DRV81004-Q1 # JAJSVQ6 - NOVEMBER 2024 ## 1 特長 - アナログ電源電圧:3V~40V - クランク機能:最小 3V - LV124 規格をサポート - デジタル電源電圧:3V~5.5V - 3.3V および 5V マイクロコントローラと互換 - ドレイン ソース間のクランプ電圧:最小 44V - R_{DS(ON)}: 12V、25℃時の代表値 630mΩ - 電流:すべてのチャネルがオンの場合、85℃時に出力 ごとに 470mA - ・ マッピング機能を備えた 2 個の並列入力 - **リンプ ホーム** モードでのフェイルセーフ起動 - nSLEEP および IN ピンの使用 - 低消費電流のスリープ モード - 3μA 未満 (nSLEEP ピン使用時) - 制御および診断用の 16 ビット SPI インターフェイス - デイジー チェーン機能 - 8 ビット SPI デバイスと互換 - 各種保護機能をサポート- - 逆極性バッテリ保護 - グランドおよびバッテリ短絡保護 - 低電圧条件での安定した動作 - 過電流ラッチオフ - 過熱警告 - サーマル シャットダウン ラッチオフ - 過電圧保護 - バッテリ喪失およびグランド喪失時の保護 - 静電気放電 (ESD) 保護 - 各種**診断機能**をサポート - - SPI レジスタを介した診断情報 - オン状態での過負荷検出 - オフ状態でのオープン負荷検出 - 入力および出力ステータス モニタ # 2 アプリケーション - 車載用ボディコントロール モジュール (BCM) - HVAC 制御 - オートモーティブ ライティング - ガソリン / ディーゼル エンジン - 車両制御ユニット (VCU) - プログラマブル ロジック コントローラ (PLC) - 空気弁 - 汎用リレードライバ ## 3 概要 DRV81004-Q1:リレー制御用 4 チャネル ローサイド ドライバ DRV81004-Q1 は、保護および診断機能を内蔵した 4 チ ャネルローサイドドライバです。本デバイスは、車載およ び産業用アプリケーションのリレーを制御するために特に 設計されています。 本デバイスの制御と診断だけでなく、負荷の制御と診断の ために、デイジー チェーン機能付きの SPI (Serial Peripheral Interface) を利用しています。マッピング機能 を持つ 2 つの入力ピンを利用して、出力を直接 PWM 制 御できます。本デバイスは、フェイルセーフ起動のためのリ ンプ ホーム モードをサポートしています。 DRV81004-Q1 の各ローサイド スイッチのオン抵抗は 630mΩ です。8 つのチャネルのすべてが同時にオンのと き、本デバイスは出力ごとに 470mA の電流をサポートで きます。各出力に関連するクランプ回路は、誘導性負荷を オフにする際に蓄積されるエネルギーを消散します。 DRV81004-Q1 は、低電圧、過電圧、短絡、開放負荷検 出などの各種保護機能をサポートしています。保護および 診断機能を内蔵し、高度に統合された DRV81004-Q1 は、車載用ボディおよびパワートレインアプリケーションに 最適です。 ### 製品情報 | | | 187 | | |---------------------|----------------|------------------------------|------------------| | 部品番号 | パッケージ (1) | パッケージ サ
イズ ⁽²⁾ | 本体サイズ (公
称) | | DRV81004QPWPR
Q1 | HTSSOP
(14) | 5.0mm ×
6.4mm | 4.9mm ×
3.9mm | - (1) 詳細については、セクション 10 を参照してください。 - パッケージ サイズ (長さ×幅) は公称値であり、該当する場合はピ ンも含まれます。 概略回路図 ## **Table of Contents** | 1 特長 | 1 | 6.3 Feature Description | 12 | |--------------------------------------|----|---|----| | 2 アプリケーション | | 7 Application and Implementation | | | 3 概要 | | 7.1 Application Information | 30 | | 4 Pin Configuration and Functions | | 7.2 Layout | 31 | | 5 Specifications | | 8 Device and Documentation Support | 33 | | 5.1 Absolute Maximum Ratings | | 8.1ドキュメントの更新通知を受け取る方法 | 33 | | 5.2 ESD Ratings | | 8.2 サポート・リソース | 33 | | 5.3 Recommended Operating Conditions | | 8.3 Trademarks | | | 5.4 Thermal Information | | 8.4 静電気放電に関する注意事項 | 33 | | 5.5 Electrical Characteristics | | 8.5 用語集 | | | 6 Detailed Description | 11 | 9 Revision History | | | 6.1 Overview | | 10 Mechanical, Packaging, and Orderable | | | 6.2 Functional Block Diagram | | Information | 34 | Product Folder Links: DRV81004-Q1 # **4 Pin Configuration and Functions** 図 4-1. 14-Pin HTSSOP (PWP) Top View 表 4-1. Pin Functions | | PIN | TYPE | DESCRIPTION | |--------|-----|------|--| | NAME | NO. | | DESCRIPTION | | VM | 10 | Р | Analog supply voltage for power stage and protection circuits | | VDD | 14 | Р | Digital supply voltage for SPI | | GND | 5 | G | Ground pin | | nSCS | 1 | 1 | Serial chip select. An active low on this pin enables the serial interface communications. Integrated pull-up to VDD. | | SCLK | 2 | 1 | Serial clock input. Serial data is shifted out and captured on the corresponding rising and falling edge on this pin. Integrated pull-down to GND. | | SDI | 3 | I | Serial data input. Data is captured on the falling edge of the SCLK pin. Integrated pull-down to GND. | | SDO | 4 | 0 | Serial data output. Data is shifted out on the rising edge of the SCLK pin. | | nSLEEP | 11 | I | Logic high activates Idle mode. Integrated pull-down to GND. | | IN0 | 13 | I | Connected to channel 2 by default and in Limp Home mode. Integrated pull-down to GND. | | IN1 | 12 | I | Connected to channel 3 by default and in Limp Home mode. Integrated pull-down to GND . | | OUT0 | 6 | 0 | Drain of low-side FET (channel 0) | | OUT2 | 7 | 0 | Drain of low-side FET (channel 2) | | OUT3 | 8 | 0 | Drain of low-side FET (channel 3) | | OUT1 | 9 | 0 | Drain of low-side FET (channel 1) | | PAD | - | - | Exposed pad. Connect the exposed pad to PCB ground for cooling and EMC. | I = Input, O = Output, I/O = Input or Output, G = Ground, P = Power. ## 5 Specifications ## 5.1 Absolute Maximum Ratings Over T_J = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise noted) | | | MIN | MAX | UNIT | |---------------------|---|------|-----------------------|------| | V _M | Analog supply voltage | -0.3 | 42 | V | | V_{DD} | Digital supply voltage | -0.3 | 5.75 | V | | V_{M_LD} | Supply voltage for load dump protection | | 42 | V | | V_{M_SC} | Supply voltage for short circuit protection | 0 | 35 | V | | -V _{M_REV} | Reverse polarity voltage, $T_J(0)$ = 25 °C, t ≤ 2 min, R_L = 70 Ω on all channels | - | 18 | V | | I_{VM} | Current through VM pin, t ≤ 2 min | -10 | 10 | mA | | I _L | Load current, single channel | - | I _{L_OCP0} | Α | | V _{DS} | Voltage at power FET | -0.3 | 42 | V | | E _{AS} | Maximum energy dissipation single pulse, $T_J(0)$ = 25 °C, $I_L(0)$ = 2* I_{L_EAR} | - | 50 | mJ | | E _{AS} | Maximum energy dissipation single pulse, $T_J(0)$ = 150 °C, $I_L(0)$ = 400 mA | - | 25 | mJ | | E _{AR} | Maximum energy dissipation for repetitive pulses - I_{L_EAR} , 2*10 ⁶ cycles, $T_J(0)$ = 85 °C, $I_L(0)$ = I_{L_EAR} | - | 10 | mJ | | VI | Voltage at IN0, IN1, nSCS, SCLK, SDI pins | -0.3 | 5.75 | V | | V _{nSLEEP} | Voltage at nSLEEP pin | -0.3 | 42 | V | | V _{SDO} | Voltage at SDO pin | -0.3 | V _{DD} + 0.3 | V | | T _A | Ambient Temperature | -40 | 125 | °C | | T_J | Junction Temperature | -40 | 150 | °C | | T _{stg} | Storage temperature | -55 | 150 | °C | - The short circuit protection feature does not support short inductance $< 1 \mu H$ above 28 V. - Load dump is for a duration of t_{on} = 400 ms; t_{on}/t_{off} = 10%; limited to 100 pulses. - For reverse polarity, $T_J(0) = 25$ °C, $t \le 2$ min, $R_L = 70$ Ω on all channels. Device is mounted on a FR4 2s2p board according to JEDEC JESD51-2,-5,-7 at natural convection; the Product (Chip+Package) was simulated on a 76.2 *114.3 *1.5 mm board with 2 inner copper layers (2 * 70 μm Cu, 2 * 35 μm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. - For maximum energy dissipation, pulse shape represents inductive switch off: I_L(t) = I_L(0) x (1 t / t_{pulse}); 0 < t < t_{pulse}. - Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. - Fault conditions are considered as "outside" normal operating range. Copyright © 2024 Texas Instruments Incorporated 4 Product Folder Links: DRV81004-Q1 ## 5.2 ESD Ratings | | | | | VALUE | UNIT | |------------------|-------------------------|---------------------------------|---------------------------|-------|-------| | | Electrostatic discharge | Human-body model (HBM), per AEC | OUT pins vs. VM or GND | ±4000 | | | V | | Q100-002 ⁽¹⁾ | Other pins | ±2000 | \ \ \ | | V _{ESD} | | Charged device model (CDM), per | Corner pins (1, 7, 8, 14) | ±750 | V | | | | AECQ100-011 | Other pins | ±500 | | (1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification. ## **5.3 Recommended Operating Conditions** Over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM | MAX | UNIT | |--------------------|---|-----|-----|-----|------| | V _{M_NOR} | Supply voltage range for normal operation | 4 | - | 40 | V | | V _{M_LOW} | Lower supply voltage range for extended operation, parameter deviation possible | 3 | - | 4 | V | | V_{DD} | Logic supply voltage | 3 | - | 5.5 | V | | Vı | Control and SPI Inputs (nSLEEP, IN0, IN1, nSCS, SCLK, SDI) | 0 | - | 5.5 | V | | T _A | Ambient temperature | -40 | - | 125 | °C | | TJ | Junction temperature | -40 | - | 150 | °C | #### 5.4 Thermal Information | | THERMAL METRIC | PWP (HTSSOP) | UNIT | |-----------------------|--|--------------|------| | | | 14 PINS | | | R _{0JA} | Junction-to-ambient thermal resistance | 43 | °C/W | | R _{θJC(top)} | Junction-to-case (top) thermal resistance | 44.5 | °C/W | | R _{θJB} | Junction-to-board thermal resistance | 21 | °C/W | | TLΨ | Junction-to-top characterization parameter | 3.6 | °C/W | | Ψ ЈВ | Junction-to-board characterization parameter | 20.9 | °C/W | | R _{θJC(bot)} | Junction-to-case (bottom) thermal resistance | 10.1 | °C/W | - For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report. - °C/W = degrees Celsius per watt. - These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. Power dissipation of 2 W and an ambient temperature of 70°C is assumed. For more information, see these EIA/JEDEC standards: - JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions Natural Convection (Still Air) - JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages - JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages - JESD51-9, Test Boards for
Area Array Surface Mount Package Thermal Measurements ## 5.5 Electrical Characteristics V_{DD} = 3 V to 5.5 V, V_{M} = 4 V to 40 V, T_{J} = -40 °C to +150 °C (unless otherwise noted) Typical values: V_{DD} = 5 V, V_{M} = 13.5 V, T_{J} = 25 °C | | PARAMETER | TEST CONDIT | IONS | MIN | TYP | MAX | UNIT | |-----------------------|---|---|---|-----|---------------------------|---------------------------|------| | POWER SI | JPPLY (V _M , V _{DD}) | | ' | | | | | | V _{M_OP} | VM minimum operating voltage | ENx = 1b, from UVRVM = $R_L = 50 \Omega$ | ENx = 1b, from UVRVM = 1b to $V_{DS} \le 1 \text{ V}$, $R_L = 50 \Omega$ | | | 4 | V | | V _{DD_OP} | VDD Operating voltage | f _{SCLK} = 5 MHz | | 3 | | 5.5 | V | | V _{MDIFF} | Voltage difference between V_{M} and V_{DD} | | | | 210 | | mV | | l | Analog supply current in sleep mode | nSLEEP, IN0, IN1 floating, | T _J ≤ 85 °C | | 1.2 | 2.5 | μA | | VM_SLEEP | Analog supply current in sleep mode | nSCS = VDD | T _J = 150 °C | | 1.4 | 3 | μΛ | | l | Logic supply current in sleep mode | nSLEEP, IN0, IN1 floating, | T _J ≤ 85 °C | | 0.4 | 8.0 | μA | | VDD_SLEEP | Logic supply current in sleep mode | nSCS = VDD | T _J = 150 °C | | | 2 | μΛ | | l | Overall current consumption in Sleep | nSLEEP, IN0, IN1 floating, | T _J ≤ 85 °C | | | 3 | μΑ | | SLEEP | mode | nSCS = VDD | T _J = 150 °C | | | 6 | μΑ | | | | nSLEEP = logic high, IN0,
IN1 floating, f _{SCLK} = 0 | | | | 1.5 | mA | | I _{VM_IDLE} | Analog supply current in Idle mode | MHz, ACT = 0b, ENx = 0b, IOLx = 0b, nSCS = VDD | COR mode, V _M
≤ V _{DD} - 1 V | | | 0.25 | mA | | | | nSLEEP = logic high, INO, | | 0.4 | | | | | I _{VDD_IDLE} | Logic supply current in Idle mode | 0b, nSCS = VDD ≤ V _{DD} | COR mode, V _M
≤ V _{DD} - 1 V | | | 1.35 | mA | | I _{IDLE} | Overall current consumption in Idle mode | nSLEEP = logic high, IN0, IN1 floating, $f_{SCLK} = 0$ MHz, ACT = 0b, ENx = 0b, IOLx = 0b, nSCS = VDD | | | | 1.75 | mA | | | | nSLEEP = logic high, INO, | | | | 2.5 | mA | | I _{VM_ACT} | Analog supply current in Active mode | IN1 floating, f _{SCLK} = 0
MHz, ACT = 1b, IOLx =
0b, nSCS = VDD | COR mode, V _M
≤ V _{DD} - 1 V | | 0.1 | 0.3 | mA | | | | nSLEEP = logic high, INO, | | | | 0.4 | mA | | I _{VDD_ACT} | Logic supply current in Active mode | IN1 floating, f _{SCLK} = 0
MHz, ACT = 1b, nSCS =
VDD | COR mode, V _M
≤ V _{DD} - 1 V | | | 2.4 | mA | | I _{ACT} | Overall current consumption in Active mode | nSLEEP = logic high, IN0, IN1 floating, $f_{SCLK} = 0$ MHz, ACT = 1b, IOLx = 0b, nSCS = VDD | | | | 2.8 | mA | | t _{S2I} | Sleep to Idle delay | | | | 240 | 300 | μs | | t _{i2S} | Idle to Sleep delay | | | | 100 | 150 | μs | | t _{I2A} | Idle to Active delay | | | | 100 | 150 | μs | | t _{A2I} | Active to Idle delay | | | | 100 | 150 | μs | | t _{S2LH} | Sleep to Limp Home delay | | | ; | 350 + t _{ON} | 450 +
t _{ON} | μs | | t _{LH2S} | Limp Home to Sleep delay | | | | 200 +
t _{OFF} | 250 +
t _{OFF} | μs | Copyright © 2024 Texas Instruments Incorporated 6 Product Folder Links: DRV81004-Q1 V_{DD} = 3 V to 5.5 V, V_{M} = 4 V to 40 V, T_{J} = -40 °C to +150 °C (unless otherwise noted) Typical values: V_{DD} = 5 V, V_{M} = 13.5 V, T_{J} = 25 °C | | PARAMETER | TEST CONDIT | IONS | MIN | TYP | MAX | UNIT | |----------------------|---|--|-------------------------|-----------------------|----------|-----------------|------| | t _{LH2A} | Limp Home to Active delay | | | | 50 | 100 | μs | | t _{A2LH} | Active to Limp Home delay | | | | 52 | 100 | μs | | t _{A2S} | Active to Sleep delay | | | | 50 | 100 | μs | | CONTROL | AND SPI INPUTS (nSLEEP, IN0, IN1, I | nSCS, SCLK, SDI) | | | 1 | " | | | V _{IL} | Input logic low voltage | | | 0 | | 0.8 | V | | V _{IH} | Input logic high voltage (nSLEEP, IN0, IN1) | | | 2 | | 5.5 | V | | V _{IH_SPI} | Input logic high voltage (nSCS, SCLK, SDI) | | | 2 | | V _{DD} | V | | I _{IL} | Input logic low current (all pins except nSCS) | V _I = 0.8 V | | 9 | 12 | 15 | μΑ | | I _{IH} | Input logic high current (all pins except nSCS) | V _I = 2 V | | 20 | 30 | 40 | μΑ | | I _{IL_nSCS} | nSCS input logic low current | V _{nSCS} = 0.8 V, V _{DD} = 5 V | | 25 | 60 | 75 | μA | | I _{IH_nSCS} | nSCS input logic high current | V _{nSCS} = 2 V, V _{DD} = 5 V | | 20 | 40 | 65 | μA | | PUSH-PU | LL OUTPUT (SDO) | | | 1 | <u> </u> | | | | V _{SDO_L} | Output logic low voltage | I _{SDO} = -1.5 mA | | 0 | | 0.4 | V | | V _{SDO_H} | Output logic high voltage | I _{SDO} = 1.5 mA | | V _{DD} - 0.4 | | V_{DD} | V | | I _{SDO_OFF} | SDO tristate leakage current | $V_{\text{nSCS}} = V_{\text{DD}}, V_{\text{SDO}} = 0 \text{ V c}$ | r V _{DD} | -0.5 | | 0.5 | μA | | POWER S | TAGE | | | | | | | | | 011 | T _J = 25 °C | | | 0.63 | 0.85 | | | R _{DS(ON)} | ON resistance | T _J = 150 °C, I _L = I _{L_EAR} = 220 mA | | | 0.95 | 1.3 | Ω | | | Nominal load current (all channels | T _A = 85 °C, T _J ≤ 150 °C | | | 470 | 500 | mA | | I _{L_NOM} | active) | T _A = 105 °C, T _J ≤ 150 °C | | | 370 | 500 | mA | | I _{L_EAR} | Load current for maximum energy dissipation - repetitive (all channels active) | T _A = 85 °C, T _J ≤ 150 °C | | | 220 | | mA | | E _{AR} | Maximum energy dissipation repetitive pulses- 2*I _{L_EAR} (two channels in parallel) | T _{J(0)} = 85 °C, I _{L(0)} = 2*I _{L_E/}
PAR = 1b for affected char | | | | 15 | mJ | | V _{DS_OP} | Power stage voltage drop at low battery | $R_L = 50 \Omega$ supplied by V_M | = 4 V | | | 0.2 | V | | V _{DS_CL} | Drain to Source Output clamping voltage | I _L = 20 mA | 1 | 44 | 46 | 48 | V | | I _{L_OFF} | Output leakage current (each | $V_{IN} = 0 \text{ V or floating, } V_{DS}$ | T _J ≤ 85 °C | | 0.6 | 1.2 | μΑ | | | channel) | = 28 V, ENx = 0b | T _J = 150 °C | | 8.0 | 5 | μA | | t _{DLY_ON} | Turn-ON delay (from INx pin or bit to $V_{OUT} = 90\% V_{M}$) | R_L = 50 Ω , V_M = 13.5 V, Active mode or Limp Home mode | | 3 | 4 | 6 | μs | | t _{DLY_OFF} | Turn-OFF delay (from INx pin or bit to $V_{OUT} = 10\% V_{M}$) | $R_L = 50 \Omega$, $V_M = 13.5 V$, Ac
Limp Home mode | | 6 | 8 | 11 | μs | | ton | Turn-ON time (from INx pin or bit to $V_{OUT} = 10\% V_{M}$) | $R_L = 50 \Omega$, $V_M = 13.5 V$, Ac
Limp Home mode | ctive mode or | 12 | 15 | 18 | μs | V_{DD} = 3 V to 5.5 V, V_{M} = 4 V to 40 V, T_{J} = -40 °C to +150 °C (unless otherwise noted) Typical values: V_{DD} = 5 V, V_{M} = 13.5 V, T_{J} = 25 °C | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------------------------|--|--|------|------|------|------| | t _{OFF} | Turn-OFF time (from INx pin or bit to $V_{OUT} = 90\% V_{M}$) | R_L = 50 Ω , V_M = 13.5 V, Active mode or Limp Home mode | 15 | 18 | 22 | μs | | t _{ON} - t _{OFF} | Turn-ON/OFF matching | R_L = 50 Ω , V_M = 13.5 V, Active mode or Limp Home mode | -10 | 0 | 10 | μs | | SR _{ON} | Turn-ON slew rate, V _{DS} = 70% to 30% V _M | R_L = 50 Ω , V_M = 13.5 V, Active mode or Limp Home mode | 1 | 1.3 | 1.7 | V/µs | | SR _{OFF} | Turn-OFF slew rate, V_{DS} = 30% to 70% V_{M} | R_L = 50 Ω , V_M = 13.5 V, Active mode or Limp Home mode | 1 | 1.3 | 1.7 | V/µs | | tsync | Internal reference frequency synchronization time | | | 5 | 10 | μs | | PROTECTI | ON | | - | - | | | | V _{M_UVLO_F} | VM undervoltage shutdown (falling) | ENx = ON, from $V_{DS} \le 1 \text{ V to UVRVM} = 1b$, $R_L = 50 \Omega$ | 2.6 | 2.73 | 2.86 | ٧ | | V _{M_UVLO_R} | VM undervoltage shutdown (rising) | | 2.7 | 2.85 | 3 | V | | V _{DD_UVLO} | VDD undervoltage shutdown | V _{SDI} = V _{SCLK} = V _{nSCS} = 0 V, SDO from low to Hi-Z | 2.55 | 2.7 | 2.85 | V | | V _{DD_HYS} | VDD undervoltage shutdown hysteresis | | 100 | 120 | 140 | mV | | | | T _J = -40 °C | 1.3 | 1.6 | 1.9 | Α | | I _{L_OCP0} | Overcurrent protection threshold,
OCP = 0b | T _J = 25 °C | 1.3 | 1.5 | 1.7 | Α | | | | T _J = 150 °C | 1.1 | 1.35 | 1.6 | Α | | | Overcurrent protection threshold,
OCP = 0b | T _J = -40 °C | 0.7 | 0.9 | 1.1 | Α | | I _{L_OCP1} | | T _J = 25 °C | 0.65 | 0.85 | 1.05 | Α | | I _{L_OCP1} | | T _J = 150 °C | 0.6 | 0.75 | 0.9 | Α | | I _{L_OCP1} | | T _J = -40 °C | 1.9 | 2.2 | 2.5 | Α | | I _{L_OCP0} | Overcurrent protection threshold, OCP = 1b | T _J = 25 °C | 1.8 | 2.1 | 2.4 | Α | | | | T _J = 150 °C | 1.5 | 1.8 | 2.1 | Α | | | | T _J = -40 °C | 1.3 | 1.55 | 1.8 | Α | | I _{L_OCP1} | Overcurrent protection threshold, OCP = 1b | T _J = 25 °C | 1.2 | 1.45 | 1.7 | Α | | | | T _J = 150 °C | 1.1 | 1.3 | 1.5 | Α | | t _{OCPIN} | Overcurrent threshold switch delay time | | 110 | 170 | 260 | μs | | t _{OFF_OCP} | Overcurrent shut-down delay time | | 4 | 7 | 11 | μs | | T _{OTW} | Overtemperature warning | | 120 | 140 | 160 | °C | | T _{HYS_OTW} | Overtemperature warning hysteresis | | | 12 | | °C | | T _{TSD} | Thermal shut-down temperature | | 150 | 175 | 200 | °C | | V _{M_AZ} | Over voltage protection | I _{VM} = 10 mA, Sleep mode | 46 | 48 | 50 | V | | V | Drain Source diode during reverse | I _L = -10 mA, Sleep mode | | 670 | | mV | | V_{DS_REV} | polarity | T _J = 150 °C | | 530 | | mV | | t _{RETRY0_LH} | Restart time in Limp Home mode | · | 7 | 10 | 13 | ms | V_{DD} = 3 V to 5.5 V, V_{M} = 4 V to 40 V, T_{J} = -40 °C to +150 °C (unless otherwise noted) Typical values: V_{DD} = 5 V, V_{M} = 13.5 V, T_{J} = 25 °C | | PARAMETER | TEST
CONDITIONS | MIN | TYP | MAX | UNIT | |------------------------|--|--|-----|-----|-----|------| | t _{RETRY1_LH} | Restart time in Limp Home mode | | 14 | 20 | 26 | ms | | t _{RETRY2_LH} | Restart time in Limp Home mode | | 28 | 40 | 52 | ms | | t _{RETRY3_LH} | Restart time in Limp Home mode | | 56 | 80 | 104 | ms | | t _{OSM} | Output Status Monitor comparator settling time | | | | 20 | μs | | V _{DS_OL} | Output Status Monitor threshold voltage | | 2.9 | 3.3 | 3.7 | V | | I _{OL} | Output diagnosis current | V _{DS} = 3.3 V | 20 | 75 | 85 | μΑ | | I _{OL} | Output diagnosis current | V _{DS} = 3.3 V, V _M = 13.5 V | 65 | 75 | 85 | μΑ | | R _{OL} | Open Load equivalent resistance | | 110 | | 190 | kΩ | ## 5.5.1 SPI Timing Requirements · Not subject to production test, guaranteed by design | | PARAMETER | TEST CONDITIONS | MIN | NOM | MAX | UNIT | |------------------------|---|-----------------------------------|-----|-----|-----|------| | t _{nSCS_lead} | Enable lead time (falling nSCS to rising SCLK) | | 200 | | | ns | | t _{nSCS_lag} | Enable lag time (falling SCLK to rising nSCS) | | 200 | | | ns | | t _{nSCS_td} | Transfer delay time (rising nSCS to falling nSCS) | | 250 | | | ns | | t _{SDO_en} | Output enable time (falling nSCS to SDO valid) | C _L = 20 pF at SDO pin | | | 200 | ns | | t _{SDO_dis} | Output disable time (rising nSCS to SDO Hi-z) | C _L = 20 pF at SDO pin | | | 200 | ns | | f _{SCLK} | Serial clock frequency | | | | 5 | MHz | | t _{SCLK_P} | Serial clock period | | 200 | | | ns | | t _{SCLK_H} | Serial clock logic high time | | 75 | | | ns | | t _{SCLK_L} | Serial clock logic low time | | 75 | | | ns | | t _{SDI_su} | Data setup time (required time SDI to falling SCLK) | | 20 | | | ns | | t _{SDI_h} | Data hold time (falling SCLK to SDI) | | 20 | | | ns | | t _{SDO_v} | Output data valid time with capacitive load | C _L = 20 pF at SDO pin | | | 100 | ns | 図 5-1. SPI Timing Diagram ## 6 Detailed Description ### 6.1 Overview The DRV81004-Q1 is a four channel low-side switch providing integrated protection and diagnostic functions. The output stages incorporate four N-channel power MOSFET low-side switches (typical $R_{DS(ON)}$ at T_J = 25 °C is 630 m Ω). The 16-bit serial peripheral interface (SPI) is used to control and diagnose the device and the loads. The SPI interface supports daisy chain in order to connect multiple devices (also devices with 8 bit SPI) in one SPI chain by using the same microcontroller pins. The SPI feature, including the possibility to program the device, is available only when the digital power supply is present. The DRV81004-Q1 is designed for low supply voltage operation. It can keep its state at low battery voltage ($V_M \ge 3 \text{ V}$). The DRV81004-Q1 is equipped with two input pins that are connected to two outputs, making them controllable even when the digital supply voltage is not available. With the Input Mapping feature, it is possible to connect the input pins to different outputs, or assign more outputs to the same input pin. In this case more channels can be controlled with one input signal. In Limp Home mode, the input pins are directly routed to channels 2 and 3. When nSLEEP pin is logic low, it is possible to activate the two channels using the input pins independently from the presence of the digital supply voltage. The device provides diagnosis of the load via Open Load (in OFF state) and short circuit detection. For Open Load detection, an internal current source I_{OI} can be activated via SPI. Each output stage is protected against short circuit. In case of overcurrent, the affected channel switches OFF when the overcurrent detection threshold is reached and can be reactivated via SPI. In Limp Home mode operation, the channels connected to an input pin set to logic high restart automatically after output restart time elapses. Temperature sensors are available for each channel to protect the device against over temperature. 表 6-1. Product Summary | | oddot odininai y | | |---|---------------------|-------------------------------------| | Parameter | Symbol | Values | | Analog supply voltage | V _M | 3.0 V to 40 V | | Digital supply voltage | V _{DD} | 3.0 V to 5.5 V | | Minimum overvoltage protection | V _{M_AZ} | 46 V | | Maximum on-state resistance at T _J = 150 °C | R _{DS(ON)} | 1.3 Ω | | Nominal load current (T _A = 85 °C, all channels) | I _{L_NOM} | 470 mA | | Maximum Energy dissipation - repetitive | E _{AR} | 10 mJ @ I _{L_EAR} = 220 mA | | Minimum Drain to Source clamping voltage | V _{DS_CL} | 44 V | | Maximum overload switch OFF threshold | I _{L_OVL0} | 1.9 A or 2.5 A | | Maximum total quiescent current at T _J ≤ 85 °C | I _{SLEEP} | 3 μΑ | | Maximum SPI clock frequency | f _{SCLK} | 5 MHz | ## 6.2 Functional Block Diagram 図 6-1. Functional Block Diagram ## 6.3 Feature Description #### 6.3.1 Control Pins The device has three pins (IN0, IN1 and nSLEEP) to control the device directly without using SPI. ### 6.3.1.1 Input Pins DRV81004-Q1 has two input pins. Each input pin is connected by default to one channel (IN0 to channel 2, IN1 to channel 3). Input Mapping Registers MAP0 and MAP1 can be programmed to connect additional or different channels to each input pin, as shown in 🗵 6-2. The signals driving the channels are an OR combination between EN register status, IN0 and IN1 (according to Input Mapping registers status). 図 6-2. Input Mapping The logic level of the input pins can be monitored via the Input Status Monitor Register (INST). The Input Status Monitor is operational also when DRV81004-Q1 is in Limp Home mode. If one of the Input pins is set to logic high and the nSLEEP pin is set to logic low, the device switches into Limp Home mode and activates the channel mapped by default to the input pins. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 #### **6.3.1.2 nSLEEP Pin** The nSLEEP pin is used to bring the device into Sleep mode operation when it is set to logic low and all input pins are also set to logic low. When nSLEEP pin is set to logic low while one of the input pins is set to logic high, the device enters Limp Home mode. To ensure a proper mode transition, nSLEEP pin must be set for at least t_{I2S} (transition from logic high to logic low) or t_{S2I} (transition from logic low to logic high). Setting the nSLEEP pin to logic low results in: - · All registers in the SPI are reset to default values. - V_{DD} and V_M Undervoltage detection circuits are disabled to decrease current consumption (if both inputs are set to logic low). - No SPI communication is allowed (SDO pin remains in high impedance also when nSCS pin is set to logic low) if both input pins are set to logic low. ### 6.3.2 Power Supply The DRV81004-Q1 is supplied by two supply voltages: - V_M (analog supply voltage used also for the logic) - V_{DD} (digital supply voltage) The V_M supply line is connected to a battery feed and used, in combination with V_{DD} supply, for the driving circuitry of the power stages. In situations where V_M voltage drops below V_{DD} voltage (for example during cranking events down to 3 V), an increased current consumption may be observed at VDD pin. V_M and V_{DD} supply voltages have an undervoltage detection circuit. - An undervoltage on both V_M and V_{DD} supply voltages prevents the activation of the power stages and any SPI communication (the SPI registers are reset) - An undervoltage on V_{DD} supply prevents any SPI communication. SPI read/write registers are reset to default values. - An undervoltage on V_M supply forces the DRV81004-Q1 to drain all needed current for the low-side switches and for the logic from V_{DD} supply. \boxtimes 6-3 shows a basic concept drawing of the interaction between supply pins V_M and V_{DD} , the output stage drivers and SDO supply line. 図 6-3. Internal Power Supply Architecture When 3 V \leq V_M \leq V_{DD} - V_{MDIFF}, DRV81004-Q1 operates in Cranking Operative Range (COR). In this condition, the current consumption from VDD pin increases while it decreases from VM pin. Total current consumption remains within the specified limits. 図 6-4 shows the voltage levels at VM pin where the device goes in and out of COR. During the transition to and from COR, I_{VM} and I_{VDD} change between values defined for normal operation and for COR operation. The sum of both current remains within limits specified in セクション 6.3.2. 図 6-4. Cranking Operative Range When $V_{M_UVLO} \le V_M \le V_{M_OP}$, it may be not possible to switch ON a channel that was previously OFF. All channels that are already ON keep their state unless they are switched OFF via SPI or via IN pins. An overview of channel behavior according to different V_M and V_{DD} supply voltages is shown in 表 6-2, 表 6-3 and 表 6-4 (the tables are valid after a successful power-up). 表 6-2. Channel Control as function of V_M and V_{DD} | | V _{DD} ≤ V _{DD_UVLO} | $V_{DD} > V_{DD_UVLO}$ | |--|--|--| | V _M ≤ 3 V | Channels cannot be controlled | Channels can be switched ON and OFF (SPI control)(R _{DS(ON)} deviations possible) | | 3 V < V _M ≤ V _{M_OP} | Channels cannot be controlled by SPI | Channels can be switched ON and OFF (SPI control)(R _{DS(ON)} deviations possible) | | $V_{M} > V_{M_OP}$ | Channels cannot be controlled by SPI | Channels can be switched ON and OFF | 表 6-3. Limp Home mode as function of V_{M} and V_{DD} | | $V_{DD} \le V_{DD_UVLO}$ | V _{DD} > V _{DD_UVLO} | |--|---
---| | V _M ≤ 3 V | Not available | Available (R _{DS(ON)} deviations possible) | | $3 \text{ V} < \text{V}_{\text{M}} \leq \text{V}_{\text{M}-\text{OP}}$ | Available (R _{DS(ON)} deviations possible) | Available (R _{DS(ON)} deviations possible) | | $V_M > V_{M_OP}$ | Available | Available | 表 6-4. SPI registers and SPI communication as function of V_{M} and V_{DD} | | $V_{DD} \le V_{DD_UVLO}$ | $V_{DD} > V_{DD_UVLO}$ | |-------------------|---|--------------------------------------| | SPI Registers | Reset | Available | | SPI Communication | Not available (f _{SCLK} = 0 MHz) | Possible (f _{SCLK} = 5 MHz) | 資料に関するフィードバック(ご意見やお問い合わせ)を送信 #### 6.3.2.1 Modes of Operation DRV81004-Q1 supports the following operation modes: - Sleep mode - Idle mode - Active mode - Limp Home mode The transition between operation modes is determined according to following levels and states: - Logic level at nSLEEP pin - · Logic level at INx pins - ENx bits state - ACT bit state The state diagram including the possible transitions is shown in \boxtimes 6-5. The behaviour of DRV81004-Q1 as well as some parameters may change according to the operation mode of the device. Also, due to the undervoltage detection circuitry, some changes within the same operation mode can be seen. 図 6-5. Mode of Operation State Diagram The operation mode of the DRV81004-Q1 can be observed by: - · Status of output channels - · Status of SPI registers - Current consumption at VDD pin (I_{VDD}) - Current consumption at VM pin (I_{VM}) The default operation mode to switch ON the loads is Active mode. If the device is not in Active mode and a request to switch ON one or more outputs comes (via SPI or via Input pins), it will switch into Active or Limp Home mode, according to nSLEEP pin status. The channel turn-ON time is as defined by parameter t_{ON} when DRV81004-Q1 is in Active mode or in Limp Home mode. In all other cases, it is necessary to add the transition time required to reach one of the two Power Supply modes (as shown in \boxtimes 6-6). 図 6-6. Mode Transition Timing \gtrsim 6-5 shows the correlation between device operation modes, V_M and V_{DD} supply voltages, and state of the most important functions (channel control, SPI communication and SPI registers). 表 6-5. Device function in relation to operation modes, V_M and V_{DD} voltages | - | • • • • • • • • • • • • • • • • • • • | | poration incase, | טער אווא אויי | ,00 | |--------------------|---------------------------------------|--|--|---------------------------------------|---------------------------------------| | Modes of Operation | Function | V _M UVLO, V _{DD} ≤ | V _M UVLO, V _{DD} > | $V_{\rm M}$ not in UVLO, $V_{\rm DD}$ | $V_{\rm M}$ not in UVLO, $V_{\rm DD}$ | | Wodes of Operation | 1 dilottori | V _{DD_UVLO} | V _{DD_UVLO} | ≤ V _{DD_UVLO} | > V _{DD_UVLO} | | | Channels | Not available | Not available | Not available | Not available | | Sleep | SPI comm. | Not available | Not available | Not available | Not available | | | SPI registers | Reset | Reset | Reset | Reset | | | Channels | Not available | Not available | Not available | Not available | | Idle | SPI comm. | Not available | Yes | Not available | Yes | | | SPI registers | Reset | Yes | Reset | Yes | | | Channels | Not available | Yes | Yes, IN pins only | Yes | | Active | SPI comm. | Not available | Yes | Not available | Yes | | | SPI registers | Reset | Yes | Reset | Yes | | | Channels | Not available | Yes, IN pins only | Yes, IN pins only | Yes, IN pins only | | Limp Home | SPI comm. | Not available | Yes, read-only | Not available | Yes, read-only | | • | SPI registers | Reset | Yes, read-only | Reset | Yes, read-only | #### 6.3.2.1.1 Power-up The Power-up condition is satisfied when one of the supply voltages $(V_M \text{ or } V_{DD})$ is applied to the device and the INx or nSLEEP pins are set to logic high. If V_M is above the threshold V_{M_OP} or if V_{DD} is above the UVLO threshold, the internal power-on signal is set. #### 6.3.2.1.2 Sleep mode When DRV81004-Q1 is in Sleep mode, all outputs are OFF and the SPI registers are reset, independently from the supply voltages. The current consumption is minimum. 資料に関するフィードバック(ご意見やお問い合わせ) を送信 #### 6.3.2.1.3 Idle mode In Idle mode, the current consumption of the device can reach the limits given by parameters I_{VDD_IDLE} and I_{VM} I_{DLE} , or by parameter I_{IDLE} for the whole device. - The internal voltage regulator is working in this mode. - Diagnosis functions are not available. - The output channels are switched OFF, independently from the supply voltages. - When V_{DD} is available, the SPI registers are working and SPI communication is possible. - In Idle mode the ERRx bits are not cleared for functional safety reasons. #### 6.3.2.1.4 Active mode The device enters Active mode when nSLEEP pin is set to logic high and one of the input pins is set to logic high or one ENx bit is set to 1b. - If ACT bit is set to 0b, the device returns to Idle mode as soon as all inputs pins are set to logic low and ENx bits are set to 0b. - If ACT is set to 1b, the device remains in Active mode independently of the status of input pins and ENx bits. - An undervoltage condition on V_{DD} supply brings the device into Idle mode, if all input pins are set to logic low. Even if the registers MAP0 and MAP1 are both set to 00H but one of the input pins INx is set to logic high, the device goes into Active mode. #### 6.3.2.1.5 Limp Home mode DRV81004-Q1 enters Limp Home mode when nSLEEP pin is logic low and one of the input pins is set to logic high, switching ON the channel connected to it. SPI communication is possible but only in read-only mode (SPI registers can be read but cannot be written). - UVRVM is set to 1b - MODE bits are set to 01b (Limp Home mode) - TER bit is set to 1b on the first SPI command after entering Limp Home mode. Afterwards it works normally. - · OLOFF bit is set to 0b - ERRx bits work normally - OSMx bits can be read and work normally - All other registers are set to their default value and cannot be programmed as long as the device is in Limp Home mode See 表 6-3 for a detailed overview of supply voltage conditions required to switch ON channels 2 and 3 during Limp Home. All other channels are OFF. A transmission of SPI commands during transition from Active to Limp Home mode or Limp Home to Active mode may result in undefined SPI responses. #### 6.3.2.1.6 Reset condition One of the following 3 conditions resets the SPI registers to the default value: - V_{DD} is not present or below the undervoltage threshold V_{DD UVLO} - nSLEEP pin is set to logic low - A reset command (RST set to 1b) is executed - ERRx bits are not cleared by a reset command (for functional safety) - UVRVM bit is cleared by a reset command In particular, all channels are switched OFF (if there are no input pin set to logic high) and the Input Mapping configuration is reset. ### 6.3.3 Power Stage The DRV81004-Q1 is a four channels low-side relay switch. The power stages are built by N-channel MOSFETs. The ON-state resistance $R_{DS(ON)}$ depends on the supply voltage as well as the junction temperature T_J . #### 6.3.3.1 Switching Resistive Loads When switching resistive loads the following switching times and slew rates should be considered. 図 6-7. Switching a Resistive Load #### 6.3.3.2 Inductive Output Clamp When switching off inductive loads, the voltage across the power switch rises to V_{DS_CL} , because the inductance attempts to continue driving the current. The voltage clamping is necessary to prevent device damage. ⊠ 6-8 shows a drawing of the output clamp. The maximum allowed load inductance is limited. The clamping structure protects the device in all modes (Sleep, Idle, Active, Limp Home). 図 6-8. Output Clamp #### 6.3.3.3 Maximum Load Inductance During demagnetization of inductive loads, magnetic energy is dissipated in the DRV81004-Q1. 式 1 shows how to calculate the energy for low-side switches: $$E = V_{DS_CL} \times \left[\frac{V_M - V_{DS_CL}}{R_L} \times \ln \left(1 - \frac{R_L \times I_L}{V_M - V_{DS_CL}} \right) + I_L \right] \times \frac{L}{R_L}$$ (1) 資料に関するフィードバック(ご意見やお問い合わせ) を送信 The maximum energy, which is converted into heat, is limited by the thermal design of the component. The E_{AR} value provided in セクション 5.1 assumes that all channels can dissipate the same energy when the inductances connected to the outputs are demagnetized at the same time. #### 6.3.3.4 Switching Channels in parallel In case of a short circuit with channels in parallel, it may happen that the two channels switch OFF asynchronously, therefore bringing an additional thermal stress to the channel that switches OFF last. In order to avoid this condition, it is possible to configure in the SPI registers the parallel operation of two neighbour channels (using PAR bits). When operating in this mode, the fastest channel to react to an OverLoad or Over Temperature condition will deactivate also the other channel. The inductive energy that two parallel channels can handle is lower than twice the single channel energy. It is possible to synchronize the following couple of channels together: - channel 0 and channel 2 → PAR0 set to 1b - channel 1 and channel 3 → PAR1 set to 1b The synchronization bits influence only how the channels react to Overcurrent or Over Temperature conditions. Synchronized channels have to be switched ON and OFF individually by the microcontroller. ### 6.3.4 Protection and Diagnostics The DRV81004-Q1 supports multiple protection features, discussed in detail in the subsequent sections. The SPI interface provides diagnosis information about the device and the load status. Each channel diagnosis information is independent from other channels. An error condition on
one channel has no influence on the diagnostic of other channels in the device (unless configured to work in parallel, see セクション 6.3.3.4 for more details). When either an Overcurrent or an Over Temperature occurs on one channel, the diagnosis bit ERRx is set accordingly. As described in $\forall \cancel{1}\cancel{2}\cancel{3}\cancel{2}$ 6.3.4.2 and $\forall \cancel{1}\cancel{2}\cancel{3}\cancel{2}$ 6.3.4.3, the channel latches OFF and must be reactivated setting corresponding CLRx bit to 1b. ### 6.3.4.1 Undervoltage on V_M Between V_{M_UVLO} and V_{M_OP} the undervoltage mechanism is triggered. If the device is operating and the supply voltage drops below the undervoltage threshold V_{M_UVLO} , the logic sets the bit UVRVM to 1b. As soon as the supply voltage V_M is above the minimum voltage operating threshold V_{M_OP} , the bit UVRVM is set to 0b after the first Standard Diagnosis readout. Undervoltage condition on VM influences the status of the channels, as described in $\nabla \mathcal{P} = \mathcal{V} =$ 図 6-9. V_M Undervoltage #### 6.3.4.2 Overcurrent Protection The DRV81004-Q1 is protected in case of overcurrent or short circuit of the load. There are two overcurrent thresholds (see ⋈ 6-10): - I_{I OCP0} between channel switch ON and t_{OCPIN} - I_{L OCP1} after t_{OCPIN} The values of I_{L_OCP0} and I_{L_OCP1} depend on the OCP bit. Every time the channel is switched OFF for a time longer than 2 * t_{SYNC} the over load current threshold is setback to I_{L_OCP0} . 図 6-10. Overcurrent Threshold In case the load current is higher than I_{L_OCP0} or I_{L_OCP1} , after time t_{OFF_OCP} the over loaded channel is switched OFF and the diagnosis bit ERRx is set. The channel can be switched ON after clearing the protection latch by setting the corresponding CLRx bit to 1b. This bit is set back to 0b internally after de-latching the channel. Please refer to \boxtimes 6-11 for details. 図 6-11. Latch OFF at Overcurrent #### 6.3.4.3 Over Temperature Protection A temperature sensor is integrated for each channel, causing an overheated channel to switch OFF to prevent device damage. The diagnosis bit ERRx is set (combined with Over Load protection). The channel can be switched ON after clearing the protection latch by setting the corresponding CLRx bit to 1b. This bit is set back to 0b internally after de-latching the channel. #### 6.3.4.4 Over Temperature Warning If the die temperature exceeds the trip point of the overtemperature warning (T_{OTW}) , the OTW bit is set in the SPI register. The device performs no additional action and continues to function. When the die temperature falls below the hysteresis point (T_{HYS_OTW}) of the overtemperature warning, the OTW bit clears automatically. #### 6.3.4.5 Over Temperature and Overcurrent Protection in Limp Home mode When DRV81004-Q1 is in Limp Home mode, channels 2 and 3 can be switched ON using the input pins. In case of Overcurrent, Short Circuit or Over Temperature the channels switch OFF. If the input pins remain logic high, the channels restart with the following timings: - 10 ms (first 8 retries) - 20 ms (following 8 retries) - 40 ms (following 8 retries) - 80 ms (as long as the input pin remains logic high and the error is still present) 図 6-12. Restart Timer in Limp Home #### 6.3.4.6 Reverse Polarity Protection In Reverse Polarity (also known as Reverse Battery) condition, power dissipation is caused by the body diode of each MOSFET. Each ESD diode of the logic and supply pins contributes to total power dissipation. The reverse current through the channels has to be limited by the connected loads. The current through digital power supply VDD and input pins has to be limited as well (please refer to セクション 5.1). 注 No protection mechanism like temperature protection or current limitation is active during reverse polarity. #### 6.3.4.7 Over Voltage Protection In the case of supply voltages between V_{M_SC} and V_{M_LD} the output MOSFETs are still operational and follow the input pins or the EN bits. #### 6.3.4.8 Output Status Monitor The device compares each channel V_{DS} with V_{DS_OL} and sets the corresponding OSMx bits accordingly. The bits are updated every time OSM register is read. • $V_{DS} < V_{DS OL} \rightarrow OSMx = 1b$ A diagnosis current I_{OL} in parallel to the power switch can be enabled by programming the IOLx bit, which can be used for Open Load at OFF detection. Each channel has its dedicated diagnosis current source. If the diagnosis current I_{OL} is enabled or if the channel changes state (ON \rightarrow OFF or OFF \rightarrow ON) it is necessary to wait a time t_{OSM} for a reliable diagnosis. Enabling I_{OL} current sources increases the current consumption of the device. Even if an Open Load is detected, the channel is not latched OFF. See 🗵 6-13 for a timing overview (the values of IOLx refer to a channel in normal operation properly connected to the load). 図 6-13. Output Status Monitor timing Output Status Monitor diagnostic is available when $V_M = V_{M_NOR}$ and $V_{DD} \ge V_{DD_UVLO}$. Due to the fact that Output Status Monitor checks the voltage level at the outputs in real time, for Open Load in OFF diagnostic it is necessary to synchronize the reading of OSM register with the OFF state of the channels. ☑ 6-14 shows how Output Status Monitor is implemented at concept level. 図 6-14. Output Status Monitor In Standard Diagnosis the bit OLOFF represents the OR combination of all OSMx bits for all channels in OFF state which have the corresponding current source I_{OL} activated. When the DISOL bit is 1b, open load detection is disabled by disabling all the I_{OL} current sources. #### 6.3.5 SPI Communication The serial peripheral interface (SPI) is a full duplex synchronous serial follower interface, which uses four lines: SDO, SDI, SCLK and nSCS. Data is transferred by the lines SDI and SDO at the rate given by SCLK. The falling edge of nSCS indicates the beginning of an access. Data is sampled in on line SDI at the falling edge of SCLK and shifted out on line SDO at the rising edge of SCLK. Each access must be terminated by a rising edge of nSCS. A modulo 8/16 counter ensures that data is taken only when a multiple of 8 bit has been transferred after the first 16 bits. Otherwise a TER bit is asserted. In this way the interface provides daisy chain capability with 16 bit as well as with 8 bit SPI devices. #### 6.3.5.1 SPI Signal Description #### 6.3.5.1.1 Chip Select (nSCS) The microcontroller selects the DRV81004-Q1 by means of the nSCS pin. Whenever the pin is in logic low state, data transfer can take place. When nSCS is in logic high state, any signals at the SCLK and SDI pins are ignored and SDO is forced into a high impedance state. ### 6.3.5.1.1.1 Logic high to logic low Transition - The requested information is transferred into the shift register. - SDO changes from high impedance state to logic high or logic low state depending on the logic OR combination between the transmission error flag (TER) and the signal level at pin SDI. This allows to detect a faulty transmission even in daisy chain configuration. - If the device is in Sleep mode, SDO pin remains in high impedance state and no SPI transmission occurs. #### 6.3.5.1.1.2 Logic low to logic high Transition - Command decoding is only done, when after the falling edge of nSCS exactly a multiple (1, 2, 3, ...) of eight SCLK signals have been detected after the first 16 SCLK pulses. In case of faulty transmission, the transmission error bit (TER) is set and the command is ignored. - Data from shift register is transferred into the addressed register. ### 6.3.5.1.2 Serial Clock (SCLK) This input pin clocks the internal shift register. The serial input (SDI) transfers data into the shift register on the falling edge of SCLK while the serial output (SDO) shifts diagnostic information out on the rising edge of the serial clock. It is essential that the SCLK pin is in logic low state whenever chip select nSCS makes any transition, otherwise the command may be not accepted. #### 6.3.5.1.3 Serial Input (SDI) Serial input data bits are shift-in at this pin, the most significant bit first. SDI information is read on the falling edge of SCLK. The input data consists of two parts, control bits followed by data bits. #### 6.3.5.1.4 Serial Output (SDO) Data is shifted out serially at this pin, the most significant bit first. SDO is in high impedance state until the nSCS pin goes to logic low state. New data appears at the SDO pin following the rising edge of SCLK. ### 6.3.5.2 Daisy Chain Capability The SPI of DRV81004-Q1 provides daisy chain capability. In this configuration several devices are activated by the same nSCS signal MCSN. The SDI line of one device is connected with the SDO line of another device, in order to build a chain. The end of the chain is connected to the output and input of the master device, MO and MI respectively. The leader device provides the clock MCLK which is connected to the SCLK line of each device in the chain. In the SPI block of each device, there is one shift register where each bit from SDI line is shifted in each SCLK. The bit shifted out occurs at the SDO pin. After sixteen SCLK cycles, the data transfer for one device is finished. Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 23 In single chip configuration, the nSCS line must turn logic high to make the device acknowledge the transferred data. In daisy chain configuration, the data shifted out at device 1 has been shifted in to device 2. When using three devices in daisy chain, several multiples of 8 bits have to be shifted through the devices (depending on how many devices with 8 bit SPI and how many with 16 bit SPI). After that, the MCSN line must turn logic high. #### 6.3.5.3 SPI Protocol The relationship between SDI and SDO content during SPI communication is shown in 🗵 6-15. SDI line represents
the frame sent from the microcontroller and SDO line is the answer provided by DRV81004-Q1. 図 6-15. Relationship between SDI and SDO during SPI communication The SPI protocol provides the answer to a command frame only with the next transmission triggered by the microcontroller. Although the biggest majority of commands and frames implemented in DRV81004-Q1 can be decoded without the knowledge of what happened before, it is advisable to consider what the microcontroller sent in the previous transmission to decode DRV81004-Q1 response frame completely. The sequence of commands to read and write the content of a register looks as follows: 図 6-16. Register content sent back to microcontroller There are 3 special situations where the frame sent back to the microcontroller is not related directly to the previous received frame: - In case an error in transmission happened during the previous frame (for instance, the clock pulses were not multiple of 8 with a minimum of 16 bits), shown below. - When DRV81004-Q1 logic supply comes out of Power-On reset condition or after a Software Reset, as shown below. - In case of command syntax errors - write command starting with 11b instead of 10b - read command starting with 00b instead of 01b - read or write commands on registers which are reserved or not used 図 6-17. Response after a error in transmission *資料に関するフィードバック (ご意見やお問い合わせ) を送信* Copyright © 2024 Texas Instruments Incorporated ☑ 6-18. Response after coming out of Power-On reset at V_{DD} 図 6-19. Response after a command syntax error A summary of all possible SPI commands is presented below, including the answer that DRV81004-Q1 sends back at the next transmission. 表 6-6. SPI Command summary | Requested Operation | Frame sent to SDI pin | Frame received from SDO pin with the next command | |-------------------------|---|--| | Read Standard Diagnosis | 0xxxxxxxxxxxx01b (xxxxxxxxxxxxb = don
't care) | 0dddddddddddddd (Standard Diagnosis) | | Write 8 bit register | 10ppppqqrrrrrrrb where: ppppb = register
address ADDR0, qqb = register address
ADDR1, rrrrrrrb = new register content | 0dddddddddddddb (Standard Diagnosis) | | Read 8 bit registers | 01pppppqqxxxxxx10b where: ppppb = register
address ADDR0, qqb = register address
ADDR1, xxxxxxb = don't care | 10ppppqqrrrrrrrb where: ppppb = register address ADDR0c, qqb = register address ADDR1, rrrrrrrb = register content | "p" = address bits for ADDR0 field, "q" = address bit for ADDR1 field, "r" = register content, "d" = diagnostic bit #### 6.3.5.4 SPI Registers The register banks have the following structure - | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Default | |----------------|----|----|-----|-----|----|-----|-----|---|---|---|-----|---|---|---|---|---------| | R = 0
W = 1 | | | ADI | DR0 | | ADI | DR1 | | | | DAT | A | | | | XXXXH | All registers with addresses not mentioned in subsequent sections have to be considered as reserved. Read operations performed on those registers return the Standard Diagnosis. The column Default indicates the content of the register (8 bits) after a reset. #### 6.3.5.4.1 Standard Diagnosis Register 表 6-7. Standard Diagnosis Register | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Default | |----|-------|----|----|----|-----|---|-------|---|---|---|---|------|------|------|------|---------| | 0 | UVRVM | 0 | МО | DE | TER | 0 | OLOFF | 0 | 0 | 0 | 0 | ERR3 | ERR2 | ERR1 | ERR0 | 5800h | Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 25 ## 表 6-8. Standard Diagnosis Register Description | Field | Bits | Type | Description | |-------|-------|------|---| | UVRVM | 14 | R | VM Undervoltage monitor Ob: No undervoltage condition on VM detected Ib (default): There was at least one VM Undervoltage condition since last Standard Diagnosis readout | | MODE | 12-11 | R | Mode of operation monitor Our One: Reserved Our One: Limp Home Mode Our One: Active Mode In the Mode In the Mode | | TER | 10 | R | Transmission error 0b: Previous transmission was successful (modulo 16 + n*8 clocks received, where n = 0, 1, 2) 1b (default): Previous transmission failed. The first frame after a reset is TER set to 1b and the INST register. The second frame is the Standard Diagnosis with TER set to 0b (if there was no fail in the previous transmission). | | OLOFF | 8 | R | Open load in OFF diagnosis 0b (default): All channels in OFF state (which have IOLx bit set to 1b) have V _{DS} > V _{DS_OL} 1b: At least one channel in OFF state (with IOLx bit set to 1b) has V _{DS} < V _{DS_OL} . Channels in ON state are not considered. | | ERRx | 3-0 | R | Overload / Over temperature Diagnosis of Channel x 0b (default): No failure detected 1b: Over temperature or overload | ## 6.3.5.4.2 Output control register ## 表 6-9. Output Control Register | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Default | |-------|-------|----|----|-----|----|---------|---|---|----|-----|-----|-----|------|-------|------|---------| | R = 0 | R = 1 | | 00 | 000 | • | 00 RSVD | | | | | EN3 | EN2 | EN1 | EN0 | 00h | | | W = 1 | W = 0 | | 00 | 100 | | | U | | No | טעט | | ENS | LINZ | EIN I | EINU | UUII | ## 表 6-10. Output Control Register Description | Field | Bits | Туре | Description | |-------|------|------|--| | RSVD | 7-4 | RW | Reserved. Read default: 0b , write ignored. | | ENx | 3-0 | | Output x control register 0b (default): Output x is OFF 1b: Output is ON | ### 6.3.5.4.3 Input 0 Mapping Register ## 表 6-11. Input 0 Mapping Register | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Default | |-----|-----|--------------|----|-----|----|---|---|-------|-------|-------|-------|---------|---------|---------|---------|---------| | R= | R= | | | | | | | | | | | | | | | | | 0 | 1 | 0001 00 RSVD | | | | | | MAP03 | MAP02 | MAP01 | MAP00 | 04h | | | | | | W = | W = | | 00 | O I | | " | U | | No | VD | | IVIAFUS | IVIAFUZ | IVIAFUI | IVIAFUU | 0411 | | 1 | 0 | | | | | | | | | | | | | | | | 資料に関するフィードバック(ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated 26 Product Folder Links: DRV81004-Q1 ## 表 6-12. Input 0 Mapping Register Description | Field | Bits | Туре | Description | |-------|------|------|--| | RSVD | 7-4 | RW | Reserved. Read default: 0b , write ignored. | | MAP0x | 3-0 | RW | Input pin 0 Mapping register 0b (default): Output x is not connected to the input pin 0 1b: The output is connected to the input pin Note: Channel 2 has the corresponding bit set to 1b by default | ### 6.3.5.4.4 Input 1 Mapping Register ## 表 6-13. Input 1 Mapping Register | 15 | 14 | 13 12 11 10 | | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Default | | |-----|-----|-------------|--|----|---|---|----|---|-----|-------|---|----------|-----------|-----------|----------|------| | R= | R= | | | | | | | | | | | | | | | | | 0 | 1 | 0001 | | | | 0 | 01 | | PC | SVD | | MAP13 | MAP12 | MAP11 | MAP10 | 08h | | W = | W = | | | | | | | | T C | , v D | | IVIAI 13 | IVI/AI 12 | IVI/AI II | IVIAI 10 | 0011 | | 1 | 0 | | | | | | | | | | | | | | | | ## 表 6-14. Input 1 Mapping Register Description | Field | Bits | Туре | Description | |-------|------|------|--| | MAP1x | 7-4 | RW | Reserved. Read default: 0b , write ignored. | | MAP1x | 3-0 | RW | Input pin 1 Mapping register 0b (default): Output x is not connected to the input pin 1 1b: The output is connected to the input pin Note: Channel 3 has the corresponding bit set to 1b by default | ## 6.3.5.4.5 Input Status Monitor Register This is the first register transmitted after a reset of the logic ## 表 6-15. Input Status Monitor Register | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Default | |----|----|------|----|----|----|---|-----|---|---|------|---|---|-------|-------|-----|---------| | 0 | 1 | 0001 | | | 10 | | TER | | ı | RSVD | | | INST1 | INST0 | 00h | | ### 表 6-16. Input 1 Mapping Register Description | Field | Bits | Туре | Description | |-------|------|------|--| | TER | 7 | R | 0b: Previous transmission was successful (modulo 16 + n*8 clocks received, where n = 0, 1, 2) 1b (default): Previous transmission failed | | RSVD | 6-2 | R | Reserved | | INST1 | 1 | R | 0b (default): The input pin is set to logic low 1b: The input pin is set to logic high | | INST0 | 0 | R | 0b (default): The input pin is set to logic low 1b: The input pin is set to logic high | Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 27 ### 6.3.5.4.6 Open Load Current Control Register ## 表 6-17. Open Load Current Control Register | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Default | |-------|-------|------|----|----|----|----|---------|---|---|---|---|------|------|------|------|---------| | R = 0 | | 0010 |
 | | 00 | 00 RSVD | | | | | IOL3 | IOL2 | IOL1 | IOL0 | 00h | | W = 1 | W = 0 | | | | | | | | | | | | | | | | ## 表 6-18. Open Load Current Control Register Description | Field | Bits | Туре | Description | |-------|------|------|---| | RSVD | 7-4 | RW | Reserved. Read default: 0b , write ignored. | | IOLx | 3-0 | RW | 0b (default): IOL current source not enabled 1b: IOL current source enabled | ### 6.3.5.4.7 Output Status Monitor Register ## 表 6-19. Output Status Monitor Register | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Default | |----|----|----|----|----|----|---|---|---|-----|------------|---|------|------|------|------|---------| | 0 | 1 | | 00 | 10 | | 0 | | | RS' | V D | | OSM3 | OSM2 | OSM1 | OSM0 | 00h | ## 表 6-20. Output Status Monitor Register Description | Field | Bits | Туре | Description | |-------|------|------|---| | RSVD | 7-4 | R | Reserved. Read default: 0b , write ignored. | | OSMx | 3-0 | | 0b (default): V _{DS} > V _{DS_OL} 1b: V _{DS} < V _{DS_OL} | ### 6.3.5.4.8 Configuration Register ## 表 6-21. Configuration Register | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Default | |----------------|----------------|------|----|----|----|---|-----|-----|-------|-----|----|----|------|------|-----|---------| | R = 0
W = 1 | R = 1
W = 0 | 0011 | | | 00 |) | ACT | RST | DISOL | ОСР | RS | VD | PAR1 | PAR0 | 00h | | ## 表 6-22. Configuration Register Description | Field | Bits | Туре | Description | |-------|------|------|---| | ACT | 7 | RW | 0b (default): Normal operation or device leaves Active Mode 1b: Device enters Active Mode | | RST | 6 | RW | 0b (default): Normal operation 1b: Execute Reset command (self clearing) | | DISOL | 5 | RW | 0b (default): Open load detection is enabled 1b: Open load detection is disabled | | OCP | 4 | RW | 0b (default): Overcurrent protection current profile 1 1b: Overcurrent protection current profile 2 | | RSVD | 3-2 | RW | Reserved. Read default: 0b , write ignored. | | PAR1 | 1 | RW | 0b (default): Normal operation 1b: Channel 1 and 3 have Over Load and Over Temperature synchronized | Product Folder Links: DRV81004-Q1 資料に関するフィードバック(ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated 28 ## 表 6-22. Configuration Register Description (続き) | PAR0 | 0 | RW | 0b (default): Normal operation | | |------|---|----|--|--| | | | | 1b: Channel 0 and 2 have Over Load and Over Temperature synchronized | | ### 6.3.5.4.9 Output Clear Latch Register ## 表 6-23. Output Clear Latch Register | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Default | |----------------|----------------|------|----|----|---------|---|---|---|------|------|------|------|-----|---|---|---------| | R = 0
W = 1 | R = 1
W = 0 | 0011 | | | 01 RSVD | | | | CLR3 | CLR2 | CLR1 | CLR0 | 00h | | | | | VV = 1 | VV = 0 | | | | | | | | | | | | | | | | ## 表 6-24. Output Clear Latch Register Description | Field | Bits | Туре | Description | |-------|------|------|--| | RSVD | 7-4 | RW | Reserved. Read default: 0b , write ignored. | | CLRx | 3-0 | | 0b (default): Normal operation 1b: Clear the error latch for the selected output | ## 6.3.5.4.10 Configuration Register 2 ## 表 6-25. Configuration Register 2 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Default | |----------------|----------------|----|----|-----|----|----|---|---|--------|------|----|-----|-----|------|----|---------| | R = 0
V = 1 | R = 1
W = 0 | | 10 |)10 | • | 00 |) | | LOCK[2 | 2:0] | RS | SVD | OTW | RSVD | SR | 60h | ### 表 6-26. Configuration Register Description | Field | Bits | Туре | Description | |-----------|--------|------|---| | LOCK[2:0] | 7-5 | RW | Write 110b to lock the settings by ignoring further register writes except to LOCK bits and CLRx bits. Writing any sequence other than 110b has no effect when unlocked. Write 011b to this register to unlock all registers. Writing any sequence other than 011b has no effect when locked. | | RSVD | 4-3, 1 | R | Reserved. | | ОТЖ | 2 | R | Overtemperature Warning Ob (default): No Overtemperature event Ob Overtemperature event | | SR | 0 | RW | Sets output slew rate • 0b (default): 1.3 V/µs slew rate • 1b: 3 V/µs slew rate | Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 29 ## 7 Application and Implementation 注 以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。 ## 7.1 Application Information The DRV81004-Q1 is primarily used to drive relays in Automotive and Industrial applications. ### 7.1.1 Typical Application ☑ 7-1 shows the application schematic for the DRV81004-Q1. ☑ 7-1. Application Schematic #### 7.1.2 Suggested External Components 表 7-1 lists the recommended external components for the DRV81004-Q1. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 ### 表 7-1. Suggested External Components | Description | Value | Purpose | | | | | | |---|---------|---|--|--|--|--|--| | Resistors in series with IN0, IN1 and nSLEEP pins | 4.7 kΩ | Protection of the microcontroller during over voltage and reverse polarity. Also to guarantee output channels OFF during loss of ground. | | | | | | | Resistors in series with nSCS, SCLK, SDI and SDO pins | 470 Ω | Protection of the microcontroller during over voltage and reverse polarity | | | | | | | Resistor in series with VDD pin | 100 Ω | Logic supply voltage filtering | | | | | | | Bypass capacitor on VDD pin | 100 nF | Logic supply voltage filtering | | | | | | | Bypass capacitor on VM pin | 68 nF | Battery voltage filtering | | | | | | | TVS diode on VM pin | TVS3300 | Protection of device during overvoltage | | | | | | | Capacitor on each OUT pin (optional) | 10 nF | Protection of the device against ESD and BCI | | | | | | ## 7.2 Layout ## 7.2.1 Layout Guidelines - The VM pin should be bypassed to GND using low-ESR ceramic bypass capacitor with a recommended value of 68nF rated for VM. The capacitor should be placed as close to the VM pin as possible with a thick trace or ground plane connection to the device GND pin. - Bypass the VDD pin to ground with a low-ESR ceramic capacitor. A value of 100nF rated for 6.3V is recommended. Place this bypassing capacitor as close to the pin as possible. - In general, inductance between the power supply pins and decoupling capacitors must be avoided. - Connect series resistors between IN0, IN1, nSLEEP, nSCS, SCLK, SDI, SDO and VDD pins of the DRV81004-Q1 and corresponding pins of the microcontroller. The recommended values of the resistors are shown in セクション 6.3. - The thermal PAD of the package must be connected to system ground. - It is recommended to use a big unbroken single ground plane for the whole system / board. The ground plane can be made at bottom PCB layer. - In order to minimize the impedance and inductance, the traces from ground pins should be as short and wide as possible, before connecting to bottom layer ground plane through vias. - Multiple vias are suggested to reduce the impedance. - Try to clear the space around the device as much as possible especially at bottom PCB layer to improve the heat spreading. - Single or multiple internal ground planes connected to the thermal PAD will also help spreading the heat and reduce the thermal resistance. #### 7.2.2 Package Footprint Compatibility The PWP0014L package of the DRV81004-Q1 is footprint compatible with other SO-14 packages used in the industry, as shown in \boxtimes 7-2 and \boxtimes 7-3. 図 7-2. PWP0014L on another SO-14 PCB Pad, Light blue: TI PWP0014L leads, Green: Other SO-14 PCB **Pad** 図 7-3. SO-14 on PWP0014L PCB Pad, Yellow: Other SO-14 leads, Green: TI PWP0014L PCB Pad Product Folder Links: DRV81004-Q1 ## 8 Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. ## 8.1 ドキュメントの更新通知を受け取る方法 ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。 ## 8.2 サポート・リソース テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。 #### 8.3 Trademarks テキサス・インスツルメンツ E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 ### 8.4 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 ### 8.5 用語集 テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。 ## 9 Revision History 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 ## 10 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated
devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. SMALL OUTLINE PACKAGE C Α △ 0.1 C -PIN 1 INDEX AREA -SEATING PLANE 12X 0.65 NOTE 3 14X 0.19 (D.10) CAB В SEE DETAIL A (0.15) TYP 2X (0.4) NOTE 5 THERMA 0.25 GAGE PLANE 15 0.75 0.50 DETAIL A 4230016/A 09/2023 NOTES: PowerPAD is a trademark of Texas Instruments - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. Reference JEDEC registration MO-153. 5. Features may differ or may not be present. Product Folder Links: DRV81004-Q1 資料に関するフィードバック(ご意見やお問い合わせ)を送信 #### EXAMPLE BOARD LAYOUT #### PWP0014L ## PowerPAD™ TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE #### NOTES: (continued) - Publication IPC-7351 may have alternate designs. Solder mask tolerances between and around signal pads can vary based on board fabrication site. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004). - Size of metal pad may vary due to creepage requirement. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged. or tented. #### **EXAMPLE STENCIL DESIGN** ## PWP0014L ## PowerPAD™ TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE NOTES: (continued) - Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. Board assembly site may have different recommendations for stencil design. ## 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated www.ti.com 18-Dec-2024 #### **PACKAGING INFORMATION** | Orderable Device | Status
(1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |------------------|---------------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|----------------------|---------| | DRV81004QPWPRQ1 | ACTIVE | HTSSOP | PWP | 14 | 3000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 81004Q1 | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. 4.4 x 5.0, 0.65 mm pitch PLASTIC SMALL OUTLINE This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. **INSTRUMENTS** www.ti.com # PowerPAD[™] TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE ### NOTES: PowerPAD is a trademark of Texas Instruments. - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. 4. Reference JEDEC registration MO-153. - 5. Features may differ or may not be present. SMALL OUTLINE PACKAGE ### NOTES: (continued) - 6. Publication IPC-7351 may have alternate designs. - 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. - 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004). - 9. Size of metal pad may vary due to creepage requirement. - 10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented. SMALL OUTLINE PACKAGE NOTES: (continued) - 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 12. Board assembly site may have different recommendations for stencil design. ## 重要なお知らせと免責事項 TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。 郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated