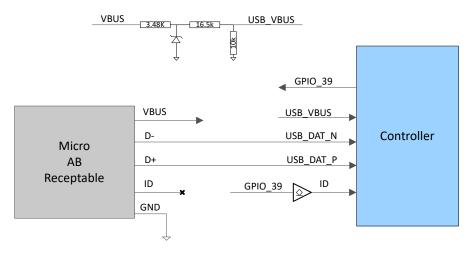
29

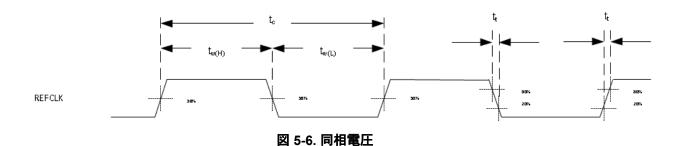
5.10 USB の電気的特性

自由空気での動作温度範囲内 (特に記述のない限り)

	パラメータ ⁽¹⁾		最小値	公称值	最大値	単位
低速およびフル	スピード (入力レベル)					
V _{IH}	シングルエンド入力電圧 High (駆動)		2			V
V _{IL}	シングルエンド入力電圧 Low				0.8	V
V _{DI}	差動入力感度	(DP) – (DM)	0.2			V
V _{CM}	作動同相電圧	V _{DI} 範囲を含む	-50		500	mV
低速およびフル	スピード (出力レベル)					
V _{OL}	Low レベル出力電圧	1.425kΩ プルアップを 3.6V に接続した場合	0		0.3	V
V _{OH}	High レベル出力電圧	14.25kΩ プルダウンを 接続した場合	2.8		3.6	V
髙速 (入力レベノ	ν)					
V _{HSSQ}	高速スケルチ検出スレッショルド (差動信号の振幅)		100		150	mV
髙速 (出力レベノ	ν)					
終端						
R _{PU}	バスプルアップ抵抗		1.425		1.575	ΚΩ
R _{PD}	バスプルダウン抵抗		14.25		15.75	ΚΩ
Z _{HSDRV}	高速ドライバ出力インピーダンス		40.5		49.5	Ω

(1) VDDA33_USB を基準とする




図 5-5. DLPC8445 および DLPC8445V コントローラの USB の使用例

5.11 システム発振器のタイミング要件

パラメータ			最小値	公称值	最大値	単位
$f_{ m clock}$	クロック周波数、REFCLK (1) (2)	PLL:40MHz	39.992	40.000	40.008	MHz
t _c	サイクル時間、REFCLK (1)	PLL:40MHz	24.995	25.000	25.005	ns
t _{w(H)}	パルス幅 ⁽³⁾ 、REFCLK、High	PLL:40MHz 50%~50% のリファレンス ポイント (信号)	11.25			ns
t _{w(L)}	パルス幅 ⁽³⁾ 、REFCLK、Low	PLL:40MHz 50%~50% のリファレンス ポイント (信号)	11.25			ns

- (1) REFCLK 入力は、拡散スペクトラム クロックをサポートしていません。
- (2) マルチ コントローラ システムでは、システム内のすべてのコントローラの REFCLK 入力を駆動するために単一の発振器を使用する必要があります。
- (3) 外部のデジタル発振器によって駆動されている場合にのみ適用されます。これは 1 シグマ RMS の値です。

Copyright © 2024 Texas Instruments Incorporated

5.12 電源およびリセットのタイミング要件

自由空気での動作温度範囲内 (特に記述のない限り)

	パラメータ		最小値	最大値	単位
t _{RAMP-UP}	電源ランプアップ時間 (1)	各電源のランプアップ時間:TOV × 10%~ TOV × 90%、TOV = 標準動作電圧。	10		ms mv/µs
t _{RAMP-UP-TOTAL}	合計電源ランプアップ時間(1)	0.8V 電源、1.8V 電源、3.3V 電源がランプ アップを完了する必要がある合計時間。ラン プアップ時間:TOV × 10%~TOV × 90%、 TOV = 標準動作電圧。		100	ms
t _{RAMP-DOWN}	電源ランプダウン時間(1)	各電源のランプダウン時間:TOV × 90%~ TOV × 10%、TOV = 標準動作電圧。	0		ms
t _{w1}	パルス幅、非アクティブ Low、RESETZ	RESETZ 非アクティブ時間 50%~50% の リファレン スポイント (信号)	100		ms
t _{t1}	遷移時間、RESETZ \mathbf{t}_{t1} = \mathbf{t}_{f1} および \mathbf{t}_{r1}	RESETZ の立ち上がり / 立ち下がり時間 ⁽²⁾ 20%~80% のリファレンス ポイント (信号)		25	μs
t _{PROJ_ON}	PROJ_ON 立ち下がり時間遅延	電源が ≤ 80% になるまでの PROJ_ON 立 ち下がり時間遅延	10		ms
t _{REFCLKA}	REFCLK の安定までの時間 (3)	POSENSE の前の REFLCKA の安定まで の時間	1		ms

- (1) 0.8V の電源はすべて同じソースから供給されることを想定していますが、コントローラに入力される前に追加のフィルタリングが行われるものもあります。このため、これらの電源は (フィルタリングによる違いを除けば) 一緒にランプすることが想定されています。1.8V 電源と 3.3V 電源についても、これと同じことが言えます。
- (2) この信号のノイズがヒステリシススレッショルドを下回っている限りということです。
- (3) この遅延要件パラメータは REFCLK 発振器の設計によって定義され、電源がランプアップし、安定した外部リファレンスが供給された後、 RESETZ が解除される前に、内部発振器がロックするのに必要な最小時間を定義します。

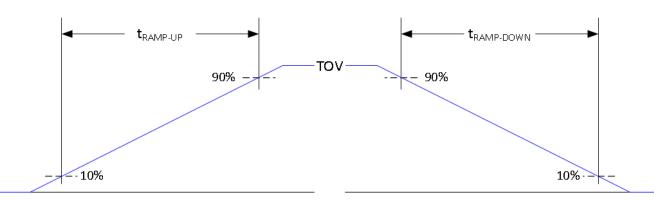


図 5-7. 電源ランプ時間

5.13 V-by-One インターフェイスの一般的なタイミング要件

	パラメータ ⁽¹⁾		最小值	最大值	単位
f _{clock}	ソースクロック周波数	1 レーン~8 レーン	20	600	MHz
		8 レーン	43	75	MHz
£		4 レーン	43	85	MHz
f _{link-clk}	レーンあたりのリンククロック周波数	2 レーン	43	600 75 85 85 85 2.55 3 3 500 500 500 500 500 0.5 0.5 0.2 0.2	MHz
		1レーン	43	85	MHz
		3 バイト モード	2	2 2.55 2 3 2 3 02 500 04 500	Gbps
f _{link}	リンク転送レート	4 バイト モード	2	3	Gbps
		5 バイト モード	2	3	Gbps
		3 バイト モード	392	500	ps
tRBIT	単位間隔	4 バイト モード	294	500	ps
		5 バイト モード	294	500	ps
t _A	ジッタ マージン (2)		0.25		UI
t _B	立ち上がり/立ち下がり時間(2)		0.05		UI
t _{EYE}	差動データアイ ⁽²⁾	差動データアイ ⁽²⁾	0.5		UI
t _{skew_intra}	許容ペア内スキュー	許容ペア内スキュー	0.3	5	UI
t _{skew_inter}	許容ペア間スキュー	許容ペア間スキュー		5	UI
Tj	総ジッタ			0.5	UI
R _j	ランダム ジッタ	10 ¹² UI		0.2	UI
D _j _ISI	決定的ジッタ (ISI)			0.2	UI
Sj	正弦波ジッタ			0.1	UI

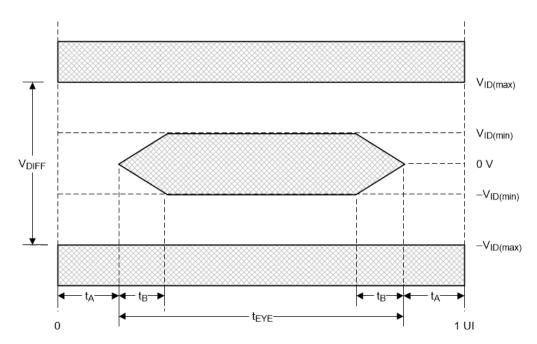
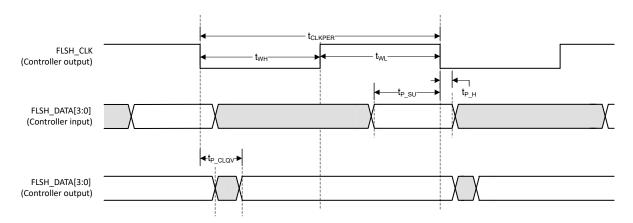


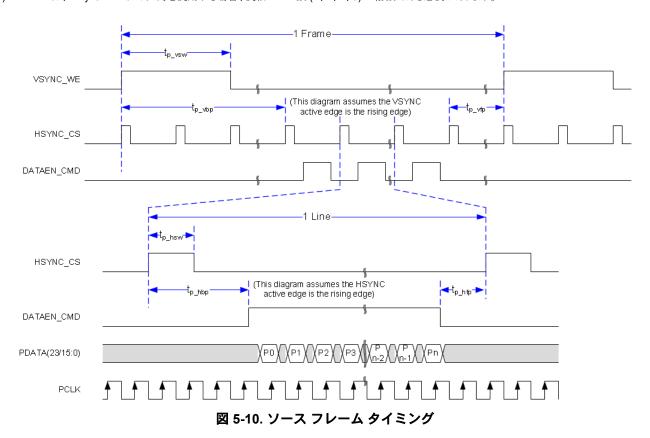
図 5-8. V-by-One タイミング

33

5.14 フラッシュ インターフェイスのタイミング要件

	最小値	最大値	単位	
f _{CLOCK}	FLSH_CLK 周波数	0.586	60.0	MHz
t _{CLKPER}	FLSH_CLK 周期 50% のリファレンス ポイント	16.66	1707	ns
t _{WH}	FLSH_CLK High パルス幅 50% のリファレンス ポイント	7.5		ns
t _{WL}	FLSH_CLK Low パルス幅 50% のリファレンス ポイント	7.5		ns
t _{P_SU}	FLSH_DATA[3:0] 入力セットアップ時間 FLSH_CLK↓ の前	7.2		ns
t _{P_H}	FLSH_DATA[3:0] 入力ホールド時間 FLSH_CLK↓ の後	0.0		ns




図 5-9. フラッシュ インターフェイスのタイミング

5.15 ソース フレームのタイミング要件

	パラメータ ^{(1) (7)}		最小値	標準値	最大値	単位
t _{p_vsw}	VSYNC アクティブ パルス幅	50% のリファレンス ポイント	1	10		ライン
t _{p_vbp}	垂直バック ポーチ (VBP)	50% のリファレンス ポイント	2 (2) (3)	72 (2) (3)		ライン
t _{p_vfp}	垂直フロントポーチ (VFP)	50% のリファレンス ポイント	1 (2) (3)	8 (2) (3)		ライン
t _{p_tvb}	総垂直ブランキング (TVB)	50% のリファレンス ポイント	30 (2) (3)	90 (2) (3)		ライン
t _{p_hsw}	HSYNC アクティブ パルス幅	50% のリファレンス ポイント	1 (4) (5)	88 (4) (5)		PCLK
t _{p_hbp}	水平バックポーチ (HBP)	50% のリファレンス ポイント	0 (4) (5)	296 (4) (5)		PCLK
t _{p_hfp}	水平フロントポーチ (HFP)	50% のリファレンス ポイント	1 (4) (5)	176 ^{(4) (5)}		PCLK
t _{p_thb}	総水平ブランキング (THB)	50% のリファレンス ポイント	80 (4) (5)	560 (4) (5)		PCLK
APPL	ラインあたりのアクティブ ピクセル数 (8)		1280 ⁽⁶⁾	3840 ⁽⁶⁾	3840	ピクセル
ALPF	フレームあたりのアクティブ ライン数		720 ⁽⁶⁾	2160 ⁽⁶⁾	2160	ライン

- (1) 表の要件は、4K DLP ディスプレイシステムのすべての外部ソースに適用されます。
- (2) 総垂直ブランキング: VBP + VFP + VS の合計です。
- (3) 必要な垂直ブランキング (TVB あたり) は、VFP と VBP の最小値が満たされている限り、自由に割り当てることができます。
- (4) 総水平ブランキング: HBP + HFP + HS の合計です。
- (5) 必要な水平ブランキング (THB あたり) は、HFP、HBP、HS の最小値が満たされている限り、自由に割り当てることができます。
- (6) 最小の APPL と ALPF を満たすには、最小ピクセル クロックとブランキング要件を維持するために、非標準のタイミングが必要です。 定義された 最小値は、標準的な 720p 入力ソースに基づいています。
- (7) ブランキングを低減した 4K 60Hz タイミングを含む、CVT 1.2 規格に準拠したビデオ パラメータの制限。
- (8) APPL は、V-by-One ビデオ入力を使用する場合、受信レーン数 (1、2、4、8) の倍数である必要があります。

5.16 同期シリアル ポート インターフェイスのタイミング要件

パラメータ			最小値	最大值	単位	
SSP0 ホスト						
_	CCD* CLV 国冲粉	ブロードキャスト書き込み転送 (1) (2)	0.457	75	MHz	
F _{CLK}	SSP*_CLK 周波数	全二重 SPI 転送	0.457	50	MHz	
_	COPt OUG to temp	ブロードキャスト書き込み転送 (1) (2)	13.33	2188	ns	
T _{CLK}	SSP*_CLK クロック周期 	全二重 SPI 転送	20.00	2188	ns	
	CCD * CLK High/Lave v° 1 7 FE	ブロードキャスト書き込み転送 (1) (2)	6.0		ns	
t _{HPW}	SSP *_CLK High/Low パルス幅	全二重 SPI 転送	9.2		ns	
	CCD * CLK High/Lave v° 1 7 FE	ブロードキャスト書き込み転送 (1) (2)	6.0		ns	
t_{LPW}	SSP *_CLK High/Low パルス幅	全二重 SPI 転送	9.2		ns	
	000t DI 1 1 1 2 2 2 1 1 1 1 2 1 2 1 1 1 1 1 1	SSP*_CLK ↓ の前 (モード 0 と 3) ⁽²⁾	9.4		ns	
t _S	SSP*_DI 入力セットアップ時間	SSP*_CLK ↑ の前 (モード 1 と 2)	9.4		ns	
	CCD* DI 3 + 4 1 2014-111	SSP*_CLK ↓ の前 (モード 0 と 3) ⁽²⁾	0		ns	
t _H	SSP*_DI 入力ホールド時間	SSP*_CLK ↑ の前 (モード 1 と 2)	0		ns	
		SSP*_CLK ↓ の後 (モード 0 と 3)	-2.5	2.5	ns	
	CCD* DO 山土湿河 (2)	SSP*_CLK ↑ の後 (モード1と2)	-2.5	2.5	ns	
t _{DOUT}	SSP*_DO 出力遅延 ⁽²⁾	SSP*_(B)CSZ ↓ の後 (モード 0 と 2)	-2.5	2.5	ns	
		SSP*_(B)CSZ ↑ の後 (モード 1 と 3)	-2.5	2.5	ns	
SSP1 ターク	ゲット					
t _{CSZD}	SPI 転送間の SSP*_(B)CSZ* デアサート (つまり、High) 時間 ⁽³⁾		13.33		ns	
4	CCD* (D)CC7* 1 セセルフップ吐目 (4)	SSP*_CLK ↑ の前 の SSP*_(B)CSZ ↓ (モード 0 と 1)	6.0		ns	
t _{CSS}	SSP*_(B)CSZ* 入力セットアップ時間 ⁽⁴⁾	SSP*_CLK ↓ の前の SSP*_(B)CSZ ↓ (モード 2 と 3)	6.0		ns	
	SSP*_(B)CSZ* 入力セットアップ時間 ⁽⁴⁾	SSP*_CLK ↓ の後の SSP*_(B)CSZ ↑ (モード 0 と 1)	6.0		ns	
tcsh		SSP*_CLK ↑ の後の SSP*_(B)CSZ ↑ (モード 2 と 3)	6.0		ns	
	CCD* DI 1 + + - 1 マ ポ 中田	SSP*_CLK↑ の前 (モード 0 と 3)	2.5		ns	
t _S	SSP*_DI 入力セットアップ時間	SSP*_CLK↓ の前 (モード 1 と 2)	2.5			
	CCD* DI 1 1-2- 11 100+88	SSP*_CLK↑ の前 (モード 0 と 3)	2.5		ns	
t _H	SSP*_DI 入力ホールド時間	SSP*_CLK↓ の前 (モード 1 と 2)	2.5		ns	
		SSP*_CLK↓ の後 (モード 0 と 3)	0	8.0	ns	
	SSP*_DO 出力遅延	SSP*_CLK↑ の後 (モード 1 と 2)	0	8.0	ns	
t _{DOUT}		SSP*_CSZ↓ の後 (モード 0 と 3)	0	8.0	ns	
		SSP*_CSZ↑ の後 (モード 1 と 2)	0	8.0	ns	

⁽¹⁾ ブロードキャスト書き込み転送は、SSP ホストが SSP*_DO を出力しますが、SSP*_DI 入力を受けない半二重転送です。このため、SSP*_DI 入力のセットアップ / ホールド タイミング チェックはブロードキャスト書き込み転送中には適用されません。

Copyright © 2024 Texas Instruments Incorporated

36

⁽²⁾ SSP0 SPI インターフェイスと SSP1 SPI インターフェイスで適用可能なコントローラ ピンを、「ペリフェラル インターフェイス」に示します。

⁽³⁾ 少なくとも 1 SSP*_CLK 周期

⁽⁴⁾ 少なくとも 0.5 SSP*_CLK 周期

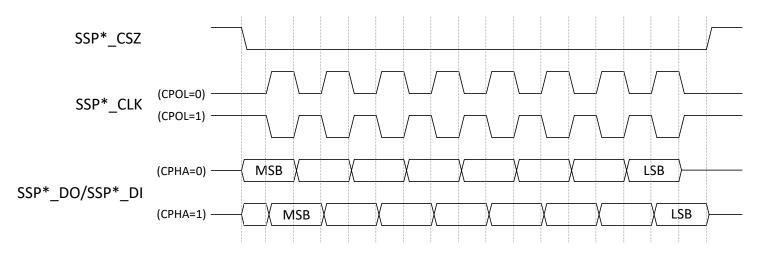


図 5-11. SPI クロッキング モードのタイミング図

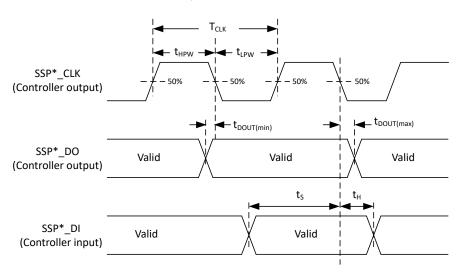


図 5-12. SSP ホスト モード (モード 0/3) のタイミング図

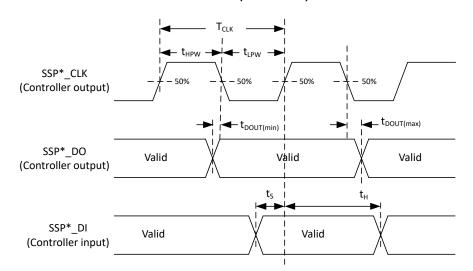


図 5-13. SSP ターゲット モード (モード 0/3) のタイミング図

5.17 I2C インターフェイスのタイミング要件

パラメータ ⁽¹⁾		最小値	最大値	単位	
f	クロック周波数、IICx_SCL (2) (50% リファ	フル スピード		400	kHz
^T clock	レンス ポイント)	スタンダード モード		100	kHz
C _L	容量性負荷 (各バスライン)	容量性負荷 (各バスライン)		200	pF

- (1) I²C バス仕様に基づくすべての I²C タイミングに適合しています (指定された容量性負荷を除く)。 詳細は、Phillips-NXP 仕様のバージョン 2.1 を参照してください。
- (2) 定義上、I²C トランザクションはバス上で最も低速なデバイスの速度で動作します。フルスピード動作を行うには、バス上の他のすべての I²C デバイスがフルスピード動作をサポートしている必要があります。I²C プルアップ抵抗の値だけでなく、ラインの長さ(容量による)も、実現可能なクロックレートを低下させる可能性があります。

Copyright © 2024 Texas Instruments Incorporated

38

Product Folder Links: DLPC8445

5.18 プログラマブル出力クロックのタイミング要件

	パラメータ		最大値	単位
f _{clock}	クロック周波数、OCLKA (1)	0.987	42.86	MHz
t _{clock}	クロック周期、OCLKA	23.33	1013.17	ns
$t_{w(H)}$	パルス幅 High、OCLKA (50% リファレンス ポイント)	$(t_{clock}/2) - 2$		ns
$t_{w(L)}$	パルス幅 Low、OCLKA (50% リファレンス ポイント)	$(t_{clock}/2) - 2$		ns
t _{cclkjit}	ジッタ、OCLKA		200	ps
f _{clock}	クロック周波数、OCLKB ⁽²⁾	0.987	42.86	MHz
t _{clock}	クロック周期、OCLKB	23.33	1013.17	ns
t _{w(H)}	パルス幅 High、OCLKB (50% リファレンス ポイント)	$(t_{clock}/2) - 2$		ns
t _{w(L)}	パルス幅 Low、OCLKB (50% リファレンス ポイント)	$(t_{clock}/2) - 2$		ns
t _{cclkjit}	ジッタ、OCLKB		200	ps

⁽¹⁾ OCLKA は専用の出力ピンにあります。

39

Product Folder Links: DLPC8445

⁽²⁾ OCLKB は GPIO_34 の代替機能です。

5.19 JTAG バウンダリ スキャン インターフェイスのタイミング要件 (デバッグのみ)

	パラメータ			最大値	単位
$f_{ m clock}$	クロック周波数、TCK	クロック周波数、TCK		10	MHz
t _{clock}	クロック周期、TCK		100		ns
t _{w(H)}	パルス幅 Low、TCK	50% のリファレンス ポイント	50		ns
t _{w(L)}	パルス幅 High、TCK	50% のリファレンス ポイント	50		ns
t _s	セットアップ時間 - TDI、TMS1 は TCK↑ 前に有効	50% のリファレンス ポイント	15		ns
t _h	ホールド時間 - TDI、TMS1 は TCK↑ 後に有効	50% のリファレンス ポイント	15		ns
tdelay	TCK↓ 後の TDO2 出力遅延	60pF の負荷	0	15	ns

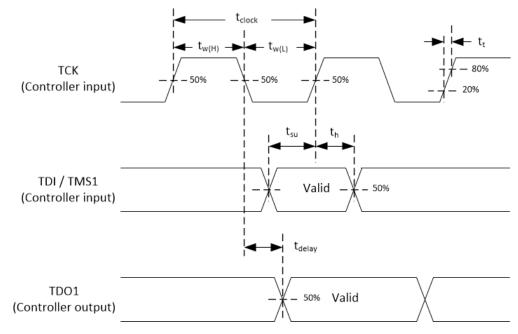


図 5-14. JTAG バウンダリ スキャンのタイミング図

5.20 DMD 低速インターフェイスのタイミング要件

	パラメータ			標準値	最大値	単位
DMD 低速インターフェイ	ス (シングル エンド)					
f _{clock}			119.966	120	120.034	MHz
スルー レート	DMD_LS_WDATA & DMD_LS_CLK	立ち上がりエッジの場合、 VOL(DC) から VOH(AC) お よび VOH(DC) から VOL(AC)	1	1 3	V/ns	
•	DMD_DEN_ARSTZ	立ち上がりエッジの場合、 VOL(AC) から VOH(AC)	0.25			
	DMD_LS_RDATAx		0.5			
DCD	デューティサイクルの歪み		45%		55%	

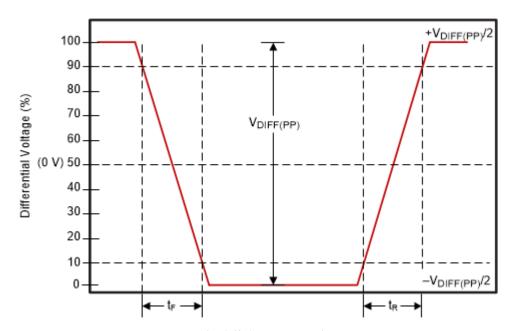


図 5-15. DMD 低速差動タイミング パラメータ

5.21 DMD SubLVDS インターフェイスのタイミング要件

パラン	メータ	テスト条件	最小値	標準値	最大値	単位
t _R	差動出力立ち上がり時間 (10%~ 90%)				400	ps
t _F	差動出力立ち下がり時間 (10%~ 90%)				400	ps
t _{switch}	DMD HS クロック スイッチング レート		0	1200	1440	Mbps
f _{clock}	DMD HS クロック周波数		0	600	720	MHz
DCout	DMD HS クロック出力デューティ サイクル		45	50%	55	%

6 詳細説明

6.1 概要

DLP® 製品のチップセットは、DLP472TP デジタル マイクロミラー デバイス (DMD)、DLPC8445 または DLPC8445V ディスプレイ コントローラ、DLPA3085 または DLPA3082 の 3 つのコンポーネントで構成されています。DMD 用の DLPC8445 および DLPC8445V ディスプレイ コントローラは、入力ビデオのフォーマットを処理し、DMD のタイミングを 制御します。また、DLPA3085 または DLPA3082 の光源 の信号タイミングを制御し、DMD タイミングに連動させて、光出力を DMD ミラーの動きと同期させます。DLPC8445 および DLPC8445V コントローラは、V-by-One や SubLVDS (DMD インターフェイス) などのインターフェイスを提供し、消費電力と EMI を最小限に抑えます。アプリケーションには、モバイル スマート TV、デジタル サイネージ、モバイル ホーム シネマなどがあります。

6.2 機能ブロック図

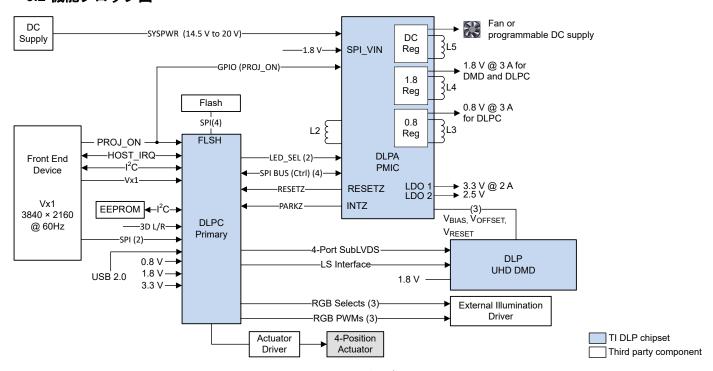


図 6-1. LED の機能ブロック図

6.3 機能説明

6.3.1 入力ソース

表 6-1. サポートされている入力ソース パラメータ

インターフェイス	許容ビット/ピクセル	処理ビット/ピクセル	ソース解像度:2D		ソース 解像度:3D (方目ごと) ⁽¹⁾
100. 2712	(最大)	(最大)	最小值	最大値	最大値
V-by-One	12	10	1280 × 720 ⁽²⁾	3840 × 2160	1920 × 1080 (FS)

- (1) FS = フレーム シーケンシャル (フル解像度)
- (2) V-by-One インターフェイスの最小クロック レートとリンク レート、およびバイト モードは、このインターフェイスでサポートできる最小解像度を制限しています。このインターフェイスは、3 バイト、4 バイト、5 バイトのモードをサポートしています。

6.3.2 V-by-One インターフェイス

DLPC8445 および DLPC8445V コントローラは、単一 8 レーン V-by-One ポートをサポートしており、1 レーン、2 レーン、4 レーン、8 レーン用に構成できます。このインターフェイスは、表 6-2 に示すように、限定的なレーン再マッピングをサポートしています。レーン内の再マッピング (PとNのスワップ) はサポートされません。

表 6-2. V-by-One インターフェイスのレーン再マッピング オプション

	20 - 1 - 10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -								
		V-by-One ポー	by-One ポートの物理レーン ⁽¹⁾						
構成 ⁽²⁾	レーン数	レーン 7	レーン 6	レーン 5	レーン 4	レーン 3	レーン 2	レーン 1	レーン 0
1a	8	7	6	5	4	3	2	1	0
1b	4	_	_	_	_	3	2	1	0
1c	2	_	_	_	_	_	_	1	0
1d	1	_	_	_	_	_	_	_	0
2a	8	1	0	2	3	4	5	6	7
2b	4	1	0	2	3	_	_	_	_
2c	2	1	0	_	_	_	_	_	_
2d	1	_	0	_	_	_	_	_	_

- (1) 表へッダーのレーン番号は、コントローラインターフェイスで定義されている実際の物理レーンを示します。 ヘッダーの下に示されているレーン番号は、その物理インターフェイスで送信されるレーン ビット番号です。
- (2) コントローラレーンマッピングには2つのオプションがあり、それぞれ全8レーンより少ないレーンの使用も可能です。

物理的な V-by-One インターフェイスの再マッピングとは別に、規格で規定されているように、実際の物理インターフェイスへの多数のデータ マッピングをサポートします。 V-by-One ソースは、表 6-3、表 6-4、表 6-5、表 6-6、表 6-7、および表 6-8 のいずれかのマッピングと一致している必要があります。

表 6-3. 36bpp/30bpp RGB/YCbCr 4:4:4 の V-by-One データ マッピング

V-by-One データ マップ モード 0			
V-by-One 入力データビット	36bpp RGB/YCbCr 4:4:4 (1)	30bpp RGB/YCbCr 4:4:4	マッパー出力
D[0]	R/Cr[4]	R/Cr[2]	B(2)
D[1]	R/Cr[5]	R/Cr[3]	B(3)
D[2]	R/Cr[6]	R/Cr[4]	B(4)
D[3]	R/Cr[7]	R/Cr(5]	B(5)
D[4]	R/Cr[8]	R/Cr[6]	B(6)
D[5]	R/Cr[9]	R/Cr[7]	B(7)
D[6]	R/Cr[10]	R/Cr[8]	B(8)
D[7]	R/Cr[11]	R/Cr[9]	B(9)
D[8]	G/Y[4]	G/Y[2]	A(2)
D[9]	G/Y[5]	G/Y[3]	A(3)
D[10]	G/Y[6]	G/Y[4]	A(4)
D[11]	G/Y[7]	G/Y[5]	A(5)

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

表 6-3. 36bpp/30bpp RGB/YCbCr 4:4:4 の V-by-One データ マッピング (続き)

V-by-One データ マップ モード 0				
V-by-One 入力データビット	36bpp RGB/YCbCr 4:4:4 (1)	30bpp RGB/YCbCr 4:4:4	マッパー出力	
D[12]	G/Y[8]	G/Y[6]	A(6)	
D[13]	G/Y[9]	G/Y[7]	A(7)	
D[14]	G/Y[10]	G/Y[8]	A(8)	
D[15]	G/Y[11]	G/Y[9]	A(9)	
D[16]	B/Cb[4]	B/Cb[2]	C(2)	
D[17]	B/Cb[5]	B/Cb[3]	C(3)	
D[18]	B/Cb[6]	B/Cb[4]	C(4)	
D[19]	B/Cb[7]	B/Cb[5]	C(5)	
D[20]	B/Cb[8]	B/Cb[6]	C(6)	
D[21]	B/Cb[9]	B/Cb[7]	C(7)	
D[22]	B/Cb[10]	B/Cb[8]	C(8)	
D[23]	B/Cb[11]	B/Cb[9]	C(9)	
D[24]	3D_L/R_Ref	3D_L/R_Ref	3D_L/R_Ref	
D[25]	3DEN/フィールド	3DEN/フィールド	3DEN/フィールド	
D[26]	B/Cb[2]	B/Cb[1]	C[0]	
D[27]	B/Cb[3]	B/Cb[0]	C[1]	
D[28]	G/Y[2]	G/Y[1]	A[0]	
D[29]	G/Y[3]	G/Y[0]	A[1]	
D[30]	R/Cr[2]	R/Cr[1]	B[0]	
D[31]	R/Cr[3]	R/Cr[0]	B[1]	

(1) 36 ビット入力の場合、各カラー 12 ビットが 10 ビットに切り捨てられ、各カラーの最下位 2 ビットは破棄されます。

表 6-4. 27bpp RGB/YCbCr 4:4:4 の V-by-One データ マッピング

V-by-One データ マップ モード 1				
V-by-One 入力データビット	27bpp RGB/YCbCr 4:4:4 (1)	マッパー出力		
D[0]	R/Cr[1]	B(2)		
D[1]	R/Cr[2]	B(3)		
D[2]	R/Cr[3]	B(4)		
D[3]	R/Cr[4]	B(5)		
D[4]	R/Cr[5]	B(6)		
D[5]	R/Cr[6]	B(7)		
D[6]	R/Cr[7]	B(8)		
D[7]	R/Cr[8]	B(9)		
D[8]	G/Y[1]	A(2)		
D[9]	G/Y[2]	A(3)		
D[10]	G/Y[3]	A(4)		
D[11]	G/Y[4]	A(5)		
D[12]	G/Y[5]	A(6)		
D[13]	G/Y[6]	A(7)		
D[14]	G/Y[7]	A(8)		
D[15]	G/Y[8]	A(9)		
D[16]	B/Cb[1]	C(2)		
D[17]	B/Cb[2]	C(3)		
D[18]	B/Cb[3]	C(4)		

表 6-4. 27bpp RGB/YCbCr 4:4:4 の V-by-One データ マッピング (続き)

V-by-One データ マップ モード 1				
V-by-One 入力データビット	27bpp RGB/YCbCr 4:4:4 (1)	マッパー出力		
D[19]	B/Cb[4]	C(5)		
D[20]	B/Cb[5]	C(6)		
D[21]	B/Cb[6]	C(7)		
D[22]	B/Cb[7]	C(8)		
D[23]	B/Cb[8]	C(9)		
D[24]	3D_L/R_Ref	3D_L/R_Ref		
D[25]	3DEN/フィールド	3DEN/フィールド		
'0'	_	C[0]		
D[27]	B/Cb[0]	C[1]		
'0'	_	A[0]		
D[29]	G/Y[0]	A[1]		
'0'	_	B[0]		
D[31]	R/Cr[0]	B[1]		

(1) 27 ビット入力の場合、各カラーの 9 ビットは 1 ビット シフトアップし、各カラーの最下位ビットは '0' に設定されます。

表 6-5. 24bpp RGB/YCbCr 4:4:4 の V-by-One データ マッピング

/-by-One 入力データビット	24bpp RGB/YCbCr 4:4:4 (1)	マッパー出力
D[0]	R/Cr[0]	B(2)
D[1]	R/Cr[1]	B(3)
D[2]	R/Cr[2]	B(4)
D[3]	R/Cr[3]	B(5)
D[4]	R/Cr[4]	B(6)
D[5]	R/Cr[5]	B(7)
D[6]	R/Cr[6]	B(8)
D[7]	R/Cr[7]	B(9)
D[8]	G/Y[0]	A(2)
D[9]	G/Y[1]	A(3)
D[10]	G/Y[2]	A(4)
D[11]	G/Y[3]	A(5)
D[12]	G/Y[4]	A(6)
D[13]	G/Y[5]	A(7)
D[14]	G/Y[6]	A(8)
D[15]	G/Y[7]	A(9)
D[16]	B/Cb[0]	C(2)
D[17]	B/Cb[1]	C(3)
D[18]	B/Cb[2]	C(4)
D[19]	B/Cb[3]	C(5)
D[20]	B/Cb[4]	C(6)
D[21]	B/Cb[5]	C(7)
D[22]	B/Cb[6]	C(8)
D[23]	B/Cb[7]	C(9)
D[24]	3D_L/R_Ref	3D_L/R_Ref
D[25]	3DEN/フィールド	3DEN/フィールド

表 6-5. 24bpp RGB/YCbCr 4:4:4 の V-by-One データ マッピング (続き)

V-by-One データ マップ モード 2				
V-by-One 入力データビット	24bpp RGB/YCbCr 4:4:4 (1)	マッパー出力		
'0'	_	C[0]		
'0'	_	C[1]		
'0'	_	A[0]		
'0'	_	A[1]		
'0'	_	B[0]		
'0'	_	B[1]		

(1) 24 ビット入力の場合、各カラーの 8 ビットは 2 ビット シフトアップし、各カラーの最下位 2 ビットは '0' に設定されます。

表 6-6. 32bpp/24bpp/20bpp YCbCr 4:2:2 の V-by-One データ マッピング

/-by-One データ マップ モード 3 ⁽¹⁾				
V-by-One 入力データビット	32bpp YCbCr 4:2:2 (2)	24bpp YCbCr 4:2:2 (3)	20bpp YCbCr 4:2:2	マッパー出力
D[0]	CbCr[8]	CbCr[4]	CbCr[2]	B(2)
D[1]	CbCr[9]	CbCr[5]	CbCr[3]	B(3)
D[2]	CbCr[10]	CbCr[6]	CbCr[4]	B(4)
D[3]	CbCr[11]	CbCr[7]	CbCr[5]	B(5)
D[4]	CbCr[12]	CbCr[8]	CbCr[6]	B(6)
D[5]	CbCr[13]	CbCr[8]	CbCr[7]	B(7)
D[6]	CbCr[14]	CbCr[10]	CbCr[8]	B(8)
D[7]	CbCr[15]	CbCr[11]	CbCr[9]	B(9)
D[8]	Y[8]	Y[4]	Y[2]	A(2)
D[9]	Y[9]	Y[5]	Y[3]	A(3)
D[10]	Y[10]	Y[6]	Y[4]	A(4)
D[11]	Y[11]	Y[7]	Y[5]	A(5)
D[12]	Y[12]	Y[8]	Y[6]	A(6)
D[13]	Y[13]	Y[9]	Y[7]	A(7)
D[14]	Y[14]	Y[10]	Y[8]	A(8)
D[15]	Y[15]	Y[11]	Y[9]	A(9)
'0'	_	_	_	C(2)
'0'	_	_	_	C(3)
'0'	_	_	_	C(4)
'0'	_	_	_	C(5)
'0'	_	_	_	C(6)
'0'	_	_	_	C(7)
'0'	_	_	_	C(8)
'0'	_	_	_	C(9)
D[24]	3D_L/R_Ref	3D_L/R_Ref	3D_L/R_Ref	3D_L/R_Ref
D[25]	3DEN/フィールド	3DEN/フィールド	3DEN/フィールド	3DEN/フィールド
'0'	_	_	_	C[0]
'0'	_	_	_	C[1]
D[28]	Y[6]	Y[2]	Y[2]	A[0]
D[29]	Y[7]	Y[3]	Y[3]	A[1]
D[30]	CbCr[6]	CbCr[2]	CbCr[2]	B[0]
D[31]	CbCr[7]	CbCr[3]	CbCr[3]	B[1]

(1) すべての YCbCr 4:2:2 フォーマットでは、データ チャネル C は強制的に O になります。

Copyright © 2024 Texas Instruments Incorporated

- (2) 32 ビット入力の場合、各カラー 16 ビットが 10 ビットに切り捨てられ、各カラーの最下位 6 ビットは破棄されます。
- (3) 24 ビット入力の場合、各カラー 12 ビットが 10 ビットに切り捨てられ、各カラーの最下位 2 ビットは破棄されます。

表 6-7. 18bpp YCbCr 4:2:2 の V-by-One データ マッピング

/-by-One 入力データビット	18bpp YCbCr 4:2:2 (2)	マッパー出力
D[0]	CbCr[1]	B(2)
D[1]	CbCr[2]	B(3)
D[2]	CbCr[3]	B(4)
D[3]	CbCr[4]	B(5)
D[4]	CbCr[5]	B(6)
D[5]	CbCr[6]	B(7)
D[6]	CbCr[7]	B(8)
D[7]	CbCr[8]	B(9)
D[8]	Y[1]	A(2)
D[9]	Y[2]	A(3)
D[10]	Y[3]	A(4)
D[11]	Y[4]	A(5)
D[12]	Y[5]	A(6)
D[13]	Y[6]	A(7)
D[14]	Y[7]	A(8)
D[15]	Y[8]	A(9)
'0'	_	C(2)
'0'	_	C(3)
'0'	_	C(4)
'0'	_	C(5)
'0'	_	C(6)
'0'	_	C(7)
'0'	_	C(8)
'0'	_	C(9)
D[24]	3D_L/R_Ref	3D_L/R_Ref
D[25]	3DEN/フィールド	3DEN/フィールド
'0'	_	C[0]
'0'	_	C[1]
'0'	_	A[0]
D[29]	Y[0]	A[1]
'0'	_	B[0]
D[31]	CbCr[0]	B[1]

- (1) すべての YCbCr 4:2:2 フォーマットでは、データ チャネル C は強制的に O になります。
- (2) 18 ビット入力の場合、各カラーの 9 ビットは 1 ビット シフトアップし、各カラーの最下位ビットは '0' に設定されます。

表 6-8. 16bpp YCbCr 4:2:2 の V-bv-One データ マッピング

200 or rough rough management of the control of the				
V-by-One データ マップ モード 5 ⁽¹⁾				
16bpp YCbCr 4:2:2 ⁽²⁾	マッパー出力			
CbCr[0]	B(2)			
CbCr[1]	B(3)			
CbCr[2]	B(4)			
CbCr[3]	B(5)			
CbCr[4]	B(6)			
	16bpp YCbCr 4:2:2 (2) CbCr[0] CbCr[1] CbCr[2] CbCr[3]			

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

表 6-8. 16bpp YCbCr 4:2:2 の V-by-One データ マッピング (続き)

V-by-One データ マップ モード 5 ⁽¹⁾ V-by-One 入力データ ビット 16bpp YCbCr 4:2:2 ⁽²⁾ マッパー出力				
/-by-One 入力データビット		マッパー出力		
D[5]	CbCr[5]	B(7)		
D[6]	CbCr[6]	B(8)		
D[7]	CbCr[7]	B(9)		
D[8]	Y[0]	A(2)		
D[9]	Y[1]	A(3)		
D[10]	Y[2]	A(4)		
D[11]	Y[3]	A(5)		
D[12]	Y[4]	A(6)		
D[13]	Y[5]	A(7)		
D[14]	Y[6]	A(8)		
D[15]	Y[7]	A(9)		
'0'	_	C(2)		
'0'	_	C(3)		
'0'	_	C(4)		
'0'	_	C(5)		
'0'	_	C(6)		
'0'	_	C(7)		
'0'	_	C(8)		
'0'	_	C(9)		
D[24]	3D_L/R_Ref	3D_L/R_Ref		
D[25]	3DEN/フィールド	3DEN/フィールド		
'0'	_	C[0]		
'0'	_	C[1]		
'0'	_	A[0]		
'0'	_	A[1]		
'0'	_	B[0]		
'0'	_	B[1]		

⁽¹⁾ すべての YCbCr 4:2:2 フォーマットでは、データ チャネル C は強制的に O になります。

^{(2) 16} ビット入力の場合、各カラーの 8 ビットは 1 ビット シフトアップし、各カラーの最下位ビットは '0' に設定されます。

6.3.3 DMD (SubLVDS) インターフェイス

コントローラ DMD インターフェイスは、データ転送用の 4 つの高速 SubLVDS 出力専用インターフェイス、コマンド書き 込みトランザクション用のシングルエンド低速 LVDS 出力専用インターフェイス、およびコマンド読み取りトランザクション用の 4 つの低速シングルエンド入力インターフェイスをサポートしています。各 SubLVDS ポートは、ポート内における完全 なデータ専用レーン間再マッピングをサポートしますが、ポート間ではサポートしません。この機能を利用する場合、各データレーンペアは 1 つのデスティネーション データレーン ペアにのみマッピング可能で、レーン内再マッピング (PとNのスワップ) はサポートされません。さらに、4 つの HS データ ポートをスワップすることもできます。HS CLK ピンはポート間では交換できないため、対応するポート データ レーンとグループ化する必要があります。レーンおよびポートの再マッピング (フラッシュで指定) は、必要に応じて基板レイアウトに役立ちます。必要な HS ポートの数と HS ポートあたりの HS レーンの数は、DMD のタイプと DMD の表示解像度に基づいています。表 6-9 に、4 つの HS ポートまで同じルールが適用される、2 つの HS ポート構成の再マッピング例を示します。すべてのポートを使用する場合、同じピンマッピングは必要ありません。

表 6-9. コントローラから DMD へのピン マッピング例

DLPC8445 および DLPC8445V コントローラのピンから DMD ピンへの再マッピング例				
ベースライン	HS0 を 180° 反転 HS1 は反転しない	HS0 ポートと HS1 ポートのスワ ップ	HS0 ポートと HS1 ポートのスワ ップ、および混合再マッピング	DMD ピン
DMD_HS0_CLK_P	DMD_HS0_CLK_P	DMD_HS1_CLK_P	DMD_HS1_CLK_P	DCLK_AP
DMD_HS0_CLK_N	DMD_HS0_CLK_N	DMD_HS1_CLK_N	DMD_HS1_CLK_N	DCLK_AN
DMD_HS0_WDATA0_P	DMD_HS0_WDATA7_P	DMD_HS1_WDATA0_P	DMD_HS1_WDATA2_P	D_AP(0)
DMD_HS0_WDATA0_N	DMD_HS0_WDATA7_N	DMD_HS1_WDATA0_N	DMD_HS1_WDATA2_N	D_AN(0)
DMD_HS0_WDATA1_P	DMD_HS0_WDATA6_P	DMD_HS1_WDATA1_P	DMD_HS1_WDATA3_P	D_AP(1)
DMD_HS0_WDATA1_N	DMD_HS0_WDATA6_N	DMD_HS1_WDATA1_N	DMD_HS1_WDATA3_N	D_AN(1)
DMD_HS0_WDATA2_P	DMD_HS0_WDATA5_P	DMD_HS1_WDATA2_P	DMD_HS1_WDATA0_P	D_AP(2)
DMD_HS0_WDATA2_N	DMD_HS0_WDATA5_N	DMD_HS1_WDATA2_N	DMD_HS1_WDATA0_N	D_AN(2)
DMD_HS0_WDATA3_P	DMD_HS0_WDATA4_P	DMD_HS1_WDATA3_P	DMD_HS1_WDATA1_P	D_AP(3)
DMD_HS0_WDATA3_N	DMD_HS0_WDATA4_N	DMD_HS1_WDATA3_N	DMD_HS1_WDATA1_N	D_AN(3)
DMD_HS0_WDATA4_P	DMD_HS0_WDATA3_P	DMD_HS1_WDATA4_P	DMD_HS1_WDATA6_P	D_AP(4)
DMD_HS0_WDATA4_N	DMD_HS0_WDATA3_N	DMD_HS1_WDATA4_N	DMD_HS1_WDATA6_N	D_AN(4)
DMD_HS0_WDATA5_P	DMD_HS0_WDATA2_P	DMD_HS1_WDATA5_P	DMD_HS1_WDATA7_P	D_AP(5)
DMD_HS0_WDATA5_N	DMD_HS0_WDATA2_N	DMD_HS1_WDATA5_N	DMD_HS1_WDATA7_N	D_AN(5)
DMD_HS0_WDATA6_P	DMD_HS0_WDATA1_P	DMD_HS1_WDATA6_P	DMD_HS1_WDATA4_P	D_AP(6)
DMD_HS0_WDATA6_N	DMD_HS0_WDATA1_N	DMD_HS1_WDATA6_N	DMD_HS1_WDATA4_N	D_AN(6)
DMD_HS0_WDATA7_P	DMD_HS0_WDATA0_P	DMD_HS1_WDATA7_P	DMD_HS1_WDATA5_P	D_AP(7)
DMD_HS0_WDATA7_N	DMD_HS0_WDATA0_N	DMD_HS1_WDATA7_N	DMD_HS1_WDATA5_N	D_AN(7)
DMD_HS1_CLK_P	DMD_HS1_CLK_P	DMD_HS0_CLK_P	DMD_HS0_CLK_P	DCLK_BP
DMD_HS1_CLK_N	DMD_HS1_CLK_N	DMD_HS0_CLK_N	DMD_HS0_CLK_N	DCLK_BN
DMD_HS1_WDATA0_P	DMD_HS1_WDATA0_P	DMD_HS0_WDATA0_P	DMD_HS0_WDATA6_P	D_BP(0)
DMD_HS1_WDATA0_N	DMD_HS1_WDATA0_N	DMD_HS0_WDATA0_N	DMD_HS0_WDATA6_N	D_BN(0)
DMD_HS1_WDATA1_P	DMD_HS1_WDATA1_P	DMD_HS0_WDATA1_P	DMD_HS0_WDATA7_P	D_BP(1)
DMD_HS1_WDATA1_N	DMD_HS1_WDATA1_N	DMD_HS0_WDATA1_N	DMD_HS0_WDATA7_N	D_BN(1)
DMD_HS1_WDATA2_P	DMD_HS1_WDATA2_P	DMD_HS0_WDATA2_P	DMD_HS0_WDATA4_P	D_BP(2)
DMD_HS1_WDATA2_N	DMD_HS1_WDATA2_N	DMD_HS0_WDATA2_N	DMD_HS0_WDATA4_N	D_BN(2)
DMD_HS1_WDATA3_P	DMD_HS1_WDATA3_P	DMD_HS0_WDATA3_P	DMD_HS0_WDATA5_P	D_BP(3)
DMD_HS1_WDATA3_N	DMD_HS1_WDATA3_N	DMD_HS0_WDATA3_N	DMD_HS0_WDATA5_N	D_BN(3)
DMD_HS1_WDATA4_P	DMD_HS1_WDATA4_P	DMD_HS0_WDATA4_P	DMD_HS0_WDATA2_P	D_BP(4)
DMD_HS1_WDATA4_N	DMD_HS1_WDATA4_N	DMD_HS0_WDATA4_N	DMD_HS0_WDATA2_N	D_BN(4)
DMD_HS1_WDATA5_P	DMD_HS1_WDATA5_P	DMD_HS0_WDATA5_P	DMD_HS0_WDATA3_P	D_BP(5)
DMD_HS1_WDATA5_N	DMD_HS1_WDATA5_N	DMD_HS0_WDATA5_N	DMD_HS0_WDATA3_N	D_BN(5)
DMD_HS1_WDATA6_P	DMD_HS1_WDATA6_P	DMD_HS0_WDATA6_P	DMD_HS0_WDATA0_P	D_BP(6)
DMD_HS1_WDATA6_N	DMD_HS1_WDATA6_N	DMD_HS0_WDATA6_N	DMD_HS0_WDATA0_N	D_BN(6)
DMD_HS1_WDATA7_P	DMD_HS1_WDATA7_P	DMD_HS0_WDATA7_P	DMD_HS0_WDATA1_P	D_BP(7)
DMD_HS1_WDATA7_N	DMD_HS1_WDATA7_N	DMD_HS0_WDATA7_N	DMD_HS0_WDATA1_N	D_BN(7)

49

Product Folder Links: DLPC8445

6.3.4 シリアル フラッシュ インターフェイス

DLPC8445 および DLPC8445V は、構成および動作データのための単一の外部標準 / デュアル / クワッド SPI シリアルフラッシュ メモリ デバイスに対するインターフェイスです。この 6 ピンのインターフェイスは、アクティブ Low のチップ セレクト信号、クロック信号、4 つの双方向データ信号で構成されており、シリアルフラッシュ コマンド実行中に必要に応じて標準 / デュアル / クワッド SPI のデータ I/O 構成をサポートするために使用できます。表 6-10 に、DLPC8445 および DLPC8445V コントローラで検証済みで、サポートされているシリアルフラッシュ デバイスのリストを示します。

表 6-10. DLPC8445 および DLPC8445V がサポートする標準 / デュアル / クワッド SPI シリアル フラッシュ デバイス

密度 (Mbit)	メーカー	部品番号	パッケージ サイズ
1.8V 互換デバイス			
8	Macronix	MX25R8035FBHIH2	WLCSP
16	Winbond	W25Q16JWBYIQ	WLCSP
32	Macronix	MX25U3232FBHI02	WLCSP
64	Winbond	W25Q64JWBYIQ	WLCSP
64	Winbond	W25Q64JWSSIQ	WLCSP
512	GigaDevice	GD25LB512MEYIG	WSON
3.3V 互換デバイス			
8	Macronix	MX25R8035FBHIH2	WLCSP

DLPC8445 および DLPC8445V は、表 6-10 に示した以外の標準 / デュアル / クワッド SPI シリアル フラッシュ デバイスもサポートできる可能性があり、表 6-11 に示すような機能セットが必要です。

表 6-11. シリアル フラッシュ デバイスと DLPC8445 および DLPC8445V との互換性に関する機能要件

機能	DLPC8445 および DLPC8445V との互換性に関する要件	備考
SPI データ構成 (幅)	標準 (単線)、デュアル (2 線式)、クワッド (4 線式)	
SPI クロック モード	SPI モード 0	
SPI クロック周波数	最大 60MHz	
クロック (↓) から出力有効までの時間	6ns (最大)	例:t _V または t _{CLQV}
高速 READ アドレッシング	自動インクリメント	
プログラミング モード	ページモード	
ページ サイズ	256 バイト	
セクタ (またはサブセクタ) サイズ	4KB	必要な消去粒度
ブロック構造	均一セクター / サブセクター	
ブロック保護 (BP) ビット	デフォルトでは無効 (0)	
ステータス レジスタ ビット (0)	書き込み中 (WIP)/BUSY	
ステータス レジスタ ビット (1)	書き込み有効化ラッチ (WEN)	
ステータス レジスタ ビット (4:2)	ブロック保護ビット (BP[2:0])	
ステータス レジスタ ビット (7)	ステータス レジスタ書き込み保護 (SRWP)	
他のステータス レジスタ ビット	特定のステータスレジスタビットの割り当ては不要です。「他の」ステータスレジスタビットは、多くの場合、ベンダーやデバイス間における共通 / 標準の実装の詳細がありません。これらの「他の」ステータスレジスタビット / 信号は、一般的にメインアプリケーションに限りサポートされていますが (特に表 6-10 に示されていないデバイスの場合)、潜在的にサポートされる可能性があります。	例:クワッド有効化

資料に関するフィードバック (ご意見やお問い合わせ) を送信

DLPC8445 および DLPC8445V との互換性を確保するため、シリアル フラッシュ デバイスは、以下の共通コマンド セットもサポートしている必要があります。

表 6-12. DLPC8445 互換 シリアル フラッシュ デバイスがサポートする共通コマンド セット

SPI フラッシュ コマンド	1 バイト目 (OP-CODE)	2 バイト目	3 バイト目	4 バイト目	5 バイト目	6 バイト目	ダミークロッ クの数	備考
高速 READ (1-1-1)	0x0B	ADDRS(0)	ADDRS(1)	ADDRS(2)	dummy	DATA(0)	8	可変データ ペイロード
デュアル READ (1-1-2)	0x3B	ADDRS(0)	ADDRS(1)	ADDRS(2)	dummy	DATA(0)	8	可変データ ペイロード
2X READ (1-2-2)	0xBB	ADDRS(0)	ADDRS(1)	ADDRS(2)	dummy	DATA(0)	4	可変データ ペイロード
クワッド READ (1-1-4)	0x6B	ADDRS(0)	ADDRS(1)	ADDRS(2)	dummy	DATA(0)	8	可変データ ペイロード
4X READ (1-4-4)	0xEB	ADDRS(0)	ADDRS(1)	ADDRS(2)	dummy	DATA(0)	6	可変データ ペイロード
読み取りステータ ス	0x05	STATUS(0)					0	STATUS(0) レジスタ:
書き込みステータス	0x01	STATUS(0)					0	ビット 1 = WEL ビット 0 = WIP/BUSY
書き込み有効化	0x06						0	
書き込み無効化	0x04						0	
ページ プログラム	0x02	ADDRS(0)	ADDRS(1)	ADDRS(2)	DATA(0)	DATA(1)	0	256 バイトのデータ ペイロード
セクター / サブセク ター 消去 (4KB)	0x20	ADDRS(0)	ADDRS(1)	ADDRS(2)			0	
ブロック消去 (64KB)	0xD8	ADDRS(0)	ADDRS(1)	ADDRS(2)			0	
完全チップ消去	0xC7						0	
ソフトウェア リセット 有効化	0x66						0	
ソフトウェア リセット	0x99						0	
読み取りID	0x9F	データ (0)	データ (1)	データ (2)			0	システムは最初の3バ イトだけを読み取ります。

共通コマンド セット内の各種読み取りコマンドに関連する SPI データ構成の詳細については、表 6-13 を参照してください。

表 6-13. サポートされている READ コマンド プロトコルの実装詳細

Pro 101 A 1 G 10 A 1 G 10 A 1 G 10 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1					
読み取りコマンド	オペコード用 SPI データ I/O 構成 (クロック数)	アドレス用 SPI データ I/O 構成 (クロック数)	ダミークロックの数	データ読み取り用 SPI データ I/O 構成 (クロック数)	
高速 READ (1-1-1)	標準 (8)	標準 (8 / バイト)	8	標準 (8 / バイト)	
デュアル READ (1-1-2)	標準 (8)	標準 (8 / バイト)	8	デュアル (4 / バイト)	
2X READ (1-2-2)	標準 (8)	デュアル (4 / バイト)	4	デュアル (4 / バイト)	
クワッド READ (1-1-4)	標準 (8)	標準 (8 / バイト)	8	クワッド (2 / バイト)	
4X READ (1-4-4)	標準 (8)	クワッド (2 / バイト)	6	クワッド (2 / バイト)	

該当するホストコマンド インターフェイス (I²C または SPI) を介して発行されたホストコマンドを使用して、シリアル フラッシュ デバイスをプログラムできます。また、ホストは、システムのフラッシュ帯域幅要件に基づき、 DLPC8445 および DLPC8445V 組込みソフトウェアが使用するフラッシュ テーブルで、ターゲット フラッシュ クロック周波数と読み取りコマンドの優先設定を指定することができます。

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

51

Product Folder Links: DLPC8445

6.3.5 GPIO のサポート機能

DLPC8445 および DLPC8445V コントローラ は 52 の汎用 I/O を提供しており、さまざまな製品構成に対して多様な機能をサポートしています。一般に、これらの I/O ピンのほとんどは、特定の製品構成に基づいて特定の機能を 1 つだけサポートしますが、その機能は製品構成によって異なる場合があります。未使用の I/O の一部は、テキサス・インスツルメンツのテストやデバッグに使用することもできます。以下の GPIO 表では製品固有の詳細が記載されており、それぞれサポートされている特定の製品構成について、各 GPIO の割り当て済みの使用について説明しています。

表 6-14. GPIO のサポート機能 - LED

GPIO	信号名	説明
GPIO_00	SSP1_SCLK (I)	SSP ターゲット
GPIO_01	SSP1_DI (I)	SSP ターゲット
GPIO_02	SSP1_DO (O)	SSP ターゲット
GPIO_03	SSP1_CSZ0 (I)	SSP ターゲット
GPIO_04	SSP1_CSZ1 (I)	SSP ターゲット
GPIO_05	SSP1_CSZ2 (I)	SSP ターゲット
GPIO_06	SSP1_BCSZ (I)	SSP ターゲット
GPIO_07	IIC1_SCL (B)	I2C ターゲット
GPIO_08	IIC1_SDA (B)	I2C ターゲット
GPIO_09	WPC_COLOR_SENSOR_VSYNC (O)	ホワイト ポイント補正同期
GPIO_10	UART1_TXD (O)	
GPIO_11	UART1_RXD (I)	
GPIO_12	RC_CHARGE (O)	
GPIO_13	LED_SEL0 (O)	
GPIO_14	LED_SEL1 (O)	
GPIO_15	汎用入出力	
GPIO_16	汎用入出力	
GPIO_17	汎用入出力	
GPIO_18	汎用入出力	
GPIO_19	汎用入出力	
GPIO_20	汎用入出力	
GPIO_21	3D LR (I)	3D アプリケーションの場合:左または右の 3D リファレンス (左 = 1、右 = 0)。3D コマンドが提供されない場合にホストによって提供されます。各フレームの中央で遷移する必要があります (VSYNC のアクティブ エッジから 1ms 以上離れていること)。
GPIO_22	汎用入出力	
GPIO_23	LL_FAULT (O)	コマンド処理ができないシステム フォルトのステータスに使用されるフォルト信号。
GPIO_24	汎用入出力	
GPIO_25	CMP_MSEL_0/THERM_PWR (O)	
GPIO_26	CMP_PWM (O)	
GPIO_27	CMP_OUT (I)	
GPIO_28	LS_PWR (O)	
GPIO_29	汎用入出力	
GPIO_30	汎用入出力	
GPIO_31	汎用入出力	
GPIO_32	汎用入出力	

表 6-14. GPIO のサポート機能 - LED (続き)

GPIO	信号名	説明
GPIO_33	汎用入出力	
GPIO_34	汎用入出力	
GPIO_35	CAL_PWR (O)	
GPIO_36	汎用入出力	
GPIO_37	汎用入出力	
GPIO_38	汎用入出力	
GPIO_39	USB 選択 (O)	
GPIO_40	4 方向 XPR (O)	
GPIO_41	4 方向 XPR (O)	
GPIO_42	4 方向 XPR (O)	
GPIO_43	4 方向 XPR (O)	
GPIO_44	4 方向 XPR (O)	
GPIO_45	4 方向 XPR (O)	
GPIO_46	4 方向 XPR (O)	
GPIO_47	4 方向 XPR (O)	
GPIO_48	4 方向 XPR (O)	
GPIO_49	4 方向 XPR (O)	
GPIO_50	4 方向 XPR (O)	
GPIO_51	4 方向 XPR (O)	

表 6-15. GPIO のサポート機能 - LED / レーザー PWM

GPIO	信号名	説明
GPIO_00	SSP1_SCLK (I)	SSP ターゲット
GPIO_01	SSP1_DI (I)	SSP ターゲット
GPIO_02	SSP1_DO (O)	SSP ターゲット
GPIO_03	SSP1_CSZ0 (I)	SSP ターゲット
GPIO_04	SSP1_CSZ1 (I)	SSP ターゲット
GPIO_05	SSP1_CSZ2 (I)	SSP ターゲット
GPIO_06	SSP1_BCSZ (I)	SSP ターゲット
GPIO_07	IIC1_SCL (B)	I2C ターゲット
GPIO_08	IIC1_SDA (B)	I2C ターゲット
GPIO_09	WPC_COLOR_SENSOR_VSYNC (O)	ホワイトポイント補正同期
GPIO_10	UART1_TXD (O)	
GPIO_11	UART1_RXD (I)	
GPIO_12	汎用入出力	
GPIO_13	RED_ENABLE (O)	注 (1) を参照
GPIO_14	GREEN_ENABLE (O)	注 (1) を参照
GPIO_15	BLUE_ENABLE (O)	注 (1) を参照
GPIO_16	汎用入出力	
GPIO_17	汎用入出力	
GPIO_18	汎用入出力	
GPIO_19	汎用入出力	
GPIO_20	汎用入出力	

表 6-15. GPIO のサポート機能 - LED / レーザー PWM (続き)

GPIO	信号名	説明
GPIO_21	3D LR (I)	3D アプリケーションの場合:左または右の 3D リファレンス (左 = 1、右 = 0)。3D コマンドが提供されない場合にホストによって提供されます。各フレームの中央で遷移する必要があります (VSYNC のアクティブ エッジから 1ms 以上離れていること)。
GPIO_22	汎用入出力	
GPIO_23	LL_FAULT (O)	システム フォルトを監視するために使用されるフォルト信号、詳細を提供するソフトウェア コマンドが利用可能
GPIO_24	汎用入出力	
GPIO_25	RED_PWM (O)	注 (1) を参照
GPIO_26	GREEN_PWM (O)	注 (1) を参照
GPIO_27	BLUE_PWM (O)	注 (1) を参照
GPIO_28	汎用入出力	
GPIO_29	汎用入出力	
GPIO_30	汎用入出力	
GPIO_31	汎用入出力	
GPIO_32	汎用入出力	
GPIO_33	汎用入出力	
GPIO_34	汎用入出力	
GPIO_35	汎用入出力	
GPIO_36	汎用入出力	
GPIO_37	汎用入出力	
GPIO_38	汎用入出力	
GPIO_39	USB 選択 (O)	
GPIO_40	4 方向 XPR (O)	
GPIO_41	4 方向 XPR (O)	
GPIO_42	4 方向 XPR (O)	
GPIO_43	4 方向 XPR (O)	
GPIO_44	4 方向 XPR (O)	
GPIO_45	4 方向 XPR (O)	
GPIO_46	4 方向 XPR (O)	
GPIO_47	4 方向 XPR (O)	
GPIO_48	4 方向 XPR (O)	
GPIO_49	4 方向 XPR (O)	
GPIO_50	4 方向 XPR (O)	
GPIO_51	4 方向 XPR (O)	

注:

(1) お客様のアプリケーションに応じて使用可能なレーザー安全機能は、テキサス・インスツルメンツのソフトウェアの適用範囲外であり、これらの信号を使用してレーザー光源を駆動する場合、その責任はお客様にあります。

6.3.6 デバッグ サポート

DLPC8445 および DLPC8445V コントローラにはテスト ポイント出力ポート TSTPT_(7:0) があり、これによりホストがコントローラのデバッグをサポートできます。 初期のデバッグ動作では、4 つの信号 (TSTPT(3:0)) は、PARKZ が High にな

ってから (またはシステム リセットが行われてから) 約 1.5µs 後に入力としてサンプリングされます。それらの入力状態がサンプリングおよびキャプチャされると、この情報を使用して TSTPT_(7:0) バスの初期テストモード出力状態が設定されます。表 6-16 に、TSTPT_(7:0) のいくつかのプログラム可能な出力状態に対するテスト モード選択を定義します。通常動作 (デバッグ不要) には、デフォルト状態の 0000 (必要な外付けプルダウン抵抗で定義) を使用します。

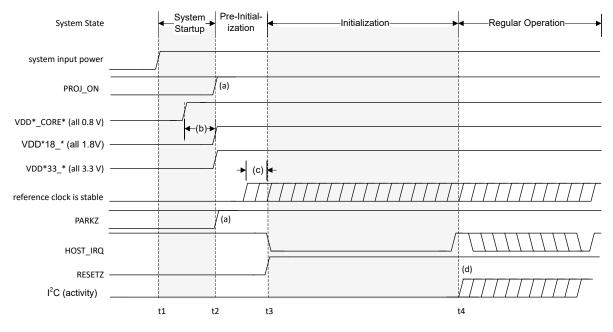
テキサス・インスツルメンツがこのデバッグ機能を使用できるようにするために、TSTPT(3:0) に外部プルアップへのジャンパオプションを提供し、TSTPTバス出力の監視を可能にするアクセスを提供することが推奨されます。

表 6-16. TSTPT(3:0) で定義されたテスト モード選択出力の例

20 10. 10.1 1(0.0) CARCINCS XI E 1 ZENZESSOS					
	TSTPT(3:0) キャプチャ値 (1)				
TSTPT_(7:0) 出力	0000 (デフォルト) (スイッチングなし)	0101 クロック デバッグ	1000 システム キャリブレーション		
TSTPT(0)	0	High	垂直同期		
TSTPT(1)	0	166.25MHz	遅延 CW インデックス		
TSTPT(2)	0	83.13MHz	シーケンス インデックス		
TSTPT(3)	0	41.56MHz	CW スポーク テスト ポイント		
TSTPT(4)	0	10.39MHz	CW 回転テスト ポイント		
TSTPT(5)	0	25.16MHz	リセット シーケンス補助ビット 0		
TSTPT(6)	0	133.00MHz	リセット シーケンス補助ビット 1		
TSTPT(7)	0	High	リセット シーケンス補助ビット 2		

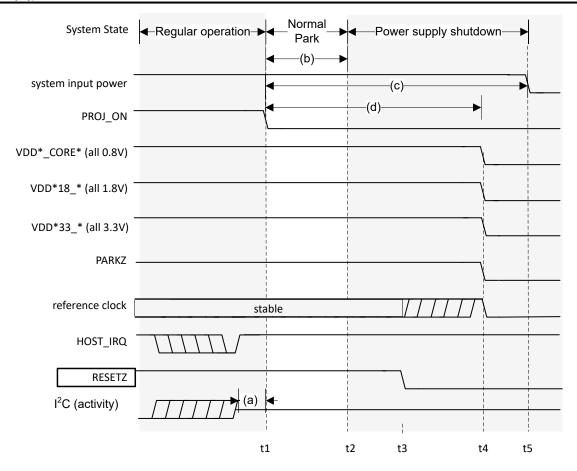
⁽¹⁾ これらはあくまでもデフォルトの出力選択です。ソフトウェアは、選択した内容をいつでも再プログラムできます。

55


Product Folder Links: DLPC8445

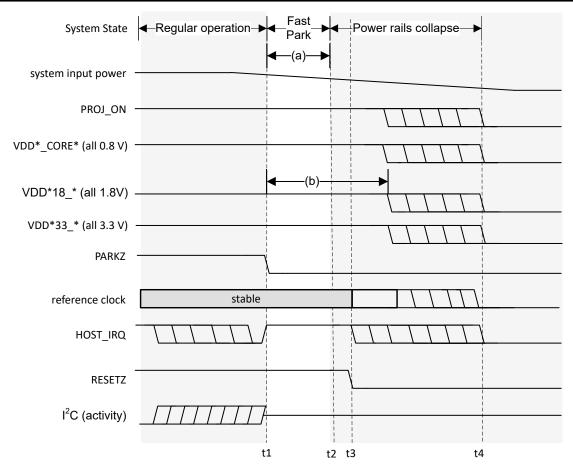
7電源に関する推奨事項

7.1 システムのパワーアップおよびパワーダウン シーケンス


DLPC8445 および DLPC8445V コントローラは電源電圧ピンの配列を必要としますが、DLPC8445 または DLPC8445V コントローラの損傷を避けるために、電源シーケンスの相対的な順序に制限はありません (これは、パワーアップとパワー ダウンの両方のシナリオについても同様です)。コントローラでは、各電源のパワーアップとパワーダウンの間に最小遅延時間は必要ありません。電源を DLPC8445 または DLPC8445V コントローラと共有するデバイス (PMIC や DMD など) には、追加の電源シーケンス ルールが存在する場合があります。これらのデバイスにより、追加のシステム電源シーケンス要件が生じる場合があります。代表的な DLPA3085 または DLPA3082 システムの DLPC8445 または DLPC8445V パワーアップ シーケンス、通常の PARK パワーダウン シーケンス、および高速 PARK パワーダウン シーケンスを下の図に示します。

- t1: システムに供給される電力。他のすべての電圧レールは、システムの入力電源から供給されます。
- t2: すべての電源は、指定された公称値の 95% に達します。HOST IRQ は、オープンドレイン出力です。
- t3: RESETZ がデアサートされる (High になる) ポイント。これは自動初期化の開始を示します。
- t4: HOST IRQ が High になり、初期化が完了し、ホスト通信が開始できることを示します。
- (a): 自動初期化をサポートするため、RESETZ 解除前に PARKZ と PROJ_ON を High にする必要があります。
- (b): t_{RAMP-UP-TOTAL}、0.8V ランプ開始からすべての電源が安定するまでの最大時間。
- (c): t_{REFCLK} 、RESETZ 解除前にリファレンス クロックが安定していなければならない最小時間。
- (d): HOST_IRQ が High になり、自動初期化が完了したことが示されるまで、I²C アクティビティは開始できません。

図 7-1. システム パワーアップ波形 (DLPA3085 または DLPA3082 使用時)


資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated

- t1: PROJ_ON が Low になり、パワーダウン シーケンスが始まります。
- t2: コントローラが DMD ミラー パーキング シーケンスを完了します。
- t3: RESETZ がアサートされ、HOST_IRQ が High になります。
- t4: コントローラ電源がすべてオフになり、放電されます。
- t5: システム電源を安全に取り外すことができます。
- (a): PROJ ON がデアサートされた (Low になった) 後の I²C アクティビティはサポートされません。
- (b): DMD ミラー パーキング シーケンスは、PROJ_ON がデアサートされる (Low になる) と始まります。
- (c): PROJ_ON がデアサートされた (Low になった) 後、DMD パーキングと電源が完全にパワーダウンする時間を確保するため、システムの 入力電力を仕様内に維持することが推奨されます。
- (d): DLPA PMIC は、コントローラ電源のパワーダウン タイミングを制御します。

図 7-2. 通常パーク パワーダウン波形

- t1: フォルトが検出され (この例では PMIC が UVLO 状態を検出)、PARKZ がアサートされ (Low になり)、DMD の高速パークを開始するよう にコントローラに通知します。
- t2: コントローラが高速パーク手順を終了します。
- t3: RESETZ がアサートされると、コントローラはリセット状態になり、HOST_IRQ が解除されて High になります。
- t4: 最終的に、SYSPWRから派生した電源はすべて停止します。
- (a): DMD を損傷の可能性から保護するため、PARKZ がアサートされて (Low になって) から少なくとも 32µs の間、すべての電源と PLL REFCLK を仕様内に維持する必要があります。
- (b): DMD には電源シーケンス要件があり、1.8V 電源のタイミング要件に影響を及ぼす可能性があります。詳細については、DMD のデータシートを参照してください。

図 7-3. 高速パーク パワーダウン波形

7.2 DMD 高速パーク制御 (PARKZ)

PARKZ は、DC 電源電圧が仕様を下回る少なくとも 32 μ s 前に、コントローラに通知する必要がある早期警告用の入力信号です。通常、PARKZ 信号は DLPA3085 または DLPA3082 割り込み出力信号によって供給されます。通常動作の場合、PARKZ は RESETZ を解除する前 (RESETZ 入力の Low から High への遷移の前) にデアサート (High に設定) されている必要があります。PARKZ がアサート (Low に設定) されると、コントローラは DMD の高速パーク動作を実行し、これが DMD の寿命の維持に寄与します。パーク動作が完了するには、PARKZ がアサート (Low に設定) されて から少なくとも 32 μ s の間、リファレンス クロックは動作を継続し、RESETZ は非アクティブのままになっている必要があります。

資料に関するフィードバック(ご意見やお問い合わせ)を送信

高速パーク動作は、電力損失が差し迫っていて、ホストプロセッサの制御が及ばない場合 (外部電源が切断された場合や、バッテリが最低レベル以下に低下した場合など)のみの使用を想定しています。高速パーク動作では、DMD の最長寿命が達成されない場合があります。最長寿命は、通常パーク動作で達成されるものです。したがって、PARKZ は一般的に、通常パークを行う時間が不足している場合にのみ、通常パーク要求の代わりに使用されます。通常パーク動作は、ミラーをパークするのに 32μs よりもはるかに長い時間がかかります。通常パーク動作の間、DLPA3085 またはDLPA3082 はすべての電源をオンのままにし、長い時間を要するミラー パーキングが完了するまで RESETZ を High に維持します。さらに、DLPA3085 または DLPA3082 はパーキングが完了した後、一定時間電源をオンのままにすることができます。詳細については、関連する DLPA3085 または DLPA3082 のデータシートを参照してください。ミラーのパーキング時間を長くすることで、DMD の寿命と信頼性を最大限に保つことができます。

7.3 パワー マネージメント

DLPA3085 または DLPA3082 は、DLPC8445 または DLPC8445V および DMD のパワー マネージメントを行います。 パワー シーケンスとタイミングに関するすべての要件については、セクション 7.1 を参照してください。

7.4 ホットプラグの使用

ホットプラグを使用する場合は、DLPC8445 および DLPC8445V の安定した電源が必要となるため、電源レールが完全にパワーアップされるまで、入力ソースを送信しないでください。V-by-One、FPD-Link、DSI、USB の各インターフェイスは、ホットプラグの使用に対応しており (DLPC8445 または DLPC8445V に電源供給されている状態でこれらのインターフェイスの接続や取り外しが可能)、コントローラ本体 (およびシステムに接続された DMD) はホットプラグの使用に対応していません。そのため、コントローラや DMD をシステムから取り外す前に、システムをパワーダウンしてください。

7.5 未使用の入力ソース インターフェイスの電源

製品の構成によっては、使用可能な入力ソース インターフェイス (V-by-One、FPD-Link、DSI など) のすべてを提供または利用できない場合がありますが、これら未使用の入力ソース インターフェイスに関連付けられた電源は、インターフェイスが利用される場合と同様に提供されなければなりません。

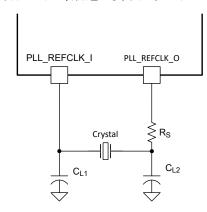
7.6 電源

7.6.1 電源 DLPA3085 または DLPA3082

DLPC8445 および DLPC8445V の 電源 0.8V、1.8V、3.3V は、DLPA3085 または DLPA3082 パワーマネージメント IC によって供給されます。一意に定義された電源ピン (たとえば、VDD_CORE、VDDR_CORE) ごとに追加のフィルタリングを提供する必要があります。本書の セクション 8.1 では、電源ピンのフィルタリングの詳細を説明しています。

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信



8 レイアウト

8.1 レイアウトのガイドライン

8.1.1 DLPC8445 または DLPC8445V リファレンス クロックのレイアウト ガイドライン

DLPC8445 または DLPC8445V は、内部 PLL に供給するために、2 つの 外部リファレンスを必要とします。水晶振動子または発振器から、これらのリファレンス信号を供給できます。推奨される水晶振動子の構成とリファレンス クロックの周波数を 水晶振動子に必要なディスクリート部品 に示し、別途必要なディスクリート部品を 表 8-1 に示します。

C_L = 水晶振動子の負荷容量

図 8-1. 水晶振動子に必要なディスクリート部品

8.1.1.1 水晶発振器の推奨構成

表 8-1. 水晶振動子の推奨構成

パラメータ	水晶振動子	単位
水晶振動子回路の構成	並列共振	
水晶振動子のタイプ	基本波 (第 1 高調波)	
水晶振動子の公称周波数	40	MHz
水晶振動子周波数の許容誤差 ⁽¹⁾	±100 (最大 200p-p)	PPM
水晶振動子の等価直列抵抗 (ESR)	60 (最大)	Ω
水晶振動子の負荷容量	20 (最大)	pF
水晶振動子のシャント負荷容量	7 (最大)	pF
温度範囲	-40°C~+85°C	°C
励振レベル	100 (公称)	μW
C _{L1} 外部水晶振動子の負荷コンデンサ	(2) の式を参照してください。	pF
C _{L2} 外部水晶振動子の負荷コンデンサ	(3) の式を参照してください。	pF
PCB レイアウト	水晶振動子の周囲にアース絶縁リングを設ける。 推奨されます。	ことが

- (1) 精度、温度、経年劣化、トリム感度を考慮した水晶振動子周波数の許容誤差。これらは通常別々に指定され、この要件を満たすために必要なすべての合計となります。
- (2) CL1 = 2 × (CL Cstray_pll_refclk_i)、ここで、Cstray_PLL_refclk_I = コントローラ ピン REFCLKx_I に関連した水晶振動子ピンでのパッケー ジと PCB の浮遊容量の合計表 8-2 を参照してください。
- (3) CL2 = 2 × (CL Cstray_pll_refclk_o)、ここで、Cstray_PLL_refclk_o = コントローラ ピン REFCLKx_O に関連した水晶振動子ピンでのパッケージと PCB の浮遊容量の合計表 8-2 を参照してください。

資料に関するフィードバック(ご意見やお問い合わせ)を送信

表 8-2. 水晶振動子ピンの容量

パラメータ		最小値	公称值	最大値	単位
Cstray_pll_refclk_i	REFCLKA_I でのパッケージと PCB の浮遊容量 の合計		0.4		pF
Cstray_pll_refclk_o	REFCLKA_O でのパッケージと PCB の浮遊容量の合計		0.4		pF

DLPC8445 または DLPC8445V の水晶振動子回路には専用の電源 (VDDS18_OSC) ピンがあり、各推奨フィルタリングを 図 8-2 に、推奨値を DLPC8445 および DLPC8445V の推奨水晶振動子 に示します。

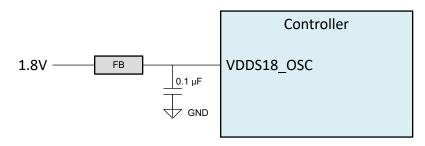


図 8-2. 水晶振動子の電源フィルタリング

表 8-3. DLPC8445 および DLPC8445V の推奨水晶振動子

Storial Control of the Control of th								
メーカー	部品番号	公称周波数	周波数の許容誤 差、 周波数安定性、 経年劣化1年	ESR	負荷容量	動作温度範囲	励振レベル	
			周波数の許容誤 差: ±20ppm	/5				
TXC	7M4007004 1 ⁽¹⁾	40MHz	周波数安定性: ±20ppm			12pF	-40°C∼+85°C	100µW
			経年劣化 / 年: ±3ppm					

(1) このデバイスには、(intering = 0) の R_S 抵抗が必要です。

8.1.2 V-by-One インターフェイス レイアウトの考慮事項

DLPC8445 および DLPC8445V V-by-One SERDES 差動インターフェイスの波形品質とタイミングは、インターコネクトシステムの全長、トレース間の間隔、特性インピーダンス、エッチング損失、およびインターフェイス全体での長さの整合性に依存します。そのため、正のタイミングマージンを確保するには、多くの要因に注意する必要があります。

DLPC8445 および DLPC8445V I/O タイミング パラメーター、V-by-One トランスミッター タイミング パラメーター、および Thine 固有のタイミング要件は、それぞれの対応するデータ シートに記載されています。 PCB 配線のミスマッチは、制御された PCB 配線を通して、予算を割り当てて対応することができます。 V-by-One の PCB 関連要件は、お客様向けの参照情報として V-by-One インターフェイスの PBC 関連要件に示します。

表 8-4. V-by-One インターフェイスの PBC 関連要件

パラメータ ⁽¹⁾	最小値	標準値	最大値	単位
レーン内クロストーク (VX1_DATAx_P と VX1_DATAx_N の間)			< 1.5	mVpp
レーン間クロストーク (データレーン ペアの間)			< 1.5	mVpp
データレーンと他の信号の間のクロストーク			< 1.5	mVpp
レーン内スキュー			< 40	ps
レーン間スキュー			< 800	ps

Product Folder Links: DLPC8445

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

表 8-4. V-by-One インターフェイスの PBC **関連要件** (続き)

パラメータ ⁽¹⁾	最小値	標準値	最大値	単位
差動インピーダンス	90	100	110	Ω

(1) 最小のトレース幅と間隔を使用してコントローラ ボール フィールドからエスケープする場合、目標の 100Ω インピーダンスを達成するために、実際的に可能であればエスケープ後にトレース幅と間隔を広げることが推奨されます (たとえば、伝送ラインの損失を低減するため)。

V-by-One のその他のレイアウト ガイドライン:

- ビアの数を最小限に抑えるため、PBC の最上層に差動信号ペアを配線します。必要なビアの数を 2 個に制限します。
- マイクロストリップ ライン構成を使用して、差動信号ペアを単一のグランド プレーンまたは電源プレーンに配線します。 グランド ガード トレースも推奨されます。
- 差動信号ペアは電源プレーンやグランドプレーンのスリット上に配線しないでください。
- スキュー要件を満たすために、各ペアおよび各ペア間のパターン長のミスマッチを最小限に抑えます。
- 差動信号ペアに関連する曲げ角度が 135°~225° であることを確認します (図 8-3 を参照)。

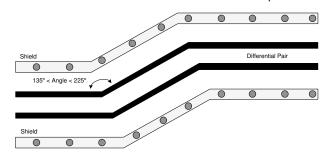


図 8-3. V-by-One の配線例

8.1.3 最大ピン間、PCB インターコネクト エッチング長

表 8-5. 最大ピン互換 PCB 相互接続に関する推奨事項

DMD バス信号 ^{(1) (2)}	信号相互	接続トポロジ	774 Fr
DMDハヘ信号(ハモ)	単一基板の信号配線の長さ	複数基板の信号配線の長さ	単位
DMD_HS_CLK_P DMD_HS_CLK_N	6.0 (152.4)	(3) を参照してください。	(mm) 単位
DMD_HS_WDATA_A_P DMD_HS_WDATA_A_N			
DMD_HS_WDATA_B_P DMD_HS_WDATA_B_N			
DMD_HS_WDATA_C_P DMD_HS_WDATA_C_N			
DMD_HS_WDATA_D_P DMD_HS_WDATA_D_N	6.0 (152.4)	(3)ナ 全切1 アノギキ1、	(mm) 単位
DMD_HS_WDATA_E_P DMD_HS_WDATA_E_N		(3)を参照してください。	(mm) 単位
DMD_HS_WDATA_F_P DMD_HS_WDATA_F_N			
DMD_HS_WDATA_G_P DMD_HS_WDATA_G_N			
DMD_HS_WDATA_H_P DMD_HS_WDATA_H_N			
DMD_LS_CLK	6.5 (165.1)	(3) を参照してください。	(mm) 単位
DMD_LS_WDATA	6.5 (165.1)	(3) を参照してください。	(mm) 単位

資料に関するフィードバック(ご意見やお問い合わせ) を送信

表 8-5. 最大ピン互換 PCB 相互接続に関する推奨事項 (続き)

DMD バス信号 ^{(1) (2)}	信号相互担	単位			
DINID / V/IE 5	単一基板の信号配線の長さ	複数基板の信号配線の長さ	1 平1 1		
DMD_LS_RDATA	6.5 (165.1)	(3) を参照してください。	(mm) 単位		
DMD_DEN_ARSTZ	7.0 (177.8)	(3) を参照してください。	(mm) 単位		

- (1) 信号配線の最大長には、エスケープ配線が含まれます。
- (2) コネクタの影響により、マルチボード DMD 配線の長さが制限されます。
- (3) PCB のばらつきのため、これらの推奨事項は定義できません。基板設計では、配線長が信号要件に違反しないように、コントローラの IBIS モデル (コントローラの Web ページの「ツールとソフトウェア」タブにある) を SPICE シミュレーションする必要があります。

表 8-6. 高速 PCB 信号配線マッチング要件

信号グループ長マッチング (1) (2) (3)					
インターフェイス	信号グループ	リファレンス信号	最大ミスマッチ (4)	単位	
DMD ⁽⁵⁾	DMD_HS_WDATA_A_P DMD_HS_WDATA_B_P DMD_HS_WDATA_B_N DMD_HS_WDATA_C_P DMD_HS_WDATA_C_N DMD_HS_WDATA_D_P DMD_HS_WDATA_D_N DMD_HS_WDATA_E_P DMD_HS_WDATA_E_N DMD_HS_WDATA_F_N DMD_HS_WDATA_F_N DMD_HS_WDATA_G_P DMD_HS_WDATA_G_N DMD_HS_WDATA_G_N DMD_HS_WDATA_H_N DMD_HS_WDATA_H_N	DMD_HS_CLK_P DMD_HS_CLK_N	±1.0 (±25.4)	(mm) 単位	
DMD	DMD_HS_WDATA_x_P	DMD_HS_WDATA_x_N	±0.025 (±0.635)	(mm) 単位	
DMD	DMD_HS_CLK_P	DMD_HS_CLK_N	±0.025 (±0.635)	(mm) 単位	
DMD	DMD_LS_WDATA DMD_LS_RDATA	DMD_LS_CLK	±0.2 (±5.08)	(mm) 単位	
DMD	DMD_DEN_ARSTZ	該当なし	該当なし	(mm) 単位	

- (1) 長マッチングの値は、PCB 配線長にのみ適用されます。DLPC8445 および DLPC8445V コントローラまたは DMD に関連する内部パッケージ の配線ミスマッチについて、その他の考慮事項は必要ありません。
- (2) トレーニングは DMD HS データ ラインに適用されます。この理由で、定義済みのマッチング要件は LS データ ラインと比較してわずかに緩和されています。
- (3) DMD LS 信号はシングル エンドです。
- (4) 信号グループのミスマッチのばらつきは、常にリファレンス信号に関連しています。
- (5) DMD HS のデータラインは差動であるため、これらの仕様はペアツーペアです。

表 8-7. 信号要件

パラメータ	リファレンス	要件
	DMD_LS_WDATA	33Ω ±10% が必要
	DMD_LS_CLK	33Ω ±10% が必要
ソース直列終端	DMD_DEN_ARSTZ	許容する
	DMD_LS_RDATA	30.1Ω ±10% が必要
	DMD_HS_WDATA_x_y	許容しない
	DMD_HS_CLK_y	許容しない

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

表 8-7. 信号要件 (続き)

パラメータ	リファレンス	要件						
	DMD_LS_WDATA	許容しない						
	DMD_LS_CLK	許容しない						
エンドポイント終端	DMD_DEN_ARSTZ	許容しない						
ノトハイントが少面	DMD_LS_RDATA	許容しない						
	DMD_HS_WDATA_x_y	許容しない						
	DMD_HS_CLK_y	許容しない						
	DMD_LS_WDATA	50Ω ±10%						
	DMD_LS_CLK	50Ω ±10%						
PCB インピーダンス	DMD_DEN_ARSTZ	50Ω ±10%						
FCB 12 L -92A	DMD_LS_RDATA	50Ω ±10%						
	DMD_HS_WDATA_x_y	100Ω ±10%						
	DMD_HS_CLK_y	100Ω ±10%						
	DMD_LS_WDATA	DMD_LS_DCLK を基準とする SDR (シングル データレート)						
	DMD_LS_CLK	DMD_LS_DCLK を基準とする SDR						
	DMD_DEN_ARSTZ	SDR						
信号のタイプ	DMD_LS_RDATA	DMD_LS_DLCK を基準とする SDR						
	DMD_HS_WDATA_x_y	SubLVDS						
	DMD_HS_CLK_y	SubLVDS						

8.1.4 電源のレイアウト ガイドライン

以下にリストされている電源入力には、以下のフィルタリング回路が推奨されます。

- VDDA18 Vx1
- VDDA18 FPD
- VDDA18 DSI
- VDDA33 USB
- VDDA18 USB
- VDD_CORE_Vx1
- VDD_CORE_FPD
- VDD_CORE_DSIVDD CORE USB

PBC レイアウトはこれらの電源に関連するインターフェイスの性能にとって不可欠であるため、これらの電源をアナログ信号のように扱うことが大変重要です。具体的には次のとおりです。

- 高周波コンポーネント(フェライトやコンデンサなど)は、電源ボールのできるだけ近くに配置します。
- ESR 値や ESL 値が低い高周波セラミック コンデンサ (0.1μF、0.01μF、100nF など) を選択します。リードはできる限り短く設計し、これらのコンデンサは基板の反対側のパッケージの下に配置することが推奨されます。
- 各電源ピンには、コントローラからコンデンサを経由し、直列フェライトを通って電源に接続するための単一パターン (できるだけ幅広)を使用する必要があります。
- 各電源ピンには、エスケープ ビアの近くに 100nF のデカップリング コンデンサを 1 つ追加します。このデカップリング 容量はフィルタの推奨容量に追加します。これらは最小の推奨事項であるため、レイアウトが異なる場合、追加容量が 必要になることがあります。

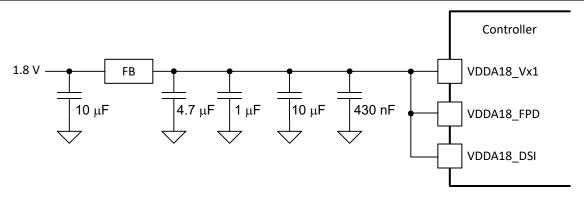


図 8-4. VDDA18_VX1 (V-by-One)、VDDA18_FPD (FPD-Link)、VDDA18_DSI の (DSI) 推奨フィルタ

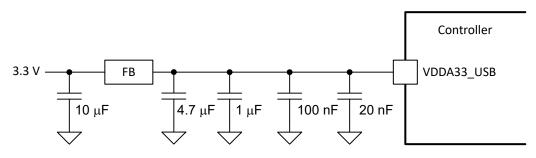


図 8-5. VDDA33_USB (USB) の推奨フィルタ

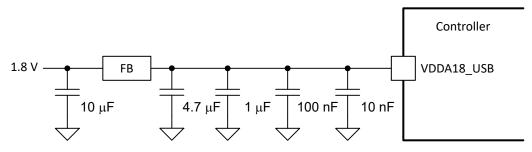


図 8-6. VDDA18_USB (USB) の推奨フィルタ

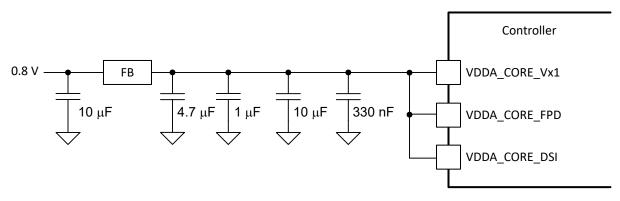


図 8-7. VDD_CORE_VX1 (V-by-One)、VDD_CORE_FPD (FPD-Link)、VDD_CORE_DSI (DSI) の推奨フィルタ

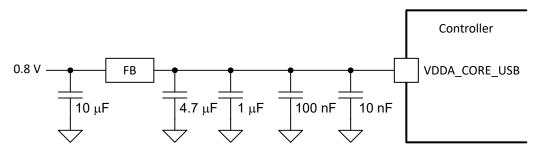


図 8-8. VDD_CORE_USB (USB) の推奨フィルタ

8.2 熱に関する注意事項

DLPC8445 または DLPC8445V の基本的な熱要件は、最大動作時接合部温度 (T_J)を超えてはならないことです (「推奨動作条件」に定義)。この温度は、動作時周囲温度、ヒートシンク、エアフロー、PCB 設計 (コンポーネントのレイアウト密度およびと銅箔の使用量など)、DLPC8445 または DLPC8445V の消費電力、周囲のコンポーネントの消費電力に依存します。 DLPC8445 または DLPC8445V のパッケージは、パッケージのヒート スラグからヒートシンクへ、サーマル ボールを経由し、PCB の電源プレーンとグランド プレーンを通して熱を抽出するように設計されています。 そのため、ヒートシンク、銅箔の量、PCB 上のエアフローが重要な要素になります。

推奨される最大動作時周囲温度 (T_A) は、主に設計目標として提供され、強制エアフロー 0m/s、1m/s、2m/s における DLPC8445 または DLPC8445V の最大消費電力と R_{θJA} に基づいています。ここで、R_{θJA} は「レイアウトガイドライン」に 記載されているテスト基板を使用して測定したパッケージの熱抵抗です。このテスト PCB は必ずしもお客様の PCB を代表しているとは限らないため、報告された熱抵抗は、実際の製品アプリケーションでは誤差が生じる場合があります。 実際 の熱抵抗は異なる可能性がありますが、設計段階において放熱性能を評価する上では最良の情報となります。 テキサス・インスツルメンツでは、ホスト PCB の設計と構築が完了したら、熱性能の測定と検証を行うことを強く推奨しています。

そのためには、製品のワーストケースシナリオ (最大消費電力、最大電圧、最大周囲温度) の下でケース中央上部の温度を測定し、推奨される最大ケース温度 (T_C) を超えていないことを検証します。この仕様は DLPC8445 または DLPC8445V パッケージの ϕ_{JT} の測定を基にしたもので、接合部温度と比較的正確な相関関係が得られます。このケース温度を測定する際には、パッケージ表面が誤って冷却されないように注意してください。テキサス・インスツルメンツでは、小型 (約 40 ゲージ) の熱電対を推奨しています。ビーズと熱電対配線がパッケージ上部に接触するようにしてください。ビーズと熱電対配線を最小限の熱伝導性エポキシで覆ってください。配線を通してビーズが冷却されないように、パッケージと基板表面に沿って密に配線してください。

9 デバイスおよびドキュメントのサポート

テキサス・インスツルメンツでは、幅広い開発ツールを提供しています。デバイスの性能の評価、コードの生成、ソリューションの開発を行うためのツールとソフトウェアを以下で紹介します。

9.1 サード・パーティ製品に関する免責事項

サード・パーティ製品またはサービスに関するテキサス・インスツルメンツの出版物は、単独またはテキサス・インスツルメンツの製品、サービスと一緒に提供される場合に関係なく、サード・パーティ製品またはサービスの適合性に関する是認、サード・パーティ製品またはサービスの是認の表明を意味するものではありません。

9.2 ドキュメントのサポート

9.2.1 関連資料

次のドキュメントには、DMD とともに使用されるチップセット コンポーネントについての追加情報が掲載されています。

- 『DLPA3085 PMIC および高電流 LED ドライバ IC』データシート
- **『DLPA3082 PMIC IC』**データシート
- 『DLP472TP 0.47 4K UHD デジタル マイクロミラー デバイス』データシート

9.3 ドキュメントの更新通知を受け取る方法

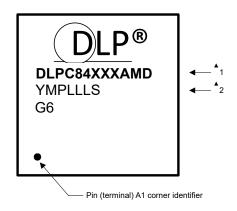
ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。

9.4 サポート・リソース

テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。

Product Folder Links: DLPC8445


Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

9.5 デバイスの命名規則

9.5.1 デバイスのマーキング

マーキングの定義:

1 行目: テキサス・インスツルメンツの型 DLPC84XXX = デバイス ID

番: 量産出荷中 空白または A、B、C …部品のリビジョン

AMD = パッケージ記号

2 行目: ベンダの年、週、およびロットコ Y

ード

YM = 年月日コード P = セカンダリ拠点コード LLL = アセンブリ拠点コード S = プライマリ拠点コード

3 行目: ECAT - グリーン パッケージ記号 G6

9.6 商標

テキサス・インスツルメンツ E2E™ is a trademark of Texas Instruments.

V-by-One® is a registered trademark of THine Electronics, Inc.

Arm® is a registered trademark of Arm Ltd.

DLP® is a registered trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

9.7 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

9.8 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

9.8.1 ビデオ タイミング パラメータの定義

フレームあたりのアクティブ 表示可能なデータを含むフレーム内のライン数を定義します。ALPF は TLPF のサブセットライン数(ALPF) です。

ラインあたりのアクティブ ピ表示可能なデータを含むライン内のピクセル クロック数を定義します。APPL は TPPL のサクセル数(APPL) ブセットです。

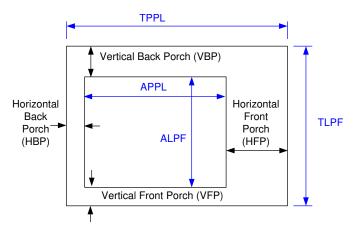
水平バック ポーチ(HBP)ブ 水平同期より後で最初のアクティブ ピクセルより前のブランク ピクセル クロック数。注:HBP ランキング 時間は、該当する同期信号のリーディング (アクティブ) エッジを基準とします。

水平フロントポーチ(HFP) 最後のアクティブ ピクセルより後で水平同期より前のブランク ピクセル クロック数。 **ブランキング**

水平同期(HS)

各水平区間(ライン)の開始を定義するタイミング基準点。絶対基準点は、HS 信号のアクティブ エッジにより定義されます。アクティブ エッジ(ソースでの定義により立ち上がりエッジまたは立ち下がりエッジ)を基準として、すべての水平ブランキング パラメータが測定されます。

フレームあたりの総ライン数 垂直期間 (またはフレーム時間) をライン単位で定義します。 TLPF = フレームあたりの総ラ (TLPF) イン数 (アクティブおよび非アクティブ)。


ラインあたりの総ピクセル数 水平ライン期間をピクセル クロック単位で定義します。TPPL = ラインあたりの総ピクセル ク (TPPL) ロック数 (アクティブおよび非アクティブ)。

垂直同期(VS)

垂直区間(フレーム)の開始を定義するタイミング基準点。絶対基準点は、VS 信号のアクティブ エッジにより定義されます。アクティブ エッジ(ソースでの定義により立ち上がりエッジまたは立ち下がりエッジ)を基準として、すべての垂直ブランキング パラメータが測定されます。

垂直バック ポーチ(VBP)ブ 垂直同期より後で、最初のアクティブ ラインより前のブランク ライン数。 ランキング

垂直フロント ポーチ(VFP) 最後のアクティブ ラインより後で、垂直同期より前のブランク ライン数。 ブランキング

10 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

11 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、指定のデバイスに使用できる最新のデータです。このデータは、予告なく、このドキュメントを改訂せずに変更される場合があります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ) を送信

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated www.ti.com 1-Nov-2024

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
DLPC8445AMD	ACTIVE	FCCSP	AMD	484	260	RoHS & Green	Call TI	Level-3-250C-168 HR	0 to 70	DLPC8445AMD	Samples
DLPC8445VAMD	ACTIVE	FCCSP	AMD	484	100	RoHS & Green	Call TI	Level-3-250C-168 HR	0 to 70	DLPC8445VAMD	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

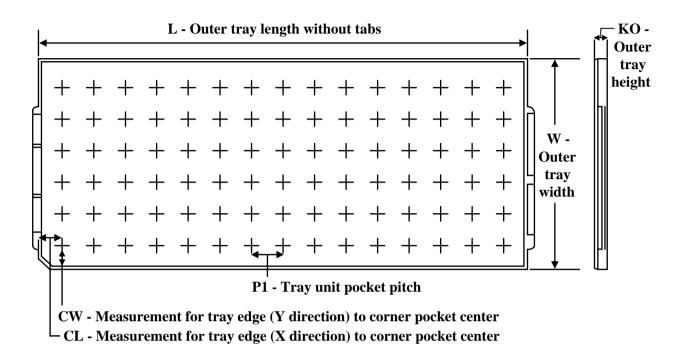
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

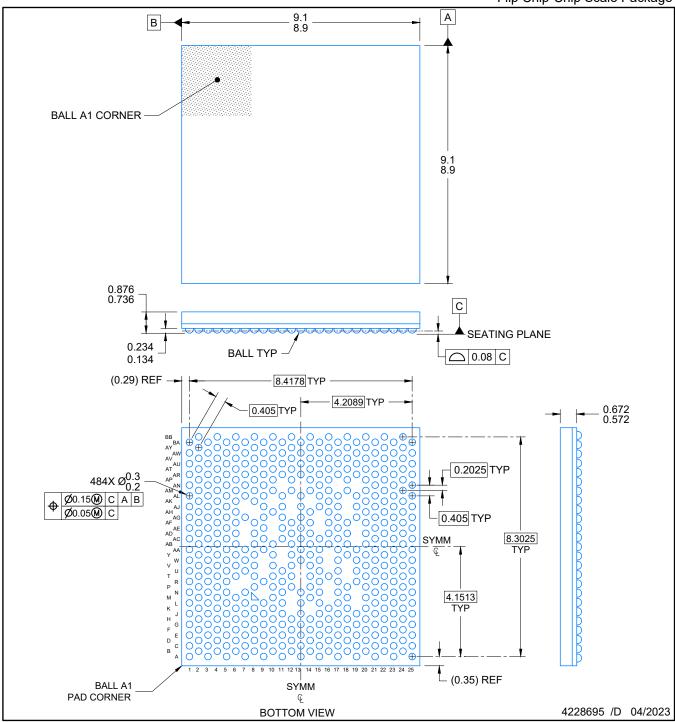
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE OPTION ADDENDUM

www.ti.com 1-Nov-2024

www.ti.com 5-Nov-2024

TRAY

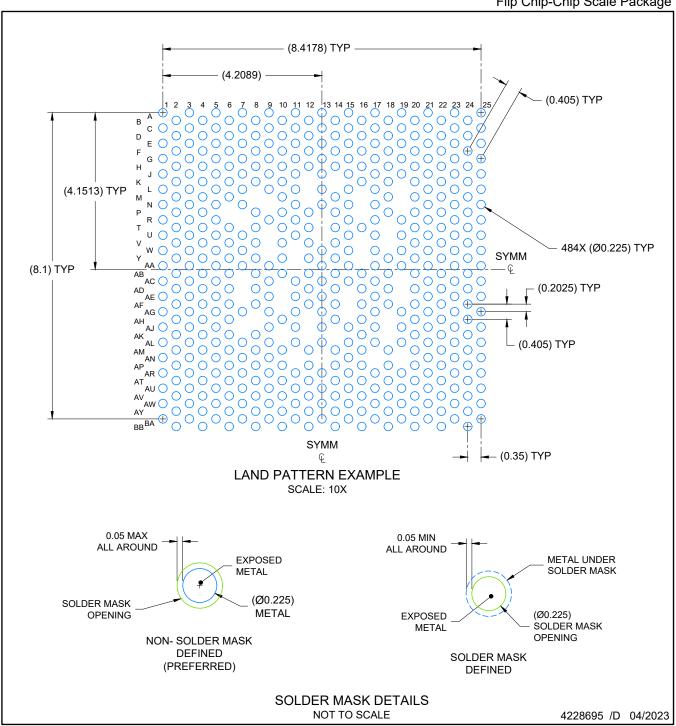


Chamfer on Tray corner indicates Pin 1 orientation of packed units.

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	Κ0 (μm)	P1 (mm)	CL (mm)	CW (mm)
DLPC8445AMD	AMD	FCCSP	484	260	10 X 26	150	315	135.9	7620	11.8	10	NA
DLPC8445VAMD	AMD	FCCSP	484	100	10 X 26	150	315	135.9	7620	11.8	10	NA

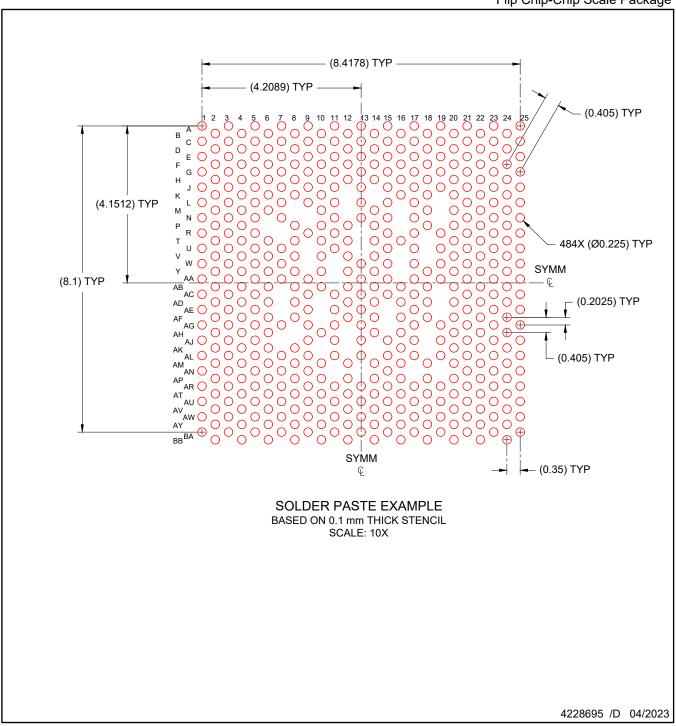
Flip Chip-Chip Scale Package


NOTES:

NanoFree is a trademark of Texas Instruments.

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- This drawing is subject to change without notice.

Flip Chip-Chip Scale Package



NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments Literature number SNVA009 (www.ti.com/lit/snva009).

Flip Chip-Chip Scale Package

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated