ISO6163 # ISO6163 低消費電力、高速 6 チャネル デジタル アイソレータ、自動イネーブ ル付き #### 1 特長 - 高エネルギー効率アプリケーションの要件をサポート する、業界標準の 6 チャネル デジタル アイソレータの ピン互換低消費電力代替品 - 高速チャネルの自動イネーブルにより、スタンバイ状態 の超低静止電流で双方向ウェークアップをサポート: V_{CC} = 3.3V でのサイドあたりの電流 442µA (最大) (85°C) - 高速データ チャネルで 50Mbps のデータレート - 低速制御チャネルで 4Mbps のデータレート、自動イ ネーブル付き - 小さい伝搬遅延:3.3V で 13.75ns (最大値) - 堅牢な SiO₂ 絶縁バリア: - 幅広い温度範囲:-40℃~125℃ - 最高 5000V_{RMS} の絶縁定格 - 最高 10.4kV のサージ耐量 - CMTI:±50kV/µs (代表値) - 電源電圧範囲:2.5~5.5V - 2.5~5.5V への電圧変換 - デフォルト出力が HIGH (ISO6163)とLOW (ISO6163F)のオプション - 堅牢な電磁両立性 (EMC) - システムレベルでの ESD、EFT、サージ耐性 - 低い放射 - ワイド SOIC (DW-16) パッケージ - 安全関連の認証: - DIN EN IEC 60747-17 (VDE 0884-17) - UL 1577 部品認定プログラム - IEC 62368-1, IEC 61010-1, IEC 60601-1, GB 4943.1 認定 # 2 アプリケーション - エネルギー効率の高い製品を含む家電製品 - 電気メーターおよびグリッド - 電源 - ファクトリ オートメーション - ビルオートメーション - 照明器具 - モータードライブ #### 3 概要 ISO6163 デバイスは、UL 1577 準拠の最大 5000V_{RMS} の絶縁定格を必要とする、エネルギー効率が高く、コスト 重視のアプリケーション向けに設計された高性能 6 チャネ ル デジタル アイソレータです。これらのデバイスは VDE、 TUV、CSA、CQC の認定も受けています。 ISO6163 デバイスは、低静止電流で、高速データ チャネ ルの双方向自動イネーブルで最適化されており、家電製 品、バッテリ監視、メーター、グリッドなどエネルギー効率 の高いアプリケーションで使用できます。 これらのデバイスは、低消費電力、高い電磁気耐性、低い 放射を実現すると同時に、以下のような CMOS または LVCMOS デジタル I/O 信号を絶縁するように設計されて います。GPIO、SPI (ADC、DAC、その他のペリフェラ ル)、UART、RS-485、RS-232、および CAN。各チャネ ルは、テキサス・インスツルメンツ独自の二酸化ケイ素 (SiO₂) 絶縁バリアで分離されたロジック入力および出力バ ッファを備えています。 この ISO6163 デバイスには、3 本の順方向チャネルと3 本の逆方向チャネルがあります。このデバイスには、双方 向の自動イネーブル制御機能を備えた2本の低速デー タ チャネルがあります。低速制御チャネルは、必要に応じ て自動的に高速チャネルを有効にするか、システムで高 速データ転送が不要な場合にはオフにして (高インピーダ ンス出力)、消費電力をさらに低減します。入力電力または 入力信号が失われた場合のデフォルト出力レベルは、接 尾辞 F のないデバイスでは HIGH、接尾辞 F のあるデバ イスでは LOW です。 #### パッケージ情報 | 部品番号 (1) | パッケージ | パッケージ サイズ ⁽²⁾ | |----------|---------------|--------------------------| | ISO6163 | DW (SOIC, 16) | 10.30mm × 10.30mm | - 詳細については、セクション 11 を参照してください。 (1) - パッケージ サイズ (長さ×幅) は公称値であり、該当する場合はピ ンも含まれます。 概略回路図 ## **Table of Contents** | 1 | 特長 | . 1 | |---|--|-----| | 2 | アプリケーション | 1 | | | 概要 | | | 4 | Pin Configuration and Functions | .3 | | | Specifications | | | | 5.1 Absolute Maximum Ratings | . 4 | | | 5.2 ESD Ratings | | | | 5.3 Recommended Operating Conditions | | | | 5.4 Thermal Information | . 5 | | | 5.5 Power Ratings | | | | 5.6 Insulation Specifications | | | | 5.7 Safety-Related Certifications | | | | 5.8 Safety Limiting Values | | | | 5.9 Electrical Characteristics—5V Supply (±10%) | . 8 | | | 5.10 Supply Current Characteristics—5V | | | | Supply (±10%) | 8 | | | 5.11 Electrical Characteristics—3.3V Supply (±10%) | . 9 | | | 5.12 Supply Current Characteristics—3.3V | | | | Supply (±10%) | 9 | | | 5.13 Electrical Characteristics—2.5V | | | | Supply (Minimum) | 10 | | | 5.14 Supply Current Characteristics—2.5V | | | | Supply (Minimum) | | | | 5.15 Switching Characteristics—5V Supply (±10%) | | | | 5.16 Switching Characteristics—3.3V Supply (±10%) | 12 | | | 5.17 Switching Characteristics—2.5V | | | | Supply (Minimum) | 13 | | 5.18 Insulation Characteristics Curves | 14 | |--|----| | 5.19 Typical Characteristics | 15 | | 6 Parameter Measurement Information | 20 | | 7 Detailed Description | | | 7.1 Overview | 22 | | 7.2 High-Speed Data Channels: A, B, E and F | 23 | | 7.3 Low-Speed Control Channels With Automatic | | | Enable: C and D | 23 | | 7.4 Device Functional Modes | 26 | | 8 Application and Implementation | 27 | | 8.1 Application Information | 27 | | 8.2 Typical Application | 27 | | 8.3 Power Supply Recommendations | 29 | | 8.4 Layout | 29 | | 9 Device and Documentation Support | 32 | | 9.1 Documentation Support | | | 9.2 Receiving Notification of Documentation Updates. | 32 | | 9.3 サポート・リソース | 32 | | 9.4 Trademarks | 32 | | 9.5 静電気放電に関する注意事項 | 32 | | 9.6 用語集 | 32 | | 10 Revision History | | | 11 Mechanical, Packaging, and Orderable | | | Information | 32 | | 11.1 Package Option Addendum | 33 | | 11.2 Tape and Reel Information | 35 | | | | # 4 Pin Configuration and Functions 図 4-1. DW Package, 16-Pin ワイド SOIC (Top View) 表 4-1. Pin Functions | | PIN | TYPE ⁽¹⁾ | DESCRIPTION | | |------------------|-----|---------------------|--|--| | NAME | NO. | I TPE(") | DESCRIPTION | | | V _{CC1} | 1 | Р | Power supply, side 1 | | | INA | 2 | I | High-speed digital input, channel A | | | INB | 3 | I | High-speed digital input, channel B | | | INC | 4 | I | Low-speed control channel with automatic enable, channel C | | | OUTD | 5 | 0 | Digital output, channel D | | | OUTE | 6 | 0 | Digital output, channel E | | | OUTF | 7 | 0 | Digital output, channel F | | | GND1 | 8 | GND | Ground connection for V _{CC2} , INA, INB, INC, OUTD, OUTE, and OUTF | | | GND2 | 9 | GND | Ground connection for V _{CC2} , OUTA, OUTB, OUTC, IND, INE, and INF | | | INF | 10 | I | High-speed digital input, channel F | | | INE | 11 | I | High-speed digital input, channel E | | | IND | 12 | I | Low-speed control channel with automatic enable, channel D | | | OUTC | 13 | 0 | Digital output, channel C | | | OUTB | 14 | 0 | Digital output, channel B | | | OUTA | 15 | 0 | Digital output, channel A | | | V _{CC2} | 16 | Р | Power supply, side 2 | | ⁽¹⁾ I = input, O = output, P = power, GND = ground ## **5 Specifications** ## 5.1 Absolute Maximum Ratings See(1) | | | MIN | MAX | UNIT | |--------------------|--|------|-----------------------|------| | Supply voltage (2) | V _{CC1} to GND1 | -0.5 | 6 | V | | Supply voltage V | V _{CC2} to GND2 | -0.5 | 6 | V | | Input/Output | INx to GNDx | -0.5 | 6 | V | | Voltage | OUTx to GNDx | -0.5 | $V_{CCX} + 0.5^{(3)}$ | V | | Output current | lo | -15 | 15 | mA | | Temperature | Operating junction temperature, T _J | | 150 | °C | | Temperature | Storage temperature, T _{stg} | -65 | 150 | °C | - (1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. - (2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values - (3) Maximum voltage must not exceed 6V. ## 5.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|--|-------|------| | | | Human body model (HBM), per ANSI/
ESDA/JEDEC JS-001, all pins ⁽¹⁾ | ±4000 | | | V _(ESD) | Electrostatic discharge | Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾ | ±1000 | V | - (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process. - JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 ## **5.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | | | MIN | NOM | MAX | UNIT | |----------------------|--------------------------------|------------------------|---------------------------------------|------|--|------| | V _{CC1} (1) | Supply Voltage Side 1 | | 2.5 | | 5.5 | V | | V _{CC2} (1) | Supply Voltage Side 2 | | 2.5 | | 5.5 | V | | Vcc
(UVLO+) | UVLO threshold when supply | voltage is rising | | | 2.45 | V | | Vcc
(UVLO-) | UVLO threshold when supply | voltage is falling | 2.09 | | | V | | Vhys
(UVLO) | Supply voltage UVLO hystere | sis | | 0.08 | | V | | V _{IH} | High level Input voltage | | 0.7 x V _{CCI} ⁽²⁾ | | V _{CCI} ⁽²⁾ | V | | V _{IL} | Low level Input voltage | | 0 | | 0.3 x V _{CCI} ⁽²⁾ | V | | | | $V_{CCO}^{(2)} = 5V$ | -4 | | | mA | | I _{OH} | High level output current | $V_{CCO}^{(2)} = 3.3V$ | -4 | | | mA | | | | $V_{CCO}^{(2)} = 2.5V$ | -2 | | | mA | | | | $V_{CCO}^{(2)} = 5V$ | | | 4 | mA | | I _{OL} | Low level output current | $V_{CCO}^{(2)} = 3.3V$ | | | 4 | mA | | | | $V_{CCO}^{(2)} = 2.5V$ | | | 5.5
5.5
2.45
V _{CCI} (2)
0.3 x V _{CCI} (2) | mA | | DR | Data Rate for channels A, B, I | E, and F | 0 | | 50 | Mhna | | שט | Data Rate for channels C and | D | 0 | | 4 | Mbps | | T _A | Ambient temperature | | -40 | 25 | 125 | °C | V_{CC1} and V_{CC2} can be set independent of one another V_{CCI} = Input-side V_{CC} ; V_{CCO} = Output-side V_{CC} ## **5.4 Thermal Information** | | | ISO616x | | |----------------------|---|-----------|------| | | Junction-to-ambient thermal resistance Junction-to-case (top) thermal resistance Junction-to-board thermal resistance | DW (SOIC) | UNIT | | | | 16 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 61.5 | °C/W | | $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance | 28.9 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 27.8 | °C/W | | ΨЈТ | Junction-to-top characterization parameter | 9.1 | °C/W | | ΨЈВ | Junction-to-board characterization parameter | 27.3 | °C/W | | $R_{\theta JC(bot)}$ | Junction-to-case (bottom) thermal resistance | _ | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application ## 5.5 Power Ratings | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------|--|--|-----|-----|-----|------| | P _D | Maximum power dissipation (both sides) | V _{CC1} = V
_{CC2} = 5.5V, T _J = 150°C, C _L = | | | 120 | mW | | P _{Dx} | Maximum power dissipation (side-1 or side-2) | 15pF, Input a 25MHz 50% duty cycle square wave | | | 60 | mW | ## 5.6 Insulation Specifications | | DADAMETED TEST CONDITIONS | | VALUE | LINUT | | |-------------------|---|---|--------------------|------------------|--| | | PARAMETER | TEST CONDITIONS | 16-DW | UNIT | | | IEC 606 | 64-1 | | | | | | CLR | External clearance ⁽¹⁾ | Side 1 to side 2 distance through air | >8 | mm | | | CPG | External creepage ⁽¹⁾ | Side 1 to side 2 distance across package surface | >8 | mm | | | DTI | Distance through the insulation | Minimum internal gap (internal clearance) | >17 | μm | | | СТІ | Comparative tracking index | IEC 60112 | > 600 | V | | | | Material Group | According to IEC 60664-1 | I | | | | | O | Rated mains voltage ≤ 600V _{RMS} | I-IV | 1 | | | | Overvoltage category | Rated mains voltage ≤ 1000V _{RMS} | 1-111 | 1 | | | DIN EN | IEC 60747-17 (VDE 0884-17) ⁽²⁾ | | | | | | V _{IOTM} | Maximum transient isolation voltage | V _{TEST} = V _{IOTM} , t = 60s (qualification);
V _{TEST} = 1.2 x V _{IOTM} , t= 1s (100% production) | 7071 | V _{PK} | | | V _{IMP} | Maximum impulse voltage ⁽³⁾ | Tested in air, 1.2/50µs waveform per IEC 62368-1 | 8000 | V _{PK} | | | V _{IOSM} | Maximum surge isolation voltage ⁽⁴⁾ | V _{IOSM} ≥ 1.3 x V _{IMP} ; Tested in oil (qualification test),
1.2/50µs waveform per IEC 62368-1 | 10400 | V _{PK} | | | | | Method a, After Input-output safety test subgroup 2/3, $V_{ini} = V_{IOTM}$, $t_{ini} = 60s$; $V_{pd(m)} = 1.2 \text{ x } V_{IORM}$, $t_m = 10s$ | ≤ 5 | | | | q _{pd} | Apparent charge ⁽⁵⁾ | Method a, After environmental tests subgroup 1, $V_{ini} = V_{IOTM}, t_{ini} = 60s;$ $V_{pd(m)} = 1.6 \text{ x } V_{IORM}, t_m = 10s$ | ≤ 5 | pC | | | | | Method b: At routine test (100% production); $V_{ini} = 1.2 \times V_{IOTM}, \ t_{ini} = 1s; \\ V_{pd(m)} = 1.875 \times V_{IORM}, \ t_m = 1s \ (method \ b1) \ or \\ V_{pd(m)} = V_{ini}, \ t_m = t_{ini} \ (method \ b2)$ | ≤ 5 | | | | C _{IO} | Barrier capacitance, input to output ⁽⁶⁾ | $V_{IO} = 0.4 \times \sin(2 \pi f t), f = 1MHz$ | ≅2.4 | pF | | | | | V _{IO} = 500V, T _A = 25°C | > 10 ¹² | | | | R _{IO} | Insulation resistance, input to output ⁽⁶⁾ | V _{IO} = 500V, 100°C ≤ T _A ≤ 125°C | > 10 ¹¹ | Ω | | | | | V _{IO} = 500V at T _S = 150°C | > 10 ⁹ | | | | | Pollution degree | | 2 | | | | | Climatic category | | 40/125/21 | | | | UL 1577 | | | | | | | V _{ISO} | Withstand isolation voltage | $V_{TEST} = V_{ISO}$, t = 60s (qualification); $V_{TEST} = 1.2 \times V_{ISO}$, t = 1s (100% production) | 5000 | V _{RMS} | | - (1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications. - (2) This coupler is suitable for *safe electrical insulation* only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits. - (3) Testing is carried out in air to determine the surge immunity of the package. - (4) Testing is carried out in oil to determine the intrinsic surge immunity of the isolation barrier. - (5) Apparent charge is electrical discharge caused by a partial discharge (pd). - (6) All pins on each side of the barrier tied together creating a two-pin device. ## 5.7 Safety-Related Certifications | VDE | CSA | UL | CQC | TUV | |--|---------------------|--|---------------------------------------|--| | Plan to certify according to
DIN EN IEC 60747-17
(VDE 0884-17) | | Plan to certify according to
UL 1577 Component
Recognition Program | Plan to certify according to GB4943.1 | Plan to certify according to
EN 61010-1 and EN
62368-1 | | Certificate planned | #### 5.8 Safety Limiting Values Safety limiting⁽¹⁾ intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------|---|---|-----|-----|------|------| | DW-16 | 6 PACKAGE | | | | | | | | | R _{θJA} =61.5°C/W, V _I = 5.5V, T _J = 150°C,
T _A = 25°C | | | 369 | | | Is | Safety input, output, or supply current | $R_{\theta JA} = 61.5^{\circ}C/W, V_I = 3.6V, T_J = 150^{\circ}C, T_A = 25^{\circ}C$ | | | 564 | mA | | | | $R_{\theta JA} = 61.5$ °C/W, $V_I = 2.75$ V, $T_J = 150$ °C, $T_A = 25$ °C | | | 739 | | | Ps | Safety input, output, or total power | R _{0JA} = 61.5°C/W, T _J = 150°C, T _A = 25°C | | | 2032 | mW | | T _S | Maximum safety temperature | | | | 150 | °C | (1) The maximum safety temperature, T_S, has the same value as the maximum junction temperature, T_J, specified for the device. The I_S and P_S parameters represent the safety current and safety power respectively. The maximum limits of I_S and P_S must not be exceeded. These limits vary with the ambient temperature, T_A. The junction-to-air thermal resistance, $R_{\theta JA}$, in the table is that of a device installed on a high-K test board for leaded surface-mount packages. Use these equations to calculate the value for each parameter: $T_J = T_A + R_{\theta JA} \times P$, where P is the power dissipated in the device. $T_{J(max)} = T_S = T_A + R_{\theta JA} \times P_S$, where $T_{J(max)}$ is the maximum allowed junction temperature. $P_S = I_S \times V_I$, where V_I is the maximum input voltage. ## 5.9 Electrical Characteristics—5V Supply (±10%) V_{CC1} = V_{CC2} = 5V ±10% (over recommended operating conditions unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP MAX | UNIT | |----------------------|------------------------------------|---|---------------------------------------|---------------------------------------|-------| | V _{OH} | High-level output voltage | I _{OH} = -4mA; See 図 6-1 | V _{CCO} - 0.4 ⁽¹⁾ | | V | | V _{OL} | Low-level output voltage | I _{OL} = 4mA; See 図 6-1 | | 0.4 | V | | V _{IT+(IN)} | Rising input threshold | | | 0.7 x V _{CCI} ⁽¹⁾ | V | | V _{IT-(IN)} | Falling input threshold | | 0.3 x V _{CCI} | | V | | V _{I(HYS)} | Input threshold voltage hysteresis | | 0.04 x V _{CCI} | | V | | I _{IH} | High-level input current | V _{IH} = V _{CCI} ⁽¹⁾ at INx | | 10 | μA | | I _{IL} | Low-level input current | V _{IL} = 0V at INx | -10 | | μA | | I _{O_LP} | Low-Power mode output current | | | 5 | nA | | СМТІ | Common mode transient immunity | V _I = V _{CC} or 0V, V _{CM} = 1200V;
See ☑ 6-4 | 25 | 50 | kV/µs | | C _i | Input Capacitance (2) | $V_I = V_{CC} + 0.4 \times \sin(2\pi ft), f = 2$
MHz, $V_{CC} = 5V$ | | 1.7 | pF | - (1) $V_{CCI} = Input\text{-side } V_{CC}; V_{CCO} = Output\text{-side } V_{CC}$ - (2) Measured from input pin to same side ground. ## 5.10 Supply Current Characteristics—5V Supply (±10%) V_{CC1} = V_{CC2} = 5V ±10% (over recommended operating conditions unless otherwise noted) | PARAMETER | TEST CONDITIONS | | SUPPLY
CURRENT | MIN | TYP | MAX | UNIT | |----------------------------------|--|------------------|-------------------|-----|-------|-------|------| | | Device in STANDBY state. V _I = VCC _I on | -40°C to 125°C | | | 0.375 | 0.478 | | | | channels C and D (default level). $V_l = VCC_l$ on channels A, B, E, F (default level). | -40°C to 85°C | | | 0.375 | 0.460 | | | | Device in STANDBY state. $V_1 = VCC_1$ on shappeds C_1 and D_2 (default level) $V_2 = 0$ (or | –40°C to 125°C | Icc1 | | 0.385 | 0.495 | | | Supply current -
STANDBY (Low | channels C and D (default level). V_I = 0V on channels A, B, E, F. | -40°C to 85°C | | | 0.385 | 0.475 | | | Power) ⁽¹⁾ | Device in STANDBY state. V _I = VCC _I on | –40°C to 125°C | | | 0.375 | 0.478 | | | | channels C and D (default level). $V_I = VCC_I$ on channels A, B, E, F (default level). | -40°C to 85°C | | | 0.375 | 0.460 | | | | Device in STANDBY state. V _I = VCC _I on | -40°C to 125°C | I _{CC2} | | 0.385 | 0.495 | | | | channels C and D (default level). V_I = 0V on channels A, B, E, F. | -40°C to 85°C | | | 0.385 | 0.475 | | | Supply current - | | | I _{CC1} | | 1.3 | 1.72 | | | ACTIVE - DC signal (2) | $V_I = V_{CC1}$ or $V_I = 0V$ | I _{CC2} | | 1.3 | 1.72 | mA | | | | All channels switching with square wave clock | 1Mbps | I _{CC1} | | 1.4 | 1.86 | | | | inputs; C _L = 0pF | Tivibps | I _{CC2} | | 1.4 | 1.86 | | | | | 10Mbps | I _{CC1} | | 2.3 | 3.01 | | | | | Томврз | I _{CC2} | | 2.3 | 3.01 | | | Supply current -
ACTIVE - AC | | 20Mbps | I _{CC1} | | 3.1 | 4.19 | | | signal (2) | A, B, E, and F channels switching with square wave clock input; C and D channels switching at | | I _{CC2} | | 3.1 | 4.19 | | | | 4Mbps; C _L = 0pF | 25Mbps | I _{CC1} | | 3.5 | 4.7 | | | | | ZOMBPO | I _{CC2} | | 3.5 | 4.7 | | | | | 50Mbps | I _{CC1} | | 5.6 | 7.5 | | | | БОМВР | | I _{CC2} | | 5.6 | 7.5 | | - (1) Supply current valid for both INC and IND HIGH for STANDBY
state. - (2) Supply current valid for at least one of INC or IND LOW for ACTIVE state. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 ## 5.11 Electrical Characteristics—3.3V Supply (±10%) $V_{CC1} = V_{CC2} = 3.3V \pm 10\%$ (over recommended operating conditions unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------------|------------------------------------|---|---------------------------------------|-----|--------------------------------------|-------| | V _{OH} | High-level output voltage | I _{OH} = -4mA; See 図 6-1 | V _{CCO} - 0.4 ⁽¹⁾ | | | V | | V _{OL} | Low-level output voltage | I _{OL} = 4mA; See 図 6-1 | | | 0.4 | V | | V _{IT+(IN)} | Rising input threshold | | | 0 | .7 x V _{CCI} ⁽¹⁾ | V | | V _{IT-(IN)} | Falling input threshold | | 0.3 x V _{CCI} | | | V | | V _{I(HYS)} | Input threshold voltage hysteresis | | 0.04 x V _{CCI} | | | V | | I _{IH} | High-level input current | V _{IH} = V _{CCI} ⁽¹⁾ at INx | | | 10 | μΑ | | I _{IL} | Low-level input current | V _{IL} = 0V at INx | -10 | | | μΑ | | I _{O_LP} | Low-Power mode output current | | | 3 | | nA | | СМТІ | Common mode transient immunity | V _I = V _{CC} or 0V, V _{CM} = 1200V;
See ⊠ 6-4 | 25 | 50 | | kV/µs | | C _i | Input Capacitance (2) | $V_I = V_{CC} + 0.4 \times \sin(2\pi ft), f = 2MHz, V_{CC} = 3.3V$ | | 1.7 | | pF | - (1) $V_{CCI} = Input-side V_{CC}$; $V_{CCO} = Output-side V_{CC}$ - (2) Measured from input pin to same side ground. # 5.12 Supply Current Characteristics—3.3V Supply (±10%) $V_{CC1} = V_{CC2} = 3.3V \pm 10\%$ (over recommended operating conditions unless otherwise noted) | PARAMETER | TEST CONDITIONS | | SUPPLY
CURRENT | MIN | TYP | MAX | UNIT | |--------------------------------------|---|---|-------------------|-----|-------|-------|------| | | Device in STANDBY state. V _I = VCC _I on | -40°C to 125°C | | | 0.36 | 0.458 | | | | channels C and D (default level). $V_l = VCC_l$ on channels A, B, E, F (default level). | –40°C to 85°C | [| | 0.36 | 0.442 | | | | Device in STANDBY state. V _I = VCC _I on | -40°C to 125°C | ICC1 | | 0.366 | 0.465 | | | Supply current -
STANDBY (Low | channels C and D (default level). V_I = 0V on channels A, B, E, F. | -40°C to 85°C | | | 0.366 | 0.448 | | | Power) (1) | Device in STANDBY state. V _I = VCC _I on | -40°C to 125°C | | | 0.36 | 0.458 | | | | channels C and D (default level). $V_l = VCC_l$ on channels A, B, E, F (default level). | –40°C to 85°C | | | 0.36 | 0.442 | | | | Device in STANDBY state. $V_1 = VCC_1$ on | -40°C to 125°C | ICC2 | | 0.366 | 0.465 | | | | channels C and D (default level). V_I = 0V on channels A, B, E, F. | 1). $V_1 = 0V$ on -40° C to 85° C | | | 0.366 | 0.448 | | | Supply current - | | | I _{CC1} | | 1.24 | 1.67 | | | ACTIVE - DC
signal ⁽²⁾ | $V_I = V_{CC1}$ or $V_I = 0V$ | | I _{CC2} | | 1.24 | 1.67 | mA | | | All channels switching with square wave clock | 1Mbps | I _{CC1} | | 1.31 | 1.77 | | | | inputs; C _L = 0pF | Пипре | I _{CC2} | | 1.31 | 1.77 | | | | | 10Mbps | I _{CC1} | | 2.03 | 2.7 | | | | | Tolvibps | I _{CC2} | | 2.03 | 2.7 | | | Supply current -
ACTIVE - AC | | 20Mbps | I _{CC1} | | 2.75 | 3.64 | | | signal (2) | A, B, E, and F channels switching with square wave clock input; C and D channels switching at | | I _{CC2} | | 2.75 | 3.64 | | | | 4Mbps; C _L = 0pF | 25Mbps | I _{CC1} | | 3.06 | 4.06 | | | | | ZOMOPS | I _{CC2} | | 3.06 | 4.06 | | | | | 50Mbps | I _{CC1} | | 4.73 | 6.3 | | | | | Sqalviuc | I _{CC2} | | 4.73 | 6.3 | | - (1) Supply current valid for both INC and IND HIGH for STANDBY state. - (2) Supply current valid for at least one of INC or IND LOW for ACTIVE state. ## 5.13 Electrical Characteristics—2.5V Supply (Minimum) $V_{CC1} = V_{CC2} = 2.5V$ min (over recommended operating conditions unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------------|------------------------------------|--|---------------------------------------|-----|---------------------------------------|-------| | V _{OH} | High-level output voltage | I _{OH} = -4mA; See 図 6-1 | V _{CCO} - 0.4 ⁽¹⁾ | | | V | | V _{OL} | Low-level output voltage | I _{OL} = 4mA; See 図 6-1 | | | 0.4 | V | | V _{IT+(IN)} | Rising input threshold | | | | 0.7 x V _{CCI} ⁽¹⁾ | V | | V _{IT-(IN)} | Falling input threshold | | 0.3 x V _{CCI} | | | V | | V _{I(HYS)} | Input threshold voltage hysteresis | | 0.04 x V _{CCI} | | | V | | I _{IH} | High-level input current | V _{IH} = V _{CCI} ⁽¹⁾ at INx | | | 10 | μΑ | | I _{IL} | Low-level input current | V _{IL} = 0V at INx | -10 | | | μA | | I _{O_LP} | Low-Power mode output current | | | 2.2 | | nA | | СМТІ | Common mode transient immunity | $V_I = V_{CC}$ or 0V, $V_{CM} = 1200V$;
See \boxtimes 6-4 | 25 | 50 | | kV/μs | | Ci | Input Capacitance (2) | $V_I = V_{CC} + 0.4 \times \sin(2\pi ft), f = 2MHz, V_{CC} = 2.5V$ | | 1.7 | | pF | - (1) $V_{CCI} = Input\text{-side } V_{CC}; V_{CCO} = Output\text{-side } V_{CC}$ - (2) Measured from input pin to same side ground. ## 5.14 Supply Current Characteristics—2.5V Supply (Minimum) $V_{CC1} = V_{CC2} = 2.5V$ min (over recommended operating conditions unless otherwise noted) | PARAMETER | TEST CONDITIONS | | SUPPLY
CURRENT | MIN TYP | MAX | UNIT | |----------------------------------|---|----------------|-------------------|---------|-------|------| | | Device in STANDBY state. V _I = VCC _I on | -40°C to 125°C | | 0.35 | 0.448 | | | | channels C and D (default level). $V_l = VCC_l$ on channels A, B, E, F (default level). | –40°C to 85°C | | 0.35 | 0.432 | | | | Device in STANDBY state. $V_1 = VCC_1$ on | –40°C to 125°C | I _{CC1} | 0.356 | 0.455 | | | Supply current -
STANBDY (Low | channels C and D (default level). V_I = 0V on channels A, B, E, F. | -40°C to 85°C | | 0.356 | 0.438 | | | Power) (1) | Device in STANDBY state. V _I = VCC _I on | –40°C to 125°C | | 0.35 | 0.448 | | | | channels C and D (default level). $V_l = VCC_l$ on channels A, B, E, F (default level). | –40°C to 85°C |]. [| 0.35 | 0.432 | | | | Device in STANDBY state. V _I = VCC _I on | -40°C to 125°C | I _{CC2} | 0.356 | 0.455 | | | | channels C and D (default level). V_I = 0V on channels A, B, E, F. | -40°C to 85°C | | 0.356 | 0.438 | | | Supply current - | Supply current - ACTIVE - DC signal $^{(2)}$ $V_I = V_{CC1}$ or $V_I = 0V$ | | I _{CC1} | 1.23 | 1.65 | | | | | | I _{CC2} | 1.23 | 1.65 | mA | | | All channels switching with square wave clock | 1Mbps | I _{CC1} | 1.29 | 1.73 | | | | inputs; C _L = 0pF | Пиврз | I _{CC2} | 1.29 | 1.73 | | | | | 10Mbps | I _{CC1} | 1.9 | 2.5 | | | | | Томврз | I _{CC2} | 1.9 | 2.5 | | | Supply current -
ACTIVE - AC | | 20Mbps | I _{CC1} | 2.53 | 3.28 | | | signal (2) | A, B, E, and F channels switching with square wave clock input; C and D channels switching at | | I _{CC2} | 2.53 | 3.28 | | | | 4Mbps; C _L = 0pF | 25Mbps | I _{CC1} | 2.79 | 3.62 | | | | | ZOMDPS | I _{CC2} | 2.79 | 3.62 | | | | | 50Mbps | I _{CC1} | 4.22 | 5.46 | | | | | ООМБРЗ | I _{CC2} | 4.22 | 5.46 | | - (1) Supply current valid for both INC and IND HIGH for STANDBY state. - (2) Supply current valid for at least one of INC or IND LOW for ACTIVE state. 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated 10 ## 5.15 Switching Characteristics—5V Supply (±10%) $V_{CC1} = V_{CC2} = 5V \pm 10\%$ (over recommended operating conditions unless otherwise noted) | PARAMETER | | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-------------------------------------|--|--|-----|------|------|------| | t _{PLH} , t _{PHL} | Propagation delay time | | | 9 | 12 | ns | | PWD | Pulse width distortion ⁽¹⁾ t _{PHL} - t _{PLH} | Channels A, B, E, and F. See 図 6-1 | | | 1 | ns | | t _{PLH} , t _{PHL} | Propagation delay time | 0 10 10 0 | | 9 | 12 | ns | | PWD | Pulse width distortion ⁽¹⁾ t _{PHL} - t _{PLH} | Channels C and D. See 図 6-1 | | | 1 | ns | | t _{sk(o)} | Channel-to-channel output skew time ⁽²⁾ | Channels A and B or E and F (consecutive channels in active mode) | | | 1 | ns | | t _{sk(pp)} | Part-to-part skew time ⁽³⁾ | | | | 3 | ns | | t _r | Output signal rise time | 0 70 04 | | 2.0 | 3.5 | ns | | t _f | Output signal fall time | See 図 6-1 | | 2.0 | 3.5 | ns | | t _{LP_EN} | STANDBY State (low power) enable delay time | Time required transition to STANDBY state once channels C and D are in the inactive and HIGH states. See ☑ 6-2 | 700 | 1000 | 1400 | ms | | t _{AMS} | ACTIVE sample time (portion of $t_{LP_{EN}}$), either C or D going LOW | ACTIVE sample deglitch time for STANDBY state enable delay time. See 🗵 6-2 | 10 | | 28 | μs | | t _{LPN} | STANDBY to ACTIVE (Low power to normal) transition time | | 20 | | 52 | μs | | t _{PU_HS_CH} | Time from UVLO to valid output data on channels A, B, E, and F | | | | 120 | μs | | t _{PU_LS_CH} | Time from UVLO to valid output data on channels C and D | | | | 100 | μs | | t _{DO} | Default output delay time from input power loss | Measured from the time V_{CC} goes below 2.2V if the remaining device signals require normal mode operation. See \boxtimes 6-3 | | | 13.5 | μs | | TIE | Time Interval Error | Channels A, B, E, and F. 2 ¹⁶ – 1 PRBS data at 50Mbps | | 0.08 | 2 | ns | | | | Channels C and D. 2 ¹⁶ – 1 PRBS data at 4Mbps | | 0.12 | 2 | ns | | t _{JIT(RJ)} | Random jitter | | | | 1 | ns | - (1) Also known as pulse skew. - (2) t_{sk(o)} is the skew between
outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. - (3) $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. ## 5.16 Switching Characteristics—3.3V Supply (±10%) $V_{CC1} = V_{CC2} = 3.3V \pm 10\%$ (over recommended operating conditions unless otherwise noted) | <u> </u> | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-------------------------------------|--|--|-----|------|-------|------| | t _{PLH} , t _{PHL} | Propagation delay time | Channala A D E and E Cas M C 4 | | 9.6 | 13.75 | ns | | PWD | Pulse width distortion ⁽¹⁾ t _{PHL} - t _{PLH} | Channels A, B, E, and F. See ⊠ 6-1 | | | 1 | ns | | t _{PLH} , t _{PHL} | Propagation delay time | Channala Cand D. Caa 🖼 C. 4 | | 9.6 | 13.75 | ns | | PWD | Pulse width distortion ⁽¹⁾ t _{PHL} - t _{PLH} | Channels C and D. See 図 6-1 | | | 1 | ns | | t _{sk(o)} | Channel-to-channel output skew time ⁽²⁾ | Channels A and B or E and F (consecutive channels in active mode) | | | 1 | ns | | t _{sk(pp)} | Part-to-part skew time ⁽³⁾ | | | | 5 | ns | | t _r | Output signal rise time | 0 50 0.4 | | 2.1 | 3.5 | ns | | t _f | Output signal fall time | - See 図 6-1 | | 2.1 | 3.5 | ns | | t _{LP_EN} | STANDBY State (low power) enable delay time | Time required transition to STANDBY state once channels C and D are in the inactive and HIGH states. See ☑ 6-2 | 700 | 1000 | 1400 | ms | | t _{AMS} | ACTIVE sample time (portion of t_{LP_EN}), either C or D going LOW | ACTIVE sample deglitch time for STANDBY state enable delay time. See 🗵 6-2 | 10 | | 28 | μs | | t _{LPN} | STANDBY to ACTIVE (Low power to normal) transition time | | 20 | | 52 | μs | | t _{PU_HS_CH} | Time from UVLO to valid output data on channels A, B, E, and F | | | | 120 | μs | | t _{PU_LS_CH} | Time from UVLO to valid output data on channels C and D | | | | 100 | μs | | t _{DO} | Default output delay time from input power loss | Measured from the time V_{CC} goes below 2.2V if the remaining device signals require normal mode operation. See \boxtimes 6-3 | | | 13.5 | μs | | | Time Interval Error | Channels A, B, E, and F. 2 ¹⁶ – 1 PRBS data at 50Mbps | | 0.06 | 2 | ns | | | | Channels C and D. 2 ¹⁶ – 1 PRBS data at 4Mbps | | 0.12 | 2 | ns | | t _{JIT(RJ)} | Random jitter | | | | 1 | ns | - (1) Also known as pulse skew. - (2) t_{sk(o)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. - (3) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 ## 5.17 Switching Characteristics—2.5V Supply (Minimum) $V_{CC1} = V_{CC2} = 2.5V$ min (over recommended operating conditions unless otherwise noted) | PARAMETER | | TEST CONDITIONS | MIN | TYP | TYP MAX | UNIT | |-------------------------------------|--|---|-----|------|---------|------| | t _{PLH} , t _{PHL} | Propagation delay time | | | 11 | 17 | ns | | PWD | Pulse width distortion ⁽¹⁾ t _{PHL} - t _{PLH} | - Channels A, B, E, and F. See 図 6-1 | | | 1.2 | ns | | t _{PLH} , t _{PHL} | Propagation delay time | 01 10 10 0 11 04 | | 11 | 17 | ns | | PWD | Pulse width distortion ⁽¹⁾ t _{PHL} - t _{PLH} | - Channels C and D. See 図 6-1 | | | 1.2 | ns | | t _{sk(o)} | Channel-to-channel output skew time ⁽²⁾ | Channels A and B or E and F (consecutive channels in active mode) | | | 1 | ns | | t _{sk(pp)} | Part-to-part skew time ⁽³⁾ | | | | 5 | ns | | t _r | Output signal rise time | 0 50 0.4 | | 2.2 | 4.1 | ns | | t _f | Output signal fall time | - See 図 6-1 | | 2.2 | 4.1 | ns | | t _{LP_EN} | STANDBY State (low power) enable delay time | Time required transition to STANDBY state once channels C and D are in the inactive and HIGH states. See ☑ 6-2 | 700 | 1000 | 1400 | ms | | t _{AMS} | ACTIVE sample time (portion of $t_{LP_{EN}}$), either C or D going LOW | ACTIVE sample deglitch time for STANDBY state enable delay time. See 🗵 6-2 | 10 | | 28 | μs | | t _{LPN} | STANDBY to ACTIVE (Low power to normal) transition time | | 20 | | 52 | μs | | t _{PU_HS_CH} | Time from UVLO to valid output data on channels A, B, E, and F | | | | 120 | μs | | t _{PU_LS_CH} | Time from UVLO to valid output data on channels C and D | | | | 100 | μs | | t _{DO} | Default output delay time from input power loss | Measured from the time V _{CC} goes below 2.2V if the remaining device signals require normal mode operation. See ☑ 6-3 | | | 13.5 | μs | | TIE | Time Interval Error | Channels A, B, E, and F. 2 ¹⁶ – 1 PRBS data at 50Mbps | | 0.06 | 2 | ns | | C C | | Channels C and D. 2 ¹⁶ – 1 PRBS data at 4Mbps | | 0.13 | 2 | ns | | t _{JIT(RJ)} | Random jitter | | | | 1 | ns | ⁽¹⁾ Also known as pulse skew. ⁽²⁾ t_{sk(o)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. ⁽³⁾ t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. ## 5.18 Insulation Characteristics Curves 図 5-1. Thermal Derating Curve for Safety Limiting Current (mA) for DW-16 Package 図 5-2. Thermal Derating Curve for Safety Limiting Power (mW) for DW-16 Package ## **5.19 Typical Characteristics** ## 5.19.1 Typical Characteristics: Supply Current ACTIVE state ACTIVE state is forced with one low-speed control channel held LOW, the high-speed data and second low-speed control channel data rate is swept per the chart. Once the data-rate reaches 4Mbps, the second low-speed control channel data rate is held at 4Mbps as the high-speed data channels continue to rise until 50Mbps. 図 5-4. ISO6163 Supply Current vs Data Rate (With 15pF Load) for ACTIVE State ## 5.19.2 Typical Characteristics: High-Speed Channels (ACTIVE state) $T_A = 25^{\circ}C$ 図 5-7. ISO6163 Low-Level Output Voltage vs Low-Level Output Current for High-Speed Channel Low-Level Output Current (mA) **ACTIVE State** ## 5.19.3 Typical Characteristics: Supply Current STANDBY State STANDBY state is held with one low-speed control channel held HIGH while second channel is swept. The data rates swept are selected to avoid LOW durations longer than t_{AMS} which transition the device to ACTIVE state. 注 The high-speed channels are turned off (high impedance) in the device STANDBY state. 注 For I_{CC1} and I_{CC2} at with DC signals on the low-speed control channels, please refer to the Supply Characteristics table for the supply voltage, V_{CC1} and V_{CC2} , supplied to each side of the isolator. 図 5-8. ISO6163 Supply Current vs Data Rate (With 15pF Load) for Low-Speed Channel in STANDBY state 図 5-9. ISO6163 Supply Current vs Data Rate (With No Load) for Low-Speed Channel in STANDBY state ## 5.19.4 Typical Characteristics: Low-Speed Control Channels (ACTIVE and STANDBY States) 図 5-10. ISO6163 Propagation Delay Time vs Free-Air Temperature for Low-Speed Control Channel 図 5-11. ISO6163 High-Level Output Voltage vs High-level Output Current for Low-Speed Control Channel 図 5-12. ISO6163 Low-Level Output Voltage vs Low-Level Output Current for Low-Speed Control Channel 資料に関するフィードバック(ご意見やお問い合わせ) を送信 ## 5.19.5 Typical Characteristics: Undervoltage Threshold #### **6 Parameter Measurement Information** - A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50kHz, 50% duty cycle, $t_r \leq$ 3ns, $t_f \leq$ 3ns, $Z_O = 50\Omega$. At the input, 50Ω resistor is required to terminate Input Generator signal. The 50Ω resistor is not needed in the actual application. - B. $C_L = 15$ pF and includes instrumentation and fixture capacitance within ±20%. ## 図 6-1. Switching Characteristics Test Circuit and Voltage Waveforms - A. The input pulse is supplied by a generator having the following characteristics: $t_f \le 3$ ns, ns - B. $C_L = 15 pF$ and includes instrumentation and fixture capacitance within $\pm 20\%$. - C. Low-Speed Control Channel not under test has a HIGH input. #### 図 6-2. Low-Speed Control Channel Automatic Enable Time Test Circuit and Waveform 資料に関するフィードバック(ご意見やお問い合わせ)を送信 - A. C_L = 15pF and includes instrumentation and fixture capacitance within ±20%. - B. Power Supply Ramp Rate = 10mV/ns ## 図 6-3. Default Output Delay Time Test Circuit and Voltage Waveforms A. C_L = 15pF and includes instrumentation and fixture capacitance within ±20%. 図 6-4. Common-Mode Transient Immunity Test Circuit ## 7 Detailed Description #### 7.1 Overview The ISO6163 family of devices transmit digital data across a silicon dioxide based isolation barrier. The digital input signal (IN) of the device is sampled by a transmitter and at every data edge the transmitter sends a corresponding differential signal across the isolation barrier. When the input signal is static, the refresh logic periodically sends the necessary differential signal from the transmitter. On the other side of the isolation barrier, the receiver converts the differential signal into a single-ended signal which is output on the OUT pin through a buffer. If the receiver does not receive a data
or refresh signal, the timeout logic detects the loss of signal or power from the input side and drives the output to the default level. The conceptual block diagram of the digital isolator, Conceptual Block Diagram of a Digital Isolator, shows a functional block diagram of a typical channel. #### 7.1.1 Functional Block Diagram 図 7-1. Conceptual Block Diagram of a Digital Isolator #### 7.1.2 Feature Description 表 7-1 provides an overview of the device features. #### 表 7-1. Device Features | PART NUMBER | CHANNEL DIRECTION | | MAXIMUM DATA
RATE | DEFAULT OUTPUT | PACKAGE | |-------------|---|--|----------------------|----------------|----------| | | | 2 High-Speed | 50Mbps | | | | ISO6163 | Forward 1 Low-Speed Control w
Automatic Enable | | 4Mbps ⁽¹⁾ | HIGH | ワイド SOIC | | 1300103 | Reverse | 2 High-Speed | 50Mbps | TilGii | (DW-16) | | | | 1 Low-Speed Control with
Automatic Enable | 4Mbps ⁽¹⁾ | | | (1) Up to 4Mbps when one low-speed control channel held low, or up to 35kbps when both low-speed control channels used for data. Data rates when both channels are used for data are limited by the data, protocol plus the t_{AMS} ACTIVE sample time and t_{LP_EN} STANDBY state enable delay time. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 ## 7.2 High-Speed Data Channels: A, B, E and F The ISO6163 family of devices have four high-speed data channels used for clocking, data and other high data rate requirements in the system. These high-speed channels are enabled in the device ACTIVE state and turned off (high impedance) in the device STANDBY state. The device state is determined by the low-speed control channels C and D with automatic enable. ## 7.3 Low-Speed Control Channels With Automatic Enable: C and D The ISO6163 family of devices have two low-speed control channels (C and D channels), one in each direction, with automatic enable. These two channels control the entry and exit from STANDBY state (low power, high-speed channels turned off and high impedance) and ACTIVE state (normal operation) of the device. With one automatic enable channel in each direction, the ISO6163 device supports power up and down control in both directions such that a host MCU (SPI NCS for example) or peripheral (NINT for example) wakes up the device and system. | INC | IND | Device State | Comment | |------|------|---------------------------|---| | HIGH | HIGH | STANDBY (Low Power) | INC and IND both HIGH enables STANDBY state (low power). STANDBY is only enabled when INC and IND are static HIGH with no activity or LOW on either of the channels for longer than t _{AMS} monitoring window and after the STANDBY low power reaction time t _{LP_EN} . High-speed channels A, B, E and F are high impedance. | | LOW | LOW | ACTIVE (Normal Operation) | INC and IND both LOW enables all channels for ACTIVE state (normal operation). | | LOW | HIGH | ACTIVE (Normal Operation) | INC LOW enables all channels for ACTIVE state (normal operation). | | HIGH | LOW | ACTIVE (Normal Operation) | IND LOW enables all channels for ACTIVE state (normal operation). | #### 7.3.1 Low-Speed Control Channels: Timing and Level Details for Automatic Enable The low-speed control channels with automatic enable have ACTIVE state sample time and delay timer to prevent unintended entry to or exit from STANDBY state. This section explains the impact of these timing requirements on the automatic enable functionality and the maximum data rate possible in the low-speed control channels. Both low-speed control channels, C and D, have an ACTIVE sample time, t_{AMS} , preventing noise from triggering state transitions. When at least one of the low-speed control channels, C and D, is LOW longer than the ACTIVE sample time, the device generates an ACTIVE mode request and either transitions to ACTIVE state or remains in ACTIVE state, canceling any STANDBY requests that can be generated. When the device must transition from STANDBY to ACTIVE upon an ACTIVE request, the device does so within t_{LPN} from the falling edge on one or both of the low-speed control channels. When both low-speed control channels have been HIGH longer than the ACTIVE sample time a STANDBY request is generated. As long as an ACTIVE mode request is not generated before the STANDBY state enable delay time, t_{LP_EN} , elapses the device transitions to STANDBY state and remains there until an ACTIVE node request is generated. The following flowchart and figures show how the ACTIVE sample time, STANDBY state enable delay time and power up conditions impact the state of the device and the high-speed channels. Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ) を送信 23 図 7-2. Low-Speed Control Channel Automatic Enable State Changes Flowchart 図 7-3. Low-Speed Control Channel Automatic Enable, Case 1 (ACTIVE to STANDBY Example) 資料に関するフィードバック(ご意見やお問い合わせ)を送信 図 7-4. Low-Speed Control Channel Automatic Enable, Case 2 (ACTIVE to STANDBY Example With One Canceled STANDBY Request) 図 7-5. Low-Speed Control Channel Automatic Enable, Case 3 (STANDBY to ACTIVE Example With One Canceled STANDBY Request) #### 7.3.2 Low-Speed Control Channels: Considerations if Used for Data If the low-speed data channels are used for data, the design must consider the impact of the automatic enable timing with respect to the data rate and protocol used for data to avoid unintentional device state changes. The ACTIVE state sample time, t_{AMS} , limits the maximum data rate that can be used in the low-speed control signals. In ACTIVE state, if at least one of the channels is held LOW, then the full data rate in the second low-speed control channel is usable. However if both channels are switching, the design must verify that at least one of the low-speed channels has a LOW longer than t_{AMS} before the minimum STANDBY state enable delay time, t_{LP_EN} elapses to prevent the device from unintentionally transitioning to STANDBY state. In STANDBY state, any data rate and protocol combination generating a LOW longer than t_{AMS} generate an ACTIVE request and transition the device to ACTIVE state. #### 7.3.3 Low-Speed Control Channels: Considerations During Power Up and Device Reset Events The device takes $t_{PU_LS_CH}$ time to power up from any un-powered or brownout condition below the UVLO threshold until the low-speed control channel outputs to become valid and $t_{PU_LS_CH}$ time for the high-speed data channel outputs to be become valid. During device power up or recovery from any reset or UVLO condition if ACTIVE state is desired, at least one of the low-speed control channels must be held LOW longer than the ACTIVE sample time, t_{AMS} , after $t_{PU_LS_CH}$ to stay in ACTIVE state, or the device transitions to STANDBY state after t_{LP_EN} time. See total tota #### 7.4 Device Functional Modes 表 7-3 lists the functional modes for the ISO6163 devices. #### 表 7-3. Function Table | V _{CCI} ⁽¹⁾ | V _{cco} | Low-Speed
Control
INPUT
(INB, INC) | Low-Speed
OUTPUT
(OUTC,
OUTD) | OUTPUT INPUT (OUTA, (OUTC, (INA, INB, OUTB OUTE) | | COMMENTS | |---------------------------------|------------------|---|--|--|--------------|---| | | | | | Н | Н | ACTIVE (Normal Operation): A channel output, OUTx, is the | | - Bu | DI. | | Output mirrors | L | L | same as the logic state of the corresponding input,INx. | | PU | PU | at least one L | input | Open | Default | ACTIVE (Default mode): When INx is open, the corresponding channel output, OUTx, is at the default logic state. Default is <i>High</i> for ISO6163 and <i>Low</i> for ISO6163 with F suffix. | | PU | PU | Both H or open | Output mirrors input | Х | Z | STANDBY (Low Power): A HIGH value of both low-speed control channels cause the high-speed channel outputs to be high-impedance. | | PD | PU | X | Default | X | Default | Default mode: When V_{CCI} is unpowered, a channel output, OUTx, goes to the logic state based on the selected default option. Default is <i>High</i> for ISO6163 and <i>Low</i> for ISO6163 with F suffix. When V_{CCI} transitions from unpowered to poweredup, the channel output, OUTx, goes to the same logic state of the corresponding input, INx. When V_{CCI} transitions from powered-up to unpowered, channel output assumes the selected default state. | | Х | PD | Х | Undetermined | Х | Undetermined | When V_{CCO} is unpowered, a channel output is undetermined ⁽²⁾ . When V_{CCO} transitions from unpowered to powered-up, a channel output, OUTx, goes to the same logic state of the corresponding input, INx. | - V_{CCI} = Input-side V_{CC} ; V_{CCO} = Output-side V_{CC} ; PU = Powered up ($V_{CC} \ge 2.45V$); PD = Powered down ($V_{CC} \le 2.09V$); X = Irrelevant; H = High level; L = Low level; Z = High Impedance (1) - (2) - The outputs are in undetermined state when $2.09V < V_{CCI}$, $V_{CCO} < 2.45V$ A strongly driven input signal can weakly power the floating V_{CC} through an internal protection diode and cause undetermined output
7.4.1 Device I/O Schematics ## 8 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. #### 8.1 Application Information The ISO6163 devices are high-performance, six-channel digital isolators. These devices come with 4 high-speed channels and two low-speed control channels with automatic enable controlling the high-speed outputs in normal or low-power modes. The ISO6163 devices use single-ended CMOS-logic switching technology. The supply voltage range is from 2.5V to 5.5V for both supplies, V_{CC1} and V_{CC2} . Since an isolation barrier separates the two sides, each side can be sourced independently with any voltage within recommended operating conditions allowing the device to provide level shifting in addition to isolation. As an example, supplying the ISO6163 V_{CC1} with 3.3V (which is within 2.5V to 5.5V) and V_{CC2} with 5V (which is also within 2.5V to 5.5V) is possible. When designing with digital isolators, keep in mind that because of the single-ended design structure, digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, MCU or FPGA), and a data converter or a line transceiver, regardless of the interface type or standard. ## 8.2 Typical Application ⋈ 8-1 shows the isolated serial peripheral interface (SPI). 図 8-1. Isolated SPI With Automatic Enable for an Isolated Peripheral With Wake Up 27 Product Folder Links: ISO6163 #### 8.2.1 Design Requirements To design with these devices, use the parameters listed in $\frac{1}{8}$ 8-1. 表 8-1. Design Parameters | PARAMETER | VALUE | |--|--------------| | Supply voltage, V _{CC1} and V _{CC2} | 2.5V to 5.5V | | Decoupling capacitor between V _{CC1} and GND1 | 0.1µF | | Decoupling capacitor from V _{CC2} and GND2 | 0.1μF | ## 8.2.2 Detailed Design Procedure Unlike optocouplers, which require external components to improve performance, provide bias, or limit current, the ISO6163 family of devices only require two external bypass capacitors to operate. 図 8-2. Typical ISO6163 Circuit Hook-up 資料に関するフィードバック(ご意見やお問い合わせ)を送信 #### 8.2.3 Application Curves The following typical eye diagrams of the ISO6163 family of devices indicates low jitter and wide open eye at the maximum data rate of 50Mbps for the high-speed channels. Horizontal 5ns / division, Vertical 1V / division. 図 8-3. High-Speed Channel Eye Diagram at 50Mbps PRBS 2¹⁶ – 1, 5V and 25°C Horizontal 5ns / division, Vertical 0.5V / division. 図 8-4. High-Speed Channel Eye Diagram at 50Mbps PRBS 2¹⁶ – 1, 3.3V and 25°C Horizontal 5ns / division, Vertical 0.5V / division. 図 8-5. High-Speed Channel Eye Diagram at 50Mbps PRBS 2¹⁶ – 1, 2.5V and 25°C ## 8.3 Power Supply Recommendations To help provide reliable operation at data rates and supply voltages, a $0.1\mu F$ bypass capacitor is recommended at the input and output supply pins (V_{CC1} and V_{CC2}). The capacitors must be placed as close to the supply pins as possible. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver. For industrial applications, please use Texas Instruments' SN6501 or SN6505B. For such applications, detailed power supply design and transformer selection recommendations are available in SN6501 Transformer Driver for Isolated Power Supplies or SN6505B-Q1 Low-noise, 1-A Transformer Drivers for Isolated Power Supplies . #### 8.4 Layout #### 8.4.1 Layout Guidelines A minimum of two layers is required to accomplish a cost optimized and low EMI PCB design. To further improve EMI, a four layer board can be used (see 🗵 8-7). Layer stacking for a four layer board must be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer. - Routing the high-speed traces on the top layer avoids the use of vias (and the related parasitic inductance) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link - Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow. Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 29 - Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100pF/inch². - Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias. If an additional supply voltage plane or signal layer is needed, add a second power or ground plane to the stack keeping the layers symmetrical. This makes the stack mechanically stable and prevents warping. The power and ground plane of each power domain can be placed closer together, thus increasing the high-frequency bypass capacitance. For detailed layout recommendations, refer to the *Digital Isolator Design Guide*. #### 8.4.1.1 PCB Material For digital circuit boards operating below 150Mbps, (or rise and fall times higher than 1ns), and trace lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit boards. This PCB is preferred over cheaper alternatives due to the lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and self-extinguishing flammability-characteristics. ## 8.4.2 Layout Example 図 8-6. Layout Example 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated 図 8-7. Layout Example Schematic ## 9 Device and Documentation Support #### 9.1 Documentation Support #### 9.1.1 Related Documentation For related documentation, see the following: - Texas Instruments, Digital Isolator Design Guide, application note - Texas Instruments, Digital Isolator Design Guide, application note - · Texas Instruments, Isolation Glossary, application note - Texas Instruments, How to use isolation to improve ESD, EFT, and Surge immunity in industrial systems, application note - Texas Instruments, SN6501 Transformer Driver for Isolated Power Supplies, data sheet - Texas Instruments, TPS76333 Low-Power 150-mA Low-Dropout Linear Regulators, data sheet ## 9.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. #### 9.3 サポート・リソース テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。 #### 9.4 Trademarks テキサス・インスツルメンツ E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 #### 9.5 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 #### 9.6 用語集 テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。 ## 10 Revision History 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | DATE | REVISION | NOTES | |----------------|----------|-----------------| | September 2024 | * | Initial Release | ## 11 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2024 Texas Instruments Incorporated #### 11.1 Package Option Addendum #### **Packaging Information** | Orderable
Device | Status ⁽¹⁾ | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/Ball
Finish ⁽⁶⁾ | MSL Peak
Temp ⁽³⁾ | Op Temp (°C) | Device
Marking ^{(4) (5)} | |---------------------|-----------------------|--------------|--------------------|------|-------------|-------------------------|------------------------------------|---------------------------------|--------------|--------------------------------------| | ISO6163QDWR | ACTIVE | SOIC | DW | 16 | 2000 | Green (RoHS & no Sb/Br) | NIPDAU | Level-2-260C-1
YEAR | 40 to 125 | ISO6163 | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PRE PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available. **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check www.ti.com/productcontent for the latest availability information and additional product content details. TBD:
The Pb-Free/Green conversion plan has not been defined. **Pb-Free (RoHS):** Ti's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. **Green (RoHS & no Sb/Br)**: TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material). - (3) MSL. Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Product Folder Links: ISO6163 資料に関するフィードバック(ご意見やお問い合わせ)を送信 33 Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Product Folder Links: ISO6163 ## 11.2 Tape and Reel Information # TAPE DIMENSIONS + K0 + P1 + B0 W Cavity + A0 + | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | | | | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE | Device | Package
Type | Package
Drawing | Pins | SPQ | Reel
Diameter
(mm) | Reel
Width W1
(mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | | |-------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|--| | ISO6163QDWR | SOIC | DW | 16 | 2000 | 330.0 | 24.4 | 10.9 | 10.7 | 2.7 | 12.0 | 24.0 | Q1 | | Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 35 | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-------------|--------------|-----------------|------|------|-------------|------------|-------------| | ISO6163QDWR | SOIC | DW | 16 | 2000 | 367.0 | 367.0 | 45.0 | **DW0016B** #### PACKAGE OUTLINE ## SOIC - 2.65 mm max height ### NOTES: - 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side. - 5. Reference JEDEC registration MS-013. www.ti.com ## **EXAMPLE BOARD LAYOUT** ## **DW0016B** SOIC - 2.65 mm max height SOIC NOTES: (continued) - 6. Publication IPC-7351 may have alternate designs. - 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com ## **EXAMPLE STENCIL DESIGN** ## **DW0016B** SOIC - 2.65 mm max height NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com ## 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated ## 重要なお知らせと免責事項 TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated