

LM21215A

JAJSBH3D - MARCH 2011 - REVISED MAY 2019

LM21215A 周波数同期を搭載した 2.95V~5.5V、15A、電圧モードの同期整流降圧コンバータ

1 特長

Texas

INSTRUMENTS

- 高効率の同期整流 DC/DC コンバータ
 - 2.95V~5.5Vの入力電圧範囲
 - 出力電圧は 0.6V~V_{IN} の範囲で調整可能
 - 最大 15A の出力電流
- 300kHz~1.5MHzの周波数に同期
- 内蔵の 7mΩ PMOS 降圧スイッチは 100% デュー ティ・サイクルをサポートし、低いドロップアウ ト電圧を実現
- 内蔵の 4.3mΩ NMOS 同期整流器によりショット キー・ダイオードが不要
- 高精度の±1% 内部基準電圧
- 自動ダイオード・エミュレーション・モードにより軽負荷時に効率が向上
- プリバイアス付きの単調性スタートアップ
- 内部 0.5ms、または外部で可変のソフトスタート
- 出力電圧トラッキング機能
- 超高速のラインおよび負荷過渡応答
 電圧モード PWM 制御
 - 広い帯域幅の電圧ループ誤差アンプ
- ヒステリシス機能付きの高精度イネーブル
- OVP、UVP、OCP、UVLO を内蔵
- オープン・ドレインのパワー・グッド・インジ ケータ
- ヒステリシス付きのサーマル・シャットダウン保護
- 熱的に強化された HTSSOP-20 パッケージ
- WEBENCH[®] Power Designer により、LM21215A を使用するカスタム設計を作成
- 2 アプリケーション
- 通信インフラストラクチャ
- DSP および FPGA のコア電圧電源
- 高効率の POL 変換
- 組み込みコンピュータ、サーバー、ストレージ

3 概要

LM21215A は同期整流降圧 DC-DC コンバータで、最低 0.6V の出力電圧で最大 15A の出力電流を供給できま す。2.95V~5.5V の入力電圧範囲で、非常に高い効率 で動作するため、広範な低電圧システムに適しています。 ゲイン帯域幅積の高いエラー・アンプと、電圧モード制御 ループにより、ノイズ耐性が高く、狭いデューティ・サイクル が可能で、あらゆる種類の出力コンデンサによる簡単な補 償で安定動作するため、最大の柔軟性を持ち、簡単に使 用できます。

製品情報⁽¹⁾

型番	パッケージ	本体サイズ(公称)
LM21215A	HTSSOP (20)	6.50mm×4.40mm

(1) 提供されているすべてのパッケージについては、データシートの末 尾にある注文情報を参照してください。

代表的なアプリケーション回路

53

2.5V、500kHz での効率

目次

特長	
アプ	リケーション 1
概要	· 1
改訂	履歴2
Pin	Configuration and Functions 3
Spe	cifications 4
6.1	Absolute Maximum Ratings 4
6.2	ESD Ratings 4
6.3	Recommended Operating Conditions 4
6.4	Thermal Information 4
6.5	Electrical Characteristics5
6.6	Typical Characteristics 7
Deta	ailed Description 11
7.1	Overview 11
7.2	Functional Block Diagram 11
7.3	Feature Description 12
7.4	Device Functional Modes 15

8	Appli	ication and Implementation	. 17
	8.1	Application Information	. 17
	8.2	Typical Applications	. 17
9	Powe	er Supply Recommendations	. 28
10	Layo	out	. 29
	10.1	Layout Guidelines	. 29
	10.2	Layout Example	. 31
11	概要	(続き)	32
12	デバ	イスおよびドキュメントのサポート	. 33
	12.1	デバイス・サポート	. 33
	12.2	ドキュメントのサポート	. 33
	12.3	コミュニティ・リソース	. 34
	12.4	商標	. 34
	12.5	静電気放電に関する注意事項	. 34
	12.6	Glossary	. 34
13	メカニ	カル、パッケージ、および注文情報	. 34

4 改訂履歴

7

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Revision (C (January 2016) から Revision D に変更	Page
 編集上 	の変更のみ、技術的な変更点なし。WEBENCH へのリンクを追加	
Revision I	B (March 2013) から Revision C に変更	Page
• 「 <i>ESD</i> ; する推 ジ、およ	定格」表、「機能説明」セクション、「デバイスの機能モード」セクション、「アプリケーションと実 奨事項」セクション、「レイアウト」セクション、「デバイスおよびドキュメントのサポート」セクション よび注文情報」セクションを追加	装」セクション、「電源に関 /、「メカニカル、パッケー
Revision /	A (March 2013) から Revision B に変更	Page
Change	ed layout of National Data Sheet to TI format	

www.ti.com

5 Pin Configuration and Functions

Pin Functions

PIN		TVDE(1)	DECODIDITION	
NO.	NAME	TYPE	DESCRIPTION	
1	SYNC	I	Frequency synchronization input pin. Applying a clock signal to this pin forces the device to switch at the clock frequency. If left unconnected, the frequency defaults to 500 kHz.	
2	SS/TRK	I	soft-start control pin. An internal 2-μA current source charges an external capacitor connected netween this pin and AGND to set the output voltage ramp rate during startup. This pin can also be used to configure the tracking feature.	
3	EN	I	Active high precision enable input. If not used, the EN pin can be left open, which will go high due to an internal pullup current source.	
4	AVIN	Р	Analog input voltage supply that generates the internal bias. Connect PVIN to AVIN through a low pass RC filter to minimize the influence of input rail ripple and noise on the analog control circuitry.	
5–7	PVIN	Р	Input voltage to the power switches inside the device. Connect these pins together at the device. Locate a low ESR input capacitance as close as possible to these pins.	
8–10	PGND	G	Power ground pins for the internal power switches.	
11–16	SW	Р	Switch node pins. Tie these pins together locally and connect to the filter inductor.	
17	PGOOD	0	Open-drain power good indicator.	
18	COMP	0	Compensation pin is connected to the output of the voltage loop error amplifier.	
19	FB	I	Feedback pin is connected to the inverting input of the voltage loop error amplifier.	
20	AGND	G	Quiet analog ground for the internal reference and bias circuitry.	
EP	Exposed Pad	Р	Exposed metal pad on the underside of the package with an electrical and thermal connection to PGND. Connect this pad to the PC board ground plane to improve thermal dissipation.	

(1) P = Power, G = Ground, I = Input, O = Output.

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

	MIN	MAX	UNIT
PVIN ⁽³⁾ to GND, AVIN to GND	-0.3	6	V
SW ⁽⁴⁾ to GND	-0.3	V _{PVIN} + 0.3	V
EN, FB, COMP, PGOOD, SS/TRK to GND	-0.3	V _{PVIN} + 0.3	V
Storage temperature, T _{stg}	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

(3) The PVIN prin can tolerate transient voltages up to 6.5 V for a duration of up to 6 ns. These transients can occur during normal operation of the device.

(4) The SW pin can tolerate transient voltages up to 9 V for a duration of 6 ns and -1 V for a duration of 4 ns. These transients can occur during normal operation of the device.

6.2 ESD Ratings

			VALUE	UNIT
	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾		V	
V _(ESD) Electrostatic discharge		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	v
l				I

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Input voltages	PVIN, AVIN to GND	2.95	5.5	V
Output current, I _{OUT}		-0.3	15	А
Junction temperature, T _J		-40	125	٥C

6.4 Thermal Information

		LM21215A	
	THERMAL METRIC ⁽¹⁾	PWP (HTSSOP)	UNIT
		20 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	30.5	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	12.9	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	0.3	°C/W
ΨJT	Junction-to-top characterization parameter	0.3	°C/W
ΨJB	Junction-to-board characterization parameter	2.3	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	0	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

Unless otherwise stated, the following conditions apply: $V_{PVIN} = V_{AVIN} = 5 \text{ V}$, $T_J = 25^{\circ}\text{C}$. Minimum and maximum limits are specified through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $T_J = 25^{\circ}\text{C}$ and are provided for reference purposes only.

	PARAMETER	TEST CO	ONDITIONS	MIN	ТҮР	MAX	UNIT
SYSTEM		1		-1			
V	Foodbook voltogo	$\lambda = 2.05 \lambda to 5.5 \lambda$	$T_J = -40^{\circ}C$ to $125^{\circ}C$	-1%		1%	V
VFB	reedback voltage	$v_{\rm IN} = 2.95 \ v \ 10 \ 5.5 \ v$	$T_J = 25^{\circ}C$		0.6		v
$\Delta V_{OUT} / \Delta I_{OUT}$	Load regulation				0.02%		V _{OUT} /A
$\Delta V_{\text{OUT}} / \Delta V_{\text{IN}}$	Line regulation				0.1%		V _{OUT} /V
R _{ROON UR}	High-side switch on-resistance	low = 12 A	$T_J = -40^{\circ}C$ to $125^{\circ}C$			9	mΟ
TUSON-HS		1500 - 1277	$T_J = 25^{\circ}C$		7		11132
Reconst	l ow-side switch on-resistance	low = 12 A	$T_J = -40^{\circ}C$ to $125^{\circ}C$			6	mO
TOSON-LS		1SW - 12 /	$T_J = 25^{\circ}C$		4.3		11132
	HS rising switch current limit	$T_J = -40^{\circ}C$ to $125^{\circ}C$		17.3		22.8	А
-CLR		$T_J = 25^{\circ}C$			20		
I _{CLF}	LS falling switch current limit				14		А
V _{ZX}	Zero-cross voltage			-8	3	12	mV
lo	Operating guiescent current	$T_J = -40^{\circ}C$ to $125^{\circ}C$				3	mA
		$T_J = 25^{\circ}C$	1		1.5		
Isp	Shutdown aujescent current	$V_{EN} = 0 V$	$T_J = -40^{\circ}C$ to $125^{\circ}C$			70	uА
			$T_J = 25^{\circ}C$		50		•
VUMO	AVIN undervoltage lockout	AVIN rising	$T_J = -40^{\circ}C$ to $125^{\circ}C$	2.45		2.95	V
	<u> </u>	T _J = 25°C			2.70		
VUVLOHYS	AVIN undervoltage lockout hysteresis	$T_{\rm J} = -40^{\circ}$ C to 125°C		140		280	mV
	T _J = 25°C			200			
V _{TRACKOS}	SS/TRACK accuracy (V _{SS/TRK} – V _{FB})	0 < V _{SS/TRK} < 0.55 V	$T_{\rm J} = -40^{\circ}{\rm C}$ to 125°C	-10		20) mV
			$T_J = 25^{\circ}C$		6		
I _{SS}	Soft-start pin source current	$I_{\rm J} = -40^{\circ}$ C to 125°C		1.3	1.0	2.5	μA
		$I_{\rm J} = 25^{\circ}{\rm C}$	T 4000 to 40500	050	1.9	075	
t _{INTSS}	Internal soft-start ramp to Vref	SS/TRK open	$T_{\rm J} = -40^{\circ}$ C to 125°C	350	500	675	μs
		$I_{\rm J} = 25^{\circ}{\rm C}$		50	500	000	
t _{RESETSS}	Device reset to soft-start ramp	$T_{\rm J} = -40^{\circ}$ C to 125°C		50	440	200	μs
		$I_{\rm J} = 25^{\circ}{\rm C}$			110		
f	SVNC frequency range	T = 40°C to 125°C		200		1500	Г П-
SYNCR	STINE frequency range	$T_{\rm J} = -40^{\circ}$ C to 125 C		475		525	NI IZ
f DEFAULT	Default (no SYNC signal) frequency	$T_{1} = -40 \text{ C} \text{ to } 123 \text{ C}$		475	500	525	kHz
toy, ow	Time from Voyage falling to Voya rising	1j = 25 0			200		ns
VSY_SW	Minimum SYNC pulse width high or				200		115
t _{SY_MIN}	low				100		ns
t _{HSBLANK}	HS OCP blanking time	Rising edge of SW to I	_{CLR} comparison		55		ns
t _{LSBLANK}	LS OCP blanking time	Falling edge of SW to I _{CLF} comparison			400		ns
t _{ZXBLANK}	Zero cross blanking time	Falling edge of SW to	V _{ZX} comparison		120		ns
t _{MINON}	Minimum HS on-time				140		ns
ΔV_{RAMP}	PWM ramp peak-peak voltage				0.8		V
ERROR AMP	LIFIER						
V _{OL}	Error amplifier open-loop gain	$I_{COMP} = -65 \ \mu A \text{ to } 1 \ m$	A		95		dB
GBW	Error amplifier gain-bandwidth				11		MHz
I _{FB}	Feedback pin bias current	V _{FB} = 0.6 V			1		nA

Electrical Characteristics (continued)

Unless otherwise stated, the following conditions apply: $V_{PVIN} = V_{AVIN} = 5 \text{ V}$, $T_J = 25^{\circ}\text{C}$. Minimum and maximum limits are specified through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $T_J = 25^{\circ}\text{C}$ and are provided for reference purposes only.

PARAMETER		TEST C	TEST CONDITIONS			MAX	UNIT
ICOMPSRC	COMP output source current			1		mA	
I _{COMPSINK}	COMP output sink current				65		μA
POWER GOO	DD	<u>.</u>					
	Overvoltage protection rising	M	$T_J = -40^{\circ}C$ to $125^{\circ}C$	105%		120%	
V _{OVP}	threshold	V _{FB} rising	$T_J = 25^{\circ}C$		112.5%		V _{FB}
VOVPHYS	Overvoltage protection hysteresis	V _{FB} falling			2%		V_{FB}
1	Undervoltage protection rising		$T_J = -40^{\circ}C$ to $125^{\circ}C$	82%		97%	N/
VUVP	threshold	V _{FB} rising	$T_J = 25^{\circ}C$		90%		VFB
VUVPHYS	Undervoltage protection hysteresis	V _{FB} falling			2.5%		V_{FB}
t _{PGDGL}	PGOOD deglitch low	Time to PGOOD falling	g after OVP/UVP event		15		μs
t _{PGDGH}	PGOOD deglitch high	Minimum low pulse			12		μs
D		$T_J = -40^{\circ}C$ to $125^{\circ}C$		10		40	0
RPGOOD	PGOOD pulldown resistance	$T_J = 25^{\circ}C$			20		Ω
I _{PGOODLEAK}	PGOOD leakage current	V _{PGOOD} = 5 V			1		nA
LOGIC							
VIHSYNC	SYNC pin logic high			2			V
VILSYNC	SYNC pin logic low					0.8	V
V	EN his riging throshold		$T_J = -40^{\circ}C$ to $125^{\circ}C$	1.2		1.45	V
VIHENR	EN pin fising theshold	VEN RISING	$T_J = 25^{\circ}C$		1.35		v
M	EN nin hystoresis	$T_J = -40^{\circ}C$ to $125^{\circ}C$		50		180	m)/
V _{ENHYS} EN pin nysteresis		$T_J = 25^{\circ}C$		110			mv
I _{EN}	EN pin pullup current	V _{EN} = 0 V			2		μA
THERMAL S	HUTDOWN						
T _{TSD}	Thermal shutdown				165		°C
T _{TSD-HYS}	Thermal shutdown hysteresis				10		°C

6.6 Typical Characteristics

Unless otherwise specified: V_{IN} = 5 V, V_{OUT} = 1.2 V, L_F = 0.56 µH (1.8 m Ω R_{DCR}), C_{SS} = 33 nF, f_{SW} = 500 kHz, T_A = 25°C for efficiency curves, loop gain plots and waveforms, and T_J = 25°C for all others.

Typical Characteristics (continued)

Unless otherwise specified: $V_{IN} = 5 \text{ V}$, $V_{OUT} = 1.2 \text{ V}$, $L_F = 0.56 \mu \text{H}$ (1.8 m ΩR_{DCR}), $C_{SS} = 33 \text{ nF}$, $f_{SW} = 500 \text{ kHz}$, $T_A = 25^{\circ}\text{C}$ for efficiency curves, loop gain plots and waveforms, and $T_J = 25^{\circ}\text{C}$ for all others.

Typical Characteristics (continued)

Unless otherwise specified: V_{IN} = 5 V, V_{OUT} = 1.2 V, L_F = 0.56 µH (1.8 m Ω R_{DCR}), C_{SS} = 33 nF, f_{SW} = 500 kHz, T_A = 25°C for efficiency curves, loop gain plots and waveforms, and T_J = 25°C for all others.

Typical Characteristics (continued)

Unless otherwise specified: V_{IN} = 5 V, V_{OUT} = 1.2 V, L_F = 0.56 µH (1.8 m Ω R_{DCR}), C_{SS} = 33 nF, f_{SW} = 500 kHz, T_A = 25°C for efficiency curves, loop gain plots and waveforms, and T_J = 25°C for all others.

Detailed Description 7

7.1 Overview

The LM21215A synchronous buck regulator features all of the functions necessary to implement an efficient lowvoltage converter using a minimum number of external components. This easy-to-use regulator features two integrated power MOSFET switches and is capable of supplying up to 15 A of continuous output current. Synchronous rectification yields high efficiency for low output voltage and high load current applications, whereas discontinuous conduction mode (DCM) with diode emulation mode (DEM) enables high-efficiency conversion with light load current conditions.

The regulator utilizes voltage-mode control with trailing-edge PWM modulation to optimize stability and transient response over the entire input voltage range. The device operates at high switching frequency, allowing the use of a small inductor yet still achieving high efficiency. The precision internal voltage reference allows output voltages as low as 0.6 V. Fault protection features include peak and valley current limiting, thermal shutdown, overvoltage protection, and undervoltage lockout. The device is available in the HTSSOP-20 package featuring an exposed pad to aid thermal dissipation. The LM21215A is ideal for numerous applications to efficiently stepdown from a 5-V or 3.3-V bus.

SYNC PLL ILIMIT High VREF 'n Thermal 0.6V Shutdown PVIN AVIN UVLO SD OR AVIN Precision 1.35\ Enable ΕN Control ₽₩/M Logic Comparator PWM AVIN RAMP OSC ΛΛΛ INT SS 1.9uA **PVIN** SS/TRK 0.6V FA Driv FΒ COMP ӡ

7.2 Functional Block Diagram

PVIN

7.3 Feature Description

7.3.1 Precision Enable

The EN pin allows the output of the device to be enabled or disabled with an external control signal. This pin is a precision analog input that enables the device when the voltage exceeds 1.35 V (typical). The EN pin has 110 mV of hysteresis and disables the output when the Enable voltage falls below 1.24 V (typical). If the EN pin is not used, it can be left open as it is pulled high by an internal 2-µA current source. Since the EN pin has a precise turn-on threshold, it can be used along with an external resistor divider network from VIN to configure the device to turn on at a precise input voltage.

7.3.2 Input Voltage UVLO

The LM21215A has a built-in undervoltage lockout protection circuit that prevents the device from switching until the input voltage reaches 2.7 V (typical). The UVLO threshold has 200 mV of hysteresis that prevents the device from responding to power-on glitches during startup. As mentioned above, adjust the turn-on threshold of the supply by using the precision enable pin and a resistor divider network connected to VIN. Please refer to Figure 30 of the *Detailed Design Procedure* section for more detail.

7.3.3 Soft-Start Capability

When EN exceeds 1.35 V and AVIN is above its UVLO threshold of 2.7 V, the LM21215A begins charging the output linearly to the voltage setpoint dictated by the feedback resistor network. The LM21215A employs a user-adjustable soft-start circuit to set the output voltage ramp time during startup. A capacitor from SS/TRK to GND sets the required soft-start time. Once the enable voltage exceeds 1.35 V, an internal 1.9-µA current source begins to charge the soft-start capacitor. This allows the user to limit inrush currents due to a high output capacitance and avoid an overcurrent condition. Adding a soft-start capacitor also reduces the stress on the input rail. Use Equation 1 to calculate the soft-start capacitance.

$$C_{SS} = \frac{t_{SS} \cdot I_{SS}}{0.6V}$$

where

- I_{SS} is nominally 1.9 μ A
- t_{SS} is the desired startup time

If V_{IN} is higher than the UVLO level and Enable is toggled high, the soft-start sequence begins. There is a small delay between enable transitioning high and the beginning of the soft-start sequence. This delay allows the LM21215A to initialize its internal circuitry. Once the output has charged to 90% of the nominal output voltage, the PGOOD flag transitions high. This behavior is illustrated in Figure 23.

Figure 23. Soft-Start Timing

(1)

Feature Description (continued)

As shown above, the soft-start capacitance is set by the nominal feedback voltage level 0.6 V, the soft-start charging current I_{SS} , and the desired soft-start time. If a soft-start capacitor is not installed, the LM21215A defaults to a soft-start time of 500 μ s. The LM21215A cannot startup faster than 500 μ s. When Enable is cycled or the device enters UVLO, the soft-start capacitor is discharged to reset the startup process. This also occurs when the device enters short circuit mode following an overcurrent event.

7.3.4 PGOOD Indicator

The PGOOD flag provides the user with a way to monitor the status of the LM21215A. In order to use the PGOOD function, the application must provide a pullup resistor to a desired DC voltage, for example VIN. PGOOD responds to a fault condition by pulling PGOOD low with the open-drain output. PGOOD pulls low on the following conditions: 1) V_{FB} moves above or below the V_{OVP} or V_{UVP} , respectively; 2) The EN voltage is brought below the Enable turn-off threshold; 3) A pre-biased output condition exists ($V_{FB} > V_{SS/TRK}$). PGOOD has 12 µs and 15 µs of built-in deglitch time for rising and falling edges, respectively.

Figure 24 shows the conditions that cause PGOOD to respond.

Figure 24. PGOOD Indicator Operation

7.3.5 Frequency Synchronization

The SYNC pin allows the LM21215A to be synchronized to an external clock frequency. When a clock signal within the allowable frequency range of 300 kHz to 1.5 MHz is present on SYNC, an internal PLL synchronizes the turn-on of the high-side MOSFET (SW voltage rising) to the negative edge of the clock signal, as seen in Figure 25.

The clock signal can be present on the SYNC pin before the device is powered on without loading of the clock signal. Alternatively, if a clock signal is not present while the device is powered up, the default switching frequency is 500 kHz. Once the clock signal is available, the device synchronizes to the clock frequency. The time required to achieve synchronization depends on the clock frequency.

Copyright © 2011–2019, Texas Instruments Incorporated

Feature Description (continued)

Figure 25. Frequency Synchronization

7.3.6 Current Limit

The LM21215A has overcurrent protection to avoid excessive current levels through the power MOSFETs and inductor. A current limit condition exists when the high-side MOSFET's current exceeds the rising current limit level, I_{CLR} . The control circuitry responds to this event by turning off the high-side MOSFET and turning on the low-side MOSFET. This forces a negative voltage on the inductor, thereby causing the inductor current to decrease. The high-side MOSFET does not conduct again until the lower current limit level, I_{CLF} , is sensed on the low-side MOSFET. At this point, the LM21215A resumes normal switching.

A current limit condition causes the internal soft-start voltage to ramp downward. After the internal soft-start ramps below the feedback (FB) voltage, nominally 0.6 V, FB begins to ramp downward, as well. This voltage foldback limits the power consumption in the device during a sustained overload. After the current limit condition is cleared, the internal soft-start voltage ramps up again. Figure 26 describes current limit behavior including V_{SS} , V_{FB} , V_{OUT} and V_{SW} waveforms.

Figure 26. Current Limit Conditions

Feature Description (continued)

7.3.7 Short Circuit Protection

In an event that the output is shorted with a low impedance to ground, the LM21215A limits the current into the short by resetting the device. A short circuit condition is sensed as a current limit condition coinciding with a voltage on the FB pin that is lower than 100 mV. When this condition occurs, the device begins its reset sequence, turning off both power MOSFETs and discharging the soft-start capacitor after $t_{RESETSS}$ (nominally 110 µs). The device then attempts to restart. If the short circuit condition still exists, it resets again, repeating until the short circuit condition is cleared. The reset prevents excessive power MOSFET dissipation and limits thermal stress during a short circuit fault condition.

7.4 Device Functional Modes

7.4.1 Light-Load Operation

The LM21215A maintains high efficiency when operating at light loads. Whenever the load current is reduced to a level less than half the peak-to-peak inductor ripple current, the device enters discontinuous conduction mode (DCM) and prevents negative inductor current. The low-side MOSFET then operates in diode emulation mode (DEM), conducting only positive inductor current. Calculate the critical conduction boundary using Equation 2.

$$I_{\text{BOUNDARY}} = \frac{\Delta I_{\text{L}}}{2} = \frac{V_{\text{OUT}} \cdot (1 - D)}{2 \cdot L_{\text{F}} \cdot F_{\text{SW}}}$$

(2)

Several diagrams are shown in Figure 27 illustrating continuous conduction mode (CCM), discontinuous conduction mode (DCM), and the boundary condition.

When the inductor current reaches zero, the SW node becomes high impedance. Resonant ringing occurs at SW as a result of the LC tank circuit formed by the filter inductor and the parasitic capacitance at the SW node. At very light loads, usually below 500 mA, several pulses may be skipped in between switching cycles, effectively reducing the switching frequency and further improving light-load efficiency.

7.4.2 Overvoltage and Undervoltage Handling

The LM21215A has built-in undervoltage protection (UVP) and overvoltage protection (OVP) using FB voltage comparators to control the power MOSFETs. The rising OVP threshold is typically set at 112.5% of the nominal voltage setpoint. Whenever excursions occur in the output voltage above the OVP threshold, the device terminates the present on-pulse, turns on the low-side MOSFET, and pulls PGOOD low. The low-side MOSFET remains on until either the FB voltage falls back into regulation or the inductor current zero-cross is detected. If the output reaches the falling UVP threshold, typically 90% of the nominal setpoint, the device continues switching and PGOOD is asserted and pulls low. As detailed in the *PGOOD Indicator* section, PGOOD has 15 µs of built-in deglitch time in response to a UVP or OVP condition to avoid false tripping during transient glitches.

7.4.3 Thermal Shutdown

Internal thermal shutdown circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When activated, typically at 165°C, the LM21215A tri-states the power MOSFETs and resets soft start. After the junction temperature cools to approximately 155°C, the device starts up using the normal startup routine.

TEXAS INSTRUMENTS

www.ti.com

Device Functional Modes (continued)

Figure 27. LM21215A Modes of Operation

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LM21215A is a synchronous buck DC/DC converter with a maximum output current of 15 A. The following design procedure assists with component selection for the LM21215A. Alternately, the WEBENCH® Design Tool is available to generate a complete design. With access to a comprehensive component database, this tool uses an iterative design procedure to create an optimized design, allowing the user to experiment with various design options. As well as numerous LM21215 reference designs populated in the TI Designs reference design library, the *LM21215A Quickstart Design Calculator* is also available as a free download.

8.2 Typical Applications

8.2.1 Typical Application 1

The schematic diagram of a 15-A regulator is given in Figure 28. The target full-load efficiency in this example is 89% at an output voltage of 1.2 V and nominal input voltage of 5 V. The free-running switching frequency (with the SYNC pin open circuit) is 500 kHz. In terms of control loop performance, the target loop crossover frequency is 100 kHz with a phase margin in excess of 50°.

Figure 28. Typical Application Schematic 1

8.2.1.1 Design Requirements

An example of the step-by-step procedure to generate power stage and compensation component values using the typical application setup of Figure 28) is given in Table 1. The relevant design specifications are given in Table 1. Here, $f_{crossover}$ is the desired loop crossover frequency, which generally is less than one-fifth of the switching frequency, and $\Delta V_{OUT(pk-pk)}$ is the peak-to-peak output voltage ripple.

EXAMPLE VALUE
5 V
1.2 V
15 A
500 kHz
100 kHz
10 mV

Table 1. Design Parameters

8.2.1.2 Detailed Design Procedure

8.2.1.2.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the LM21215A device with the WEBENCH® Power Designer.

- 1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
- 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
- 3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- · Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

8.2.1.2.2 Output Voltage Setpoint

The first step in designing an LM21215A application is to configure the output voltage setpoint by using a voltage divider between V_{OUT} and AGND, with the middle node connected to FB. When operating under steady state conditions, the LM21215A regulates V_{OUT} such that the FB voltage is driven to 0.6 V.

A good starting point for the lower feedback resistor, R_{FB2} , is 10 k Ω . Calculate R_{FB1} using Equation 3.

$$V_{OUT} = 0.6V \cdot \left(1 + \frac{R_{FB1}}{R_{FB2}}\right)$$
(3)

www.ti.com

8.2.1.2.3 Precision Enable

The Enable (EN) pin of the LM21215A allows the output to be toggled on and off. This pin is a precision analog input. When the voltage exceeds 1.35 V, the converter begins to regulate the output voltage as long as AVIN has exceeded the UVLO threshold voltage of 2.7 V. There is an internal pullup current source of 2 μ A connected to EN. If enable is not used, the device turns on automatically. Also, if EN is not toggled directly, the device can be set to turn on at a certain input voltage higher than the internal UVLO rising threshold. This is achieved with an external resistor divider from AVIN to EN and EN to AGND as shown in Figure 30.

Figure 30. Input Voltage Turn-on Setpoint Configured by Enable Resistor Divider

The resistances of R_{EN1} and R_{EN2} are chosen to allow EN to reach its rising threshold voltage at the desired the input supply voltage. With the enable current source included, use Equation 4 to solve for R_{EN1} .

$$R_{EN1} = R_{EN2} \cdot \frac{V_{IN} - 1.35V}{1.35V - I_{EN} \cdot R_{EN2}}$$

where

- R_{EN1} is the resistor from V_{IN} to EN
- R_{EN2} is the resistor from EN to AGND
- I_{EN} is the internal enable pullup current (2 μ A)
- 1.35 V is the precision enable rising threshold voltage

Typical values for R_{EN2} range from 10 k Ω to 100 k Ω .

8.2.1.2.4 Filter Inductor Selection

The filter inductor, designated L_F , chosen for the application influences the ripple current and the efficiency of the converter. The first selection criteria is to define the buck converter inductor ripple current ΔI_L , typically selected between 20% to 40% of the maximum output current. Figure 31 shows the ripple current in a conventional buck converter operating in continuous conduction mode. Larger ripple current results in a lower inductance, which leads to lower inductor DC resistance (DCR) and improved efficiency. However, larger ripple current causes the LM21215A to operate in DCM at a higher average output current.

LM21215A

Figure 31. Switch (SW) Voltage and Inductor Current Waveforms

Once the ripple current has been determined, calculate the appropriate inductance using Equation 5.

$$L_{F} = \frac{V_{OUT} \cdot (1 - D)}{\Delta I_{L} \cdot F_{SW}}$$
(5)

A 0.56- μ H inductor with 1.8-m Ω DCR meets the application requirements here. The peak inductor current at full load corresponds to the maximum output current plus the ripple current, as shown by Equation 6.

$$I_{L(max)} = I_{OUT(max)} + \frac{\Delta I_{L(max)}}{2}$$
(6)

Choose an inductor with a saturation current rating at maximum operating temperature that is higher than the overcurrent protection limit. In general, lower inductance is desirable in switching converters because it equates to faster transient response, lower inductor DCR, and reduced size for more compact designs. However, too low of an inductance implies large inductor ripple current such that the overcurrent protection circuit is falsely triggered at the full load. Larger inductor ripple current also implies higher output voltage ripple.

8.2.1.2.5 Output Capacitor Selection

The output capacitor, designated C_{OUT} , filters the inductor ripple current and provides a source of charge for transient load conditions. A wide range of output capacitors may be used with the LM21215A that provide various advantages. The best performance is typically obtained using ceramic, SP or OSCON type chemistries. Typical trade-offs are that the ceramic capacitor provides extremely low ESR to reduce the output ripple voltage and noise spikes, while the SP and OSCON capacitors provide a large bulk capacitance in a small volume for transient loading conditions.

When selecting an output capacitor, the two performance characteristics to consider are the output voltage ripple and load transient response. Approximate the output voltage ripple by using Equation 7.

$$\Delta V_{\text{OUT}} = \Delta I_{\text{L}} \sqrt{R_{\text{ESR}}^{2} + \left(\frac{1}{8 \cdot F_{\text{SW}} \cdot C_{\text{OUT}}}\right)^{2}}$$

where

- ΔV_{OUT} is the peak-to-peak output voltage ripple
- R_{ESR} is the effective series resistance (ESR) of the output capacitor
- F_{SW} is the switching frequency
- C_{OUT} is the *effective* output capacitance

The amount of output voltage ripple is application specific. A general recommendation is to keep the output ripple less than 1% of the rated output voltage. Keep in mind that ceramic capacitors are sometimes preferred because they have very low ESR. However, depending on package and voltage rating of the capacitor, the effective incircuit capacitance can drop significantly with applied voltage. The output capacitor selection also affects the output voltage droop during a load transient. The peak deviation of the output voltage during a load transient is dependent on many factors. An approximation of the transient dip ignoring loop bandwidth is obtained using Equation 8:

$$\mathsf{V}_{\mathsf{DROOP}} = \Delta \mathsf{I}_{\mathsf{OUT-STEP}} \cdot \mathsf{R}_{\mathsf{ESR}} + \frac{\mathsf{L}_{\mathsf{F}} \cdot \Delta \mathsf{I}_{\mathsf{OUT-STEP}}^2}{\mathsf{C}_{\mathsf{OUT}} \cdot \left(\mathsf{V}_{\mathsf{IN}} - \mathsf{V}_{\mathsf{OUT}}\right)}$$

where

- C_{OUT} is the minimum required output capacitance
- L_F is the filter inductance
- V_{DROOP} is the output voltage deviation ignoring loop bandwidth considerations
- ΔI_{OUT-STEP} is the load step change
- R_{ESR} is the output capacitor ESR
- V_{IN} is the input voltage
- V_{OUT} is the output voltage setpoint

Three 100-µF, 6.3-V ceramic capacitors with X5R dielectric and 1210 footprint are selected here based on a review of the capacitor's tolerance and voltage coefficient to meet output ripple specification.

8.2.1.2.6 Input Capacitor Selection

High quality input capacitors are necessary to limit the input voltage ripple while supplying switching-frequency AC current to the buck power stage. It is generally recommended to use X5R or X7R dielectric ceramic capacitors, thus providing low impedance and high RMS current rating over a wide temperature range. To minimize the parasitic inductance in the switching loop, position the input capacitors as close as possible to the PVIN and PGND pins. A good approximation for the required ripple current rating is given by Equation 9.

$$I_{\text{RMS-CIN}} = I_{\text{OUT}} \cdot \frac{\sqrt{V_{\text{OUT}} \cdot (V_{\text{IN}} - V_{\text{OUT}})}}{V_{\text{IN}}}$$
(9)

The highest input capacitor RMS current occurs at 50% duty cycle, at which point the RMS ripple current rating should be greater than half the output current. Place low ESR ceramic capacitors in parallel with higher value bulk capacitance to provide optimized input filtering for the regulator and damping to mitigate the effects of input parasitic inductance resonating with high-Q ceramics. One bulk capacitor of sufficiently high current rating and one or two 22-µF 10-V X7R ceramic decoupling capacitors are usually sufficient. Select the input bulk capacitor based on its ripple current rating and operating temperature.

When operating at low input voltages (3.3 V or lower), additional capacitance may be necessary to avoid triggering an undervoltage condition during an output current transient. This depends on the impedance between the input voltage supply and the LM21215A, as well as the magnitude and slew rate of the load transient.

The AVIN pin requires a 1- μ F ceramic capacitor to AGND and a 1- Ω resistor to PVIN. This RC network filters inherent noise on PVIN from the sensitive analog circuitry connected to AVIN.

8.2.1.2.7 Control Loop Compensation

This section walks through the various steps in obtaining the open-loop transfer function. There are three main blocks of a voltage-mode buck converter that the power supply designer must consider when designing the control system: the power stage, the PWM modulator, and the compensated error amplifier. The control loop architecture of a voltage-mode buck converter is provided in Figure 32.

(8)

22

The duty cycle-to-output transfer function includes the filter inductor, output capacitor, and output load resistance. The inductor and capacitor create a pair of complex poles at the LC tank frequency expressed by Equation 11.

 $f_{LC} = \frac{I}{2 \cdot \pi} \cdot \sqrt{\frac{I}{L_{F} \cdot C_{OUT} \cdot \left(\frac{R_{O} + R_{ESR}}{R_{O} + R_{DCR}}\right)}}$ (11)

In addition to two complex poles, a left half plane zero is created by the output capacitor ESR located at a frequency described by Equation 12.

$$f_{ESR} = \frac{1}{2 \cdot \pi \cdot C_{OUT} \cdot R_{ESR}}$$
(12)

Copyright © 2011–2019, Texas Instruments Incorporated

PWM Modulator VIN LF R_{DCR} \sim Driver SV \mathbf{O} R_{ESR} Ro COUT $\mathcal{N}\mathcal{N}$ **PWM** Error Amplifier and Compensation 0.6V COMP R_{FB1} EA FB C_{C1} C_{C3} R_{C1} R_{C2} R_{FB2} C_{C2}

Figure 32. Voltage-mode Buck Converter Architecture

The power stage consists of the filter inductor (L_F) with DCR (DC resistance R_{DCR}), output capacitor (C_{OUT}) with ESR (effective series resistance R_{ESR}), and load resistance (R_O). The LM21215A incorporates a high-bandwidth error amplifier between the FB and COMP pins to achieve high loop bandwidth. The error amplifier (EA) constantly regulates FB to 0.6 V. The compensation component network around the error amplifier establish system stability. The modulator creates the duty cycle command by comparing the error amplifier output with an internally-generated PWM ramp set at the switching frequency.

There are three transfer functions that are taken into consideration when obtaining the total open-loop transfer function; COMP-to-duty cycle (modulator), duty cycle-to-V_{OUT} (power stage), and V_{OUT}-to-COMP (compensator). If ΔV_{RAMP} is the peak-to-peak ramp voltage (nominally 0.8 V), the COMP-to-duty cycle transfer function is simply the PWM modulator gain given by Equation 10.

$$G_{PWM} = \frac{I}{\Delta V_{RAMP}}$$
(10)

FXAS **NSTRUMENTS**

www.ti.com

Power Stage

A Bode plot showing the –40dB/decade power stage response is shown in Figure 33

Figure 33. Power Stage Bode Plot

The complex poles created by the filter inductor and output capacitor cause a 180° phase lag. The phase is boosted back up to -90° by the output capacitor ESR zero. The compensator must provide sufficient phase boost to stabilize the loop response. The type-III compensation network shown around the error amplifier in Figure 32 creates two poles, two zeros and a pole at the origin. Placing these poles and zeros at the correct frequencies stabilizes the closed loop response. The compensator transfer function is given by Equation 13.

$$G_{C}(s) = K_{mid} \frac{\left(1 + \frac{2 \cdot \pi \cdot f_{Z1}}{s}\right) \cdot \left(1 + \frac{s}{2 \cdot \pi \cdot f_{Z2}}\right)}{\left(1 + \frac{s}{2 \cdot \pi \cdot f_{P1}}\right) \cdot \left(1 + \frac{s}{2 \cdot \pi \cdot f_{P2}}\right)}$$

where

• K_{mid} is the mid-band gain, R_{C1}/R_{FB1}

The pole located at the origin gives high open-loop gain at DC, translating into improved load regulation accuracy. This pole occurs at a very low frequency due to the finite gain of the error amplifier; however, its location is approximated at DC for the purposes of compensation. The other two poles and two zeros are located accordingly to stabilize the voltage-mode loop depending on the power stage complex poles and their quality factor, Q. Figure 34 illustrates a typical type-III compensator transfer function.

(13)

Figure 34. Type-III Compensation Network Bode Plot

As seen in Figure 34, the two compensator zeros located at ($f_{LC}/2$, f_{LC}) provide a phase boost. This mitigates the effect of the phase loss from the output filter. The compensation network also adds two poles to the system. One pole is located at the output capacitor ESR zero (f_{ESR}) and the other pole is at half the switching frequency ($F_{SW}/2$) to roll off the high frequency response.

The dependency of the pole and zero locations on the compensation components is described as follows:

$$\begin{split} f_{Z1} &= \frac{I_{LC}}{2} = \frac{I}{2 \cdot \pi \cdot R_{C1} \cdot C_{C1}} \\ f_{Z2} &= f_{LC} = \frac{1}{2 \cdot \pi \cdot (R_{C1} + R_{FB1}) \cdot C_{C3}} \\ f_{P1} &= f_{ESR} = \frac{1}{2 \cdot \pi \cdot R_{C2} \cdot C_{C3}} \\ f_{P2} &= \frac{F_{SW}}{2} = \frac{C_{C1} + C_{C2}}{2 \cdot \pi \cdot R_{C1} \cdot C_{C1} \cdot C_{C2}} \end{split}$$

£

The output capacitance, C_{OUT} , depends on capacitor chemistry and bias voltage. For multi-layer ceramic capacitors (MLCC), the total capacitance degrades as the DC bias voltage is increased. To accurately calculate and optimize the compensation network, it is advisable to determine the effective capacitance of the output capacitors when biased at the output voltage.

The example given here is the total output capacitance using three MLCC output capacitors biased at 1.2 V, as seen in the typical application schematic of Figure 28. 50% capacitance derating is assumed.

NOTE

It is more conservative, from a stability standpoint, to err on the side of a lower output capacitance in the compensation calculations rather than a higher, as this will result in a lower bandwidth but increased phase margin.

First, choose a resistance for R_{FB1} , a typical value being 10 k Ω . From this, calculate the resistance of R_{C1} using Equation 14 to set the mid-band gain such that the desired crossover frequency is achieved.

$$R_{C1} = \frac{f_{crossover}}{f_{LC}} \cdot \frac{\Delta V_{RAMP}}{\Delta V_{IN}} \cdot R_{FB1} = \frac{100 \,\text{kHz}}{17.4 \,\text{kHz}} \cdot \frac{0.8 \,\text{V}}{5 \,\text{V}} \cdot 10 \,\text{k}\Omega = 9.2 \,\text{k}\Omega \tag{14}$$

Next, calculate the capacitance of C_{C1} by placing a zero at half of the LC double pole frequency (f_{LC}):

$$C_{C1} = \frac{1}{\pi \cdot f_{LC} \cdot R_{C1}} = 1.99 \,\text{nF}$$
(15)

Now calculate C_{C2} to place a pole at half of the switching frequency and R_{C2} to place the second zero at the LC double pole frequency:

$$C_{C2} = \frac{C_{C1}}{\pi \cdot F_{SW} \cdot R_{C1} \cdot C_{C1} - 1} = 71 \text{pF}$$

$$R_{C2} = \frac{R_{C2} \cdot f_{ESR}}{f_{ESR} - f_{LC}} = 166 \Omega$$

$$(17)$$

Last, derive capacitance of C_{C3} to place a pole at the same frequency as the output capacitor ESR zero:

$$C_{C3} = \frac{1}{2 \cdot \pi \cdot f_{ESR} \cdot R_{C2}} = 898 \text{pF}$$
⁽¹⁸⁾

An illustration of the total loop response is seen in Figure 35.

Figure 35. Loop Response

It is important to verify the stability either by observing the load transient response or by using a network analyzer. A phase margin between 45° and 70° is usually desired for voltage-mode converter circuits. Excessive phase margin causes slow system response to load transients whereas low phase margin leads to an oscillatory load transient response. If the peak deviation of the load transient response is larger than required, increasing $f_{crossover}$ and recalculating the compensation components may help but usually at the expense of phase margin.

Table 2. Bill of Materials (V _{IN} = 3.3 V to 5.5 V, V _{OUT} = 1.2 V, I _{OUT} = 15 A, f_{SW} = 500 kHz)										
REF DES	DESCRIPTION	VENDOR	PART NUMBER	QUANTITY						
C _F	CAP, CERM, 1 µF, 10 V, ±10%, X7R, 0603	MuRata	GRM188R71A105KA61D	1						
$\begin{array}{c} C_{IN1},C_{IN2},C_{IN3},\\ C_{O1},C_{O2},C_{O3} \end{array}$	CAP, CERM, 100 µF, 6.3 V, ±20%, X5R, 1206	MuRata	GRM31CR60J107ME39L	6						
C _{C1}	CAP, CERM, 1800 pF, 50 V, ±5%, C0G/NP0, 0603	TDK	C1608C0G1H182J	1						
C _{C2}	CAP, CERM, 68 pF, 50 V, ±5%, C0G/NP0, 0603	TDK	C1608C0G1H680J	1						
C _{C3}	CAP, CERM, 820 pF, 50 V, ±5%, C0G/NP0, 0603	TDK	C1608C0G1H821J	1						
C _{SS}	CAP, CERM, 0.033 µF, 16 V, ±10%, X7R, 0603	MuRata	GRM188R71C333KA01D	1						
L _F	Inductor, Powdered Iron, 560 nH, 27.5A, 1.8 m Ω , SMD	Vishay Dale	IHLP4040DZERR56M01	1						
R _F	RES, 1 Ω, 5%, 0.1 W, 0603	Vishay Dale	CRCW06031R00JNEA	1						
R _{C1}	RES, 9.31 kΩ, 1%, 0.1 W, 0603	Vishay Dale	CRCW06039K31FKEA	1						
R _{C2}	RES, 165 Ω, 1%, 0.1 W, 0603	Vishay Dale	CRCW0603165RFKEA	1						
R _{FB1} , R _{FB2} , R _{PGOOD}	RES, 10 kΩ, 1%, 0.1 W, 0603	Vishay Dale	CRCW060310K0FKEA	3						
U ₁	LM21215A Synchronous Buck Regulator	TI	LM21215AMH-1/NOPB	1						

8.2.1.3 Application Curves

For additional details on the wavefroms shown in this section, please refer to application note AN-2131 LM21215A Evaluation Board, SNVA477.

8.2.2 Typical Application 2

The schematic diagram of a DC/DC regulator with 8-A output current is given by Figure 40.

Figure 40. Typical Application Schematic 2

8.2.2.1 Design Requirements

Output voltage setpoint is 0.9 V and the input voltage ranges from 4 V to 5.5 V. The switching frequency is set by means of an external synchronization signal at 1 MHz. The output voltage soft-start time is 10 ms.

8.2.2.2 Detailed Design Procedure

Follow the detailed design procedure in *Typical Application 1*. The relevant power stage and small-signal components are listed in Table 3.

		, ere r, ou) • · · · · · · · · · · · · · · · · · ·	
REF DES	DESCRIPTION	VENDOR	PART NUMBER	QUANTITY
C _F	CAP, CERM, 1 µF, 10 V, ±10%, X7R, 0603	MuRata	GRM188R71A105KA61D	1
C _{IN1} , C _{O1} , C _{O2}	CAP, CERM, 100 µF, 6.3 V, ±20%, X5R, 1206	MuRata	GRM31CR60J107ME39L	3
C _{C1}	CAP, CERM, 1800 pF, 50 V, ±5%, C0G/NP0, 0603	MuRata	GRM1885C1H182JA01D	1
C _{C2}	CAP, CERM, 68 pF, 50 V, ±5%, C0G/NP0, 0603	TDK	C1608C0G1H680J	1
C _{C3}	CAP, CERM, 470 pF, 50 V, ±5%, C0G/NP0, 0603	TDK	C1608C0G1H471J	1
C _{SS}	CAP, CERM, 0.033 µF, 16 V, ±10%, X7R, 0603	MuRata	GRM188R71C333KA01D	1
L _F	Inductor, Shielded Core, 240 nH, 20 A, 1 m Ω , SMD	Würth	744314024	1
R _F	RES, 1 Ω, 5%, 0.1 W, 0603	Vishay Dale	CRCW06031R00JNEA	1
R _{C1}	RES, 4.87 kΩ, 1%, 0.1 W, 0603	Vishay Dale	CRCW06034K87FKEA	1
R _{C2}	RES, 210 Ω, 1%, 0.1 W, 0603	Vishay Dale	CRCW0603210RFKEA	1
R _{EN1} , R _{FB1} , R _{PGOOD}	RES, 10 kΩ, 1%, 0.1 W, 0603	Vishay Dale	CRCW060310K0FKEA	3
R _{EN2}	RES, 19.6 kΩ, 1%, 0.1 W, 0603	Vishay Dale	CRCW060319K6FKEA	1
R _{FB2}	RES, 20 kΩ, 1%, 0.1 W, 0603	Vishay Dale	CRCW060320K0FKEA	1
U ₁	LM21215A Synchronous Buck Regulator	TI	LM21215AMH-1/NOPB	1

Table 3. Bill of Mater	ials $(V_{\rm IN} = 4 V to)$	5.5 V. Vour = 0.9 V.	$I_{OUT} = 8 A \cdot F_{OW} = 2$	1 MHz)
			$\mathbf{y} = \mathbf{y} + $	• •••• •=•

9 Power Supply Recommendations

The LM21215A converter is designed to operate from an input voltage supply range between 2.95 V and 5.5 V. The characteristics of the input supply must be compatible with the *Absolute Maximum Ratings* and *Recommended Operating Conditions* tables. In addition, the input supply must be capable of delivering the required input current to the fully-loaded regulator. Estimate the average input current with Equation 19, where η is the efficiency:

$$I_{\text{IN}} = \frac{V_{\text{OUT}} \cdot I_{\text{OUT}}}{V_{\text{IN}} \cdot \eta}$$

(19)

If the converter is connected to an input supply through long wires or PCB traces with large impedance, special care is required to achieve stable performance. The parasitic inductance and resistance of the input cables may have an adverse affect on converter operation. The parasitic inductance in combination with the low ESR ceramic input capacitors form an under-damped resonant circuit. This circuit can cause overvoltage transients at PVIN each time the input supply is cycled on and off. The parasitic resistance causes the PVIN voltage to dip during a load transient. If the regulator is operating close to the minimum input voltage, this dip can cause false UVLO fault triggering and a system reset. The best way to solve such issues is to reduce the distance from the input supply to the regulator and use an aluminum or tantalum input capacitor in parallel with the ceramics. The moderate ESR of the electrolytic capacitors helps to damp the input resonant circuit and reduce any voltage overshoots. A capacitance in the range of 20 μ F to 100 μ F is usually sufficient to provide input damping and helps to hold the input voltage steady during large load transients.

An EMI input filter is often used in front of the regulator that, unless carefully designed, can lead to instability as well as some of the effects mentioned above. The user guide *Simple Success with Conducted EMI for DC-DC Converters*, SNVA489, provides helpful suggestions when designing an input filter for any switching regulator.

28

www.ti.com

10 Layout

10.1 Layout Guidelines

PC board layout is an important and critical part of any DC-DC converter design. The performance of any switching converter depends as much upon the layout of the PCB as the component selection. Poor layout disrupts the performance of a switching converter and surrounding circuitry by contributing to EMI, ground bounce, conduction loss in the traces, and thermal problems. Erroneous signals can reach the DC-DC converter, possibly resulting in poor regulation or instability. There are several paths that conduct high slew-rate currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise and EMI or degrade the power-supply performance.

The following guidelines serve to help users to design a PCB with the best power conversion performance, thermal performance, and minimized generation of unwanted EMI.

- 1. Locate the input capacitors as close as possible to the PVIN and PGND pins, and place the inductor as close as possible to the SW pins and output capacitors. As described further in the *Compact PCB Layout for EMI Reduction* section, this placement is to minimize the area of switching current loops and reduce the resistive loss of the high current path. Ideally, use a ground plane on the top layer that connects the PGND pins, the exposed pad of the device, and the return terminals of the input and output capacitors in a small area near pins 10 and 11 of the device. For more details, refer to the board layout detailed in application note *AN-2131 LM21215A Evaluation Board*, SNVA477.
- 2. Minimize the copper area of the switch node. Route the six SW pins on a single top-layer plane to the inductor terminal using a wide trace to minimize conduction loss. The inductor can be placed on the bottom side of the PCB relative to the LM21215A, but take care to avoid any coupling of the inductor's magnetic field to sensitive feedback or compensation traces.
- 3. Use a solid ground plane on layer two of the PCB, particularly underneath the LM21215A and power stage components. This plane functions as a noise shield and also as a heat dissipation path.
- 4. Make input and output power bus connections as wide and short as possible to reduce voltage drops on the input and output of the converter and to improve efficiency. Use copper planes on top to connect the multiple PVIN pins and PGND pins together.
- 5. Provide enough PCB area for proper heat-sinking. As stated in the *Thermal Design* section, use enough copper area to ensure a low R_{0JA} commensurate with the maximum load current and ambient temperature. Make the top and bottom PCB layers with two ounce copper thickness and no less than one ounce. Use an array of heat-sinking vias to connect the exposed pad to the ground plane on the bottom PCB layer. If the PCB has multiple copper layers as recommended, connect these thermal vias to the inner layer heat-spreading ground planes.
- 6. Route the sense trace from the VOUT point of regulation to the feedback resistors away from the SW pins and inductor to avoid contaminating this feedback signal with switching noise. This routing is most important when high resistances are used to set the output voltage. Routing the feedback trace on a different layer than the inductor and SW node trace is recommended such that a ground plane exists between the sense trace and inductor or SW node polygon to provide further cancellation of EMI on the feedback trace.
- 7. If voltage accuracy at the load is important, ensure that the feedback voltage sense is made directly at the load terminals. Doing so corrects for voltage drops in the PCB planes and traces and provides optimal output voltage setpoint accuracy and load regulation. Place the feedback resistor divider closer to the FB node, rather than close to the load, because the FB node is the input to the error amplifier and is thus noise sensitive. COMP is a also noise-sensitive node and the compensation components must be located as close as possible to the device.
- 8. Place the AVIN bypass capacitor and the soft-start capacitor close to their respective pins.
- 9. See 関連資料 for additional important guidelines.

Layout Guidelines (continued)

10.1.1 Compact PCB Layout for EMI Reduction

Radiated EMI generated by high di/dt components relates to pulsing currents in switching converters. The larger area covered by the path of a pulsing current, the more electromagnetic emission is generated. The key to reducing radiated EMI is to identify the pulsing current path and minimize the area of that path. The main switching loop of the LM21215A power stage is denoted by #1 in Figure 41. The topological architecture of a buck converter means that particularly high di/dt current flows in loop #1, and it becomes mandatory to reduce the parasitic inductance of this loop by minimizing its effective loop area. For loop #2 however, the di/dt through inductor L_F and capacitor C_{OUT} is naturally limited by the inductor. Keeping the area of loop #2 small is not nearly as important as that of loop #1. Also important are the gate drive loops of the low-side and high-side MOSFETs, which are inherently tight by virtue of the integrated power MOSFETs and gate drivers of the LM21215A

Figure 41. LM21215A Power Stage Circuit Switching Loops

High-frequency ceramic bypass capacitors at the input side provide the primary path for the high di/dt components of the pulsing current. Placing ceramic bypass capacitors as close as possible to the PVIN and PGND pins is the key to EMI reduction. Keep the SW trace connecting to the inductor as short as possible, and just wide enough to carry the load current without excessive heating. Use short, thick traces or copper pours (shapes) for current conduction path to minimize parasitic resistance. Place the output capacitors close to the VOUT side of the inductor and route the return using GND plane copper back to the PGND pins and the exposed pad of the LM21215A.

10.1.2 Thermal Design

As with any power conversion device, the LM21215A dissipates internal power while operating. The effect of this power dissipation is to raise the internal junction temperature of the LM21215A above ambient. The junction temperature (T_J) is a function of the ambient temperature (T_A), the power dissipation and the effective thermal resistance of the device and PCB combination ($R_{\theta JA}$). The maximum operating junction temperature for the LM21215A is 125°C, thus establishing a limit on the maximum device power dissipation and therefore the load current at high ambient temperatures. Equation 20 shows the relationships between these parameters.

$$I_{OUT} = \frac{\left(T_{J} - T_{A}\right)}{R_{\theta JA}} \cdot \frac{\eta}{\left(1 - \eta\right)} \cdot \frac{1}{V_{OUT}}$$

(20)

www.ti.com

www.tij.co.jp

Layout Guidelines (continued)

High ambient temperatures and large values of $R_{\theta JA}$ reduce the maximum available output current. If the junction temperature exceeds 165°C, the LM21215A cycles in and out of thermal shutdown. Thermal shutdown may be a sign of inadequate heat-sinking or excessive power dissipation. Improve PCB heat-sinking by using more thermal vias, a larger board, or more heat-spreading layers within that board.

As stated in application note *Semiconductor and IC Package Thermal Metrics*, SPRA953, the values given in the *Thermal Information* table are not always valid for design purposes to estimate the thermal performance of the application. The values reported in the *Thermal Information* table are measured under a specific set of conditions that are seldom obtained in an actual application. The effective $R_{\theta JA}$ is a critical parameter and depends on many factors (such as power dissipation, air temperature, PCB area, copper heat-sink area, number of thermal vias under the package, air flow, and adjacent component placement). The LM21215A uses an advanced flip-chip-on-lead (FCOL) package and its exposed pad has a direct electrical and thermal connection to PGND. This pad must be soldered directly to the PCB copper ground plane to provide an effective heat-sink and proper electrical connection. Use the documents listed in *関連資料* as a guide for optimized thermal PCB design and estimating $R_{\theta JA}$ for a given application environment.

10.1.3 Ground Plane Design

As mentioned previously, using one of the middle layers as a solid ground plane is recommended. A ground plane offers shielding for sensitive circuits and traces and also provides a quiet reference potential for the control circuitry. Connect the AGND and PGND pins to the ground plane using an array of vias under the exposed pad. The PGND pins are connected to the source of the integrated low-side power MOSFET. Connect these pins directly to the return terminals of the input and output capacitors. The PGND net contains noise at the switching frequency and can bounce because of load current variations. The PGND trace, as well as PVIN and SW traces, must be constrained to one side of the ground plane. The other side of the ground plane contains much less noise and is ideal for sensitive routes.

10.2 Layout Example

Figure 42. Layout Example Showing Top Layer Copper and Silkscreen

LM21215A JAJSBH3D – MARCH 2011 – REVISED MAY 2019

www.tij.co.jp

11 概要(続き)

LM21215A には、過電圧保護 (OVP) およびサイクル単位の過電流保護 (OCP) 機能が内蔵され、システムの高い信頼 性を実現しています。高精度のイネーブル・ピンと内蔵の UVLO により、デバイスの電源オンを厳格に制御し、シーケンシ ングできます。スタートアップ時の突入電流は、内部で固定、または外部から設定可能なソフトスタート回路により制限され ます。内蔵のオープン・ドレインの PGOOD インジケータにより、フォルトの報告と電源シーケンシングが可能です。

他の機能として、補助電圧レールのトラッキング、プリバイアス付き負荷への単調なスタートアップ、およびビート周波数に 敏感なアプリケーションやマルチ・レギュレータのアプリケーション向けに、300kHz~1.5MHz の範囲の外部クロック信号に スイッチング周波数を同期させる機能があります。LM21215A は、熱的に強化された 20ピンの HTSSOP パッケージで供 給され、付属の露出パッドを PCB にハンダ付けすることで、接合部から基板への熱インピーダンスが非常に低くなります。

www.tij.co.jp

12 デバイスおよびドキュメントのサポート

12.1 デバイス・サポート

12.1.1 デベロッパー・ネットワークの製品に関する免責事項

デベロッパー・ネットワークの製品またはサービスに関するTIの出版物は、単独またはTIの製品、サービスと一緒に提供される場合に関係なく、デベロッパー・ネットワークの製品またはサービスの適合性に関する是認、デベロッパー・ネットワークの製品またはサービスの是認の表明を意味するものではありません。

12.1.2 開発サポート

*LM21215A*のクイックスタート設計ツールについては、http://www.ti.com/product/LM21215A/toolssoftware#devtools を参照してください。

PowerLab™ については、http://www.ti.com/powerlab を参照してください。

12.1.2.1 WEBENCH® ツールによるカスタム設計

ここをクリックすると、WEBENCH® Power Designer により、LM21215A を使用するカスタム設計を作成できます。

- 1. 最初に、入力電圧(V_{IN})、出力電圧(V_{OUT})、出力電流(I_{OUT})の要件を入力します。
- 2. オプティマイザのダイヤルを使用して、効率、占有面積、コストなどの主要なパラメータについて設計を最適化します。
- 3. 生成された設計を、テキサス・インスツルメンツが提供する他の方式と比較します。

WEBENCH Power Designerでは、カスタマイズされた回路図と部品リストを、リアルタイムの価格と部品の在庫情報と併せて参照できます。

通常、次の操作を実行可能です。

- 電気的なシミュレーションを実行し、重要な波形と回路の性能を確認する。
- 熱シミュレーションを実行し、基板の熱特性を把握する。
- カスタマイズされた回路図やレイアウトを、一般的なCADフォーマットで出力する。
- 設計のレポートをPDFで印刷し、設計を共有する。

WEBENCHツールの詳細は、www.ti.com/WEBENCHでご覧になれます。

12.2 ドキュメントのサポート

12.2.1 関連資料

- 『AN-2131 LM21215A Evaluation Board』、SNVA477 (英語)
- 『AN-2130 LM21215 Evaluation Board』、SNVA476 (英語)
- 『AN-2107 LM21212-1 Evaluation Board』、SNVA467 (英語)
- 『AN-2140 LM21212-2 Evaluation Board』、SNVA480 (英語)
- 『AN-2162: Simple Success with Conducted EMI from DC-DC Converters』、SNVA489 (英語)
- 『6/4-Bit VID Programmable Current DAC for Point of Load Regulators with Adjustable Start-Up Current』、 SNVS822 (英語)
- 『AN-1149 Layout Guidelines for Switching Power Supplies』、SNVA021 (英語)
- 『AN-1229 Simple Switcher PCB Layout Guidelines』、SNVA054 (英語)
- 『Constructing Your Power Supply Layout Considerations』、SLUP230 (英語)
- 『Low Radiated EMI Layout Made SIMPLE with LM4360x and LM4600x』、SNVA721 (英語)
- 『AN-2020 Thermal Design By Insight, Not Hindsight』、SNVA419 (英語)
- 『AN-1520 A Guide to Board Layout for Best Thermal Resistance for Exposed Pad Packages』、SNVA183 (英語)
- 『SPRA953B Semiconductor and IC Package Thermal Metrics』、SPRA953 (英語)
- 『SNVA719 Thermal Design made Simple with LM43603 and LM43602』、SNVA719 (英語)
- 『SLMA002 PowerPAD™ Thermally Enhanced Package』、SLMA002 (英語)
- 『SLMA004 PowerPAD Made Easy』、SLMA004 (英語)
- 『SBVA025 Using New Thermal Metrics』、SBVA025 (英語)

www.tij.co.jp

12.3 コミュニティ・リソース

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 商標

PowerPAD, E2E are trademarks of Texas Instruments. WEBENCH is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.5 静電気放電に関する注意事項

これらのデバイスは、限定的なESD(静電破壊)保護機能を内蔵しています。保存時または取り扱い時は、MOSゲートに対す る静電破壊を防 止するために、リード線同士をショートさせておくか、デバイスを導電フォームに入れる必要があります。

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスに ついて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もありま す。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
							(6)				
LM21215AMH-1/NOPB	ACTIVE	HTSSOP	PWP	20	73	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM21215 AMH-1	Samples
LM21215AMHE-1/NOPB	ACTIVE	HTSSOP	PWP	20	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM21215 AMH-1	Samples
LM21215AMHX-1/NOPB	ACTIVE	HTSSOP	PWP	20	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM21215 AMH-1	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

10-Dec-2020

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

'All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM21215AMHE-1/NOPB	HTSSOP	PWP	20	250	178.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
LM21215AMHX-1/NOPB	HTSSOP	PWP	20	2500	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

31-Oct-2024

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM21215AMHE-1/NOPB	HTSSOP	PWP	20	250	210.0	185.0	35.0
LM21215AMHX-1/NOPB	HTSSOP	PWP	20	2500	367.0	367.0	35.0

TEXAS INSTRUMENTS

www.ti.com

31-Oct-2024

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
LM21215AMH-1/NOPB	PWP	HTSSOP	20	73	495	8	2514.6	4.06

PWP0020AA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Reference JEDEC Registration MO-153, Variation ACT.

重要なお知らせと免責事項

TIは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや 設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供してお り、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的に かかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプ リケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載す ることは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを 自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供され ています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありま せん。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated