LM555-MIL JAJSDC5-JUNE 2017 # LM555-MIL タイマ # 1 特長 - SE555/NE555を直接代替可能 - マイクロ秒単位から時間(hours)単位までのタイミング設定 - AstableおよびMonostableの両方のモードで動作 - デューティ・サイクルを変更可能 - ソースまたはシンク200mAの出力 - 出力および電源はTTL互換 - 0.005%/℃以内の優れた温度安定性 - ノーマリー・オンおよびノーマリー・オフ出力 - 8ピンのVSSOPパッケージで供給 # 2 アプリケーション - 高精度のタイミング - パルス生成 - シーケンシャル・タイミング - 時間遅延の生成 - パルス幅変調 - パルス位置変調 - リニア・ランプ生成器 ## 3 概要 LM555-MILは、正確な時間遅延や振動を生成するための、安定性の高いデバイスです。必要に応じてトリガやリセットを行うため、追加端子が搭載されています。時間遅延モードの動作では、1個の外付け抵抗とコンデンサによって時間を正確にコントロールできます。発振器として安定動作させるために、2個の外付け抵抗と1個のコンデンサによって、フリーランニングの周波数とデューティ・サイクルを正確にコントロールできます。波形の立ち下がりによって回路をトリガおよびリセットでき、出力回路は最大200mAの電流をソースまたはシンク、またはTTL回路を駆動できます。 ### 製品情報(1) | 型番 | パッケージ | 本体サイズ(公称) | |-----------|-----------|---------------| | | SOIC (8) | 4.90mm×3.91mm | | LM555-MIL | PDIP (8) | 9.81mm×6.35mm | | | VSSOP (8) | 3.00mm×3.00mm | (1) 利用可能なすべてのパッケージについては、このデータシートの末 尾にある注文情報を参照してください。 # 回路図 # 目次 | 1 | 特長1 | 7.4 Device Functional Modes | 9 | |---|--------------------------------------|----------------------------------|----| | 2 | | 8 Application and Implementation | 12 | | 3 | 概要1 | 8.1 Application Information | 12 | | 4 | 改訂履歴2 | 8.2 Typical Application | 12 | | 5 | Pin Configuration and Functions | 9 Power Supply Recommendations | | | 6 | Specifications | 10 Layout | 15 | | Ū | 6.1 Absolute Maximum Ratings | 10.1 Layout Guidelines | | | | 6.2 ESD Ratings | 10.2 Layout Example | 15 | | | 6.3 Recommended Operating Conditions | 11 デバイスおよびドキュメントのサポート | 16 | | | 6.4 Thermal Information | 11.1 ドキュメントの更新通知を受け取る方法 | 16 | | | 6.5 Electrical Characteristics | 11.2 コミュニティ・リソース | 16 | | | 6.6 Typical Characteristics | 11.3 商標 | 16 | | 7 | Detailed Description 8 | 11.4 静電気放電に関する注意事項 | 16 | | - | 7.1 Overview 8 | 11.5 Glossary | 16 | | | 7.2 Functional Block Diagram | 12 メカニカル、パッケージ、および注文情報 | 16 | | | 7.3 Feature Description | | | # 4 改訂履歴 | 日付 | 改訂内容 | 注 | |---------|------|----| | 2017年6月 | * | 初版 | www.ti.com JAJSD0 # **5 Pin Configuration and Functions** D, P, and DGK Packages 8-Pin SOIC, PDIP, and VSSOP **Top View** GND-+V_{CC} 2 7 COMPAR-TRIGGER-- DISCHARGE ATOR 3 6 OUTPUT COMPAR-- THRESHOLD OUTPUT-STAGE ATOR V_{REF} (INT) 4 5 CONTROL RESET -VOLTAGE #### **Pin Functions** | | PIN | 1/0 | DESCRIPTION | |-----|--------------------|-----|---| | NO. | NAME | 1/0 | DESCRIPTION | | 5 | Control
Voltage | I | Controls the threshold and trigger levels. It determines the pulse width of the output waveform. An external voltage applied to this pin can also be used to modulate the output waveform | | 7 | Discharge | I | Open collector output which discharges a capacitor between intervals (in phase with output). It toggles the output from high to low when voltage reaches 2/3 of the supply voltage | | 1 | GND | 0 | Ground reference voltage | | 3 | Output | 0 | Output driven waveform | | 4 | Reset | I | Negative pulse applied to this pin to disable or reset the timer. When not used for reset purposes, it should be connected to VCC to avoid false triggering | | 6 | Threshold | I | Compares the voltage applied to the terminal with a reference voltage of 2/3 Vcc. The amplitude of voltage applied to this terminal is responsible for the set state of the flip-flop | | 2 | Trigger | I | Responsible for transition of the flip-flop from set to reset. The output of the timer depends on the amplitude of the external trigger pulse applied to this pin. | | 8 | V ⁺ | I | Supply voltage with respect to GND | # TEXAS INSTRUMENTS ## 6 Specifications #### 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1)(2) | | | | MIN | MAX | UNIT | | |--------------------------|--|--------------------------|-----|-----|------|--| | Dower Dissingt | wer Dissipation ⁽³⁾ LM555CM, LM555CN ⁽⁴⁾ | | | | mW | | | Power Dissipat | ion ^v ? | LM555CMM | | 613 | mW | | | | PDIP Package Soldering (10 Seconds) | | | 260 | °C | | | Soldering
Information | Small Outline Packages (SOIC and | Vapor Phase (60 Seconds) | | 215 | °C | | | VSSOP) | | Infrared (15 Seconds) | | 220 | °C | | | Storage temper | torage temperature, T _{stq} | | | | | | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications. # 6.2 ESD Ratings | | | | VALUE | UNIT | |-------------|-------------------------|--|---------------------|------| | $V_{(ESD)}$ | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) | ±500 ⁽²⁾ | V | ¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. ## 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) | | MIN | MAX | UNIT | |--|-----|-----|------| | Supply Voltage | | 18 | V | | Operating free-air temperature, T _A | 0 | 70 | °C | | Operating junction temperature, T _J | | 70 | °C | #### 6.4 Thermal Information | | | | LM555-MIL | | | |-----------------|--|--------|-----------|--------|------| | | THERMAL METRIC ⁽¹⁾ | PDIP | SOIC | VSSOP | UNIT | | | | 8 PINS | 8 PINS | 8 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 106 | 170 | 204 | °C/W | For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. ⁽³⁾ For operating at elevated temperatures the device must be derated above 25°C based on a 150°C maximum junction temperature and a thermal resistance of 106°C/W (PDIP), 170°C/W (S0IC-8), and 204°C/W (VSSOP) junction to ambient. ⁽⁴⁾ Refer to RETS555X drawing of military LM555H and LM555J versions for specifications. ⁽²⁾ The ESD information listed is for the SOIC package. www.ti.com #### 6.5 Electrical Characteristics $(T_{\rm v} = 25^{\circ}\text{C}, V_{\rm co} = 5 \text{ V to } 15 \text{ V unless otherwise specified})^{(1)(2)}$ | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------------|--|-----|--------|------|-------------------| | Supply Voltage | | 4.5 | | 16 | V | | Supply Current | V _{CC} = 5 V, R _L = ∞ | | 3 | 6 | | | | V_{CC} = 15 V, R_L = ∞ (Low State) $^{(3)}$ | | 10 | 15 | mA | | Timing Error, Monostable | | | | | | | Initial Accuracy | | | 1 % | | | | Drift with Temperature | $R_A = 1 \text{ k to } 100 \text{ k}\Omega,$ | | 50 | | ppm/°C | | | $C = 0.1 \mu F$, ⁽⁴⁾ | | | | | | Accuracy over Temperature | | | 1.5 % | | | | Drift with Supply | | | 0.1 % | | V | | Timing Error, Astable | | | | | | | Initial Accuracy | | | 2.25 | | | | Drift with Temperature | R_A , $R_B = 1$ k to 100 k Ω , | | 150 | | ppm/°C | | | $C = 0.1 \mu F$, (4) | | | | | | Accuracy over Temperature | | | 3.0% | | | | Drift with Supply | | | 0.30 % | | N | | Threshold Voltage | | | 0.667 | | x V _{CC} | | Trigger Voltage | V _{CC} = 15 V | | 5 | | V | | | V _{CC} = 5 V | | 1.67 | | V | | Trigger Current | | | 0.5 | 0.9 | μА | | Reset Voltage | | 0.4 | 0.5 | 1 | V | | Reset Current | | | 0.1 | 0.4 | mA | | Threshold Current | (5) | | 0.1 | 0.25 | μΑ | | Control Voltage Level | V _{CC} = 15 V | 9 | 10 | 11 | | | | V _{CC} = 5 V | 2.6 | 3.33 | 4 | V | | Pin 7 Leakage Output High | | | 1 | 100 | nA | | Pin 7 Sat ⁽⁶⁾ | | | | | | | Output Low | V _{CC} = 15 V, I ₇ = 15 mA | | 180 | | mV | | Output Low | V _{CC} = 4.5 V, I ₇ = 4.5 mA | | 80 | 200 | mV | | Output Voltage Drop (Low) | V _{CC} = 15 V | | | | | | | I _{SINK} = 10 mA | | 0.1 | 0.25 | V | | | I _{SINK} = 50 mA | | 0.4 | 0.75 | V | | | I _{SINK} = 100 mA | | 2 | 2.5 | V | | | I _{SINK} = 200 mA | | 2.5 | | V | | | V _{CC} = 5 V | | | | | | | I _{SINK} = 8 mA | | | | V | | | I _{SINK} = 5 mA | | 0.25 | 0.35 | V | - All voltages are measured with respect to the ground pin, unless otherwise specified. - Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is functional, but do not ensure specific performance limits. *Electrical Characteristics* state DC and AC electrical specifications under particular test conditions which ensures specific performance limits. This assumes that the device is within the Recommended Operating Conditions. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance. - Supply current when output high typically 1 mA less at $V_{CC} = 5 \text{ V}$. - Tested at $V_{CC} = 5 \text{ V}$ and $V_{CC} = 15 \text{ V}$. - This will determine the maximum value of $R_A + R_B$ for 15 V operation. The maximum total $(R_A + R_B)$ is 20 M Ω . - No protection against excessive pin 7 current is necessary providing the package dissipation rating will not be exceeded. ### TEXAS INSTRUMENTS # **Electrical Characteristics (continued)** $(T_A = 25^{\circ}C, V_{CC} = 5 \text{ V to } 15 \text{ V, unless otherwise specified})^{(1)(2)}$ | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------------------|--|-------|------|-----|------| | Output Voltage Drop (High) | $I_{SOURCE} = 200 \text{ mA}, V_{CC} = 15 \text{ V}$ | | 12.5 | | V | | | $I_{SOURCE} = 100 \text{ mA}, V_{CC} = 15 \text{ V}$ | 12.75 | 13.3 | | V | | | V _{CC} = 5 V | 2.75 | 3.3 | | V | | Rise Time of Output | | | 100 | | ns | | Fall Time of Output | | | 100 | | ns | # 6.6 Typical Characteristics 12 Figure 1. Minimum Pulse Width Required For Triggering Figure 2. Supply Current vs. Supply Voltage Figure 3. High Output Voltage vs. Output Source Current Figure 4. Low Output Voltage vs. Output Sink Current www.ti.com **Typical Characteristics (continued)** Figure 5. Low Output Voltage vs. Output Sink Current I_{SINK} (mA) Figure 6. Low Output Voltage vs. Output Sink Current Figure 7. Output Propagation Delay vs. Voltage Level of Trigger Pulse Figure 8. Output Propagation Delay vs. Voltage Level of Trigger Pulse Figure 9. Discharge Transistor (Pin 7) Voltage vs. Sink Current Figure 10. Discharge Transistor (Pin 7) Voltage vs. Sink Current #### 7 Detailed Description #### 7.1 Overview The LM555-MIL is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and duty cycle are accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output circuit can source or sink up to 200 mA or driver TTL circuits. The LM555-MIL are available in 8-pin PDIP, SOIC, and VSSOP packages and is a direct replacement for SE555/NE555. #### 7.2 Functional Block Diagram ### 7.3 Feature Description #### 7.3.1 Direct Replacement for SE555/NE555 The LM555-MIL timer is a direct replacement for SE555 and NE555. It is pin-to-pin compatible so that no schematic or layout changes are necessary. The LM555-MIL come in an 8-pin PDIP, SOIC, and VSSOP package. #### 7.3.2 Timing From Microseconds Through Hours The LM555-MIL has the ability to have timing parameters from the microseconds range to hours. The time delay of the system can be determined by the time constant of the R and C value used for either the monostable or astable configuration. A nomograph is available for easy determination of R and C values for various time delays. #### 7.3.3 Operates in Both Astable and Monostable Mode The LM555-MIL can operate in both astable and monostable mode depending on the application requirements. Monostable mode: The LM555-MIL timer acts as a "one-shot" pulse generator. The pulse beings when the www.ti.com JAJSDC5 – JUNE 2017 #### **Feature Description (continued)** LM555-MIL timer receives a signal at the trigger input that falls below a 1/3 of the voltage supply. The width of the output pulse is determined by the time constant of an RC network. The output pulse ends when the voltage on the capacitor equals 2/3 of the supply voltage. The output pulse width can be extended or shortened depending on the application by adjusting the R and C values. Astable (free-running) mode: The LM555-MIL timer can operate as an oscillator and puts out a continuous stream of rectangular pulses having a specified frequency. The frequency of the pulse stream depends on the values of R_A, R_B, and C. #### 7.4 Device Functional Modes #### 7.4.1 Monostable Operation In this mode of operation, the timer functions as a one-shot (Figure 11). The external capacitor is initially held discharged by a transistor inside the timer. Upon application of a negative trigger pulse of less than $1/3~V_{CC}$ to pin 2, the flip-flop is set which both releases the short circuit across the capacitor and drives the output high. Figure 11. Monostable The voltage across the capacitor then increases exponentially for a period of $t = 1.1~R_A$ C, at the end of which time the voltage equals $2/3~V_{CC}$. The comparator then resets the flip-flop which in turn discharges the capacitor and drives the output to its low state. Figure 12 shows the waveforms generated in this mode of operation. Since the charge and the threshold level of the comparator are both directly proportional to supply voltage, the timing interval is independent of supply. $V_{CC} = 5 \text{ V}$ TIME = 0.1 ms/DIV. $R_A = 9.1 \text{ k}\Omega$ $C = 0.01 \text{ }\mu\text{F}$ Top Trace: Input 5V/Div. Middle Trace: Output 5V/Div. Bottom Trace: Capacitor Voltage 2V/Div. Figure 12. Monostable Waveforms # TEXAS INSTRUMENTS # **Device Functional Modes (continued)** During the timing cycle when the output is high, the further application of a trigger pulse will not effect the circuit so long as the trigger input is returned high at least 10 μ s before the end of the timing interval. However the circuit can be reset during this time by the application of a negative pulse to the reset terminal (pin 4). The output will then remain in the low state until a trigger pulse is again applied. When the reset function is not in use, TI recommends connecting the Reset pin to V_{CC} to avoid any possibility of false triggering. Figure 13 is a nomograph for easy determination of R, C values for various time delays. Figure 13. Time Delay #### 7.4.2 Astable Operation If the circuit is connected as shown in Figure 14 (pins 2 and 6 connected) it will trigger itself and free run as a multivibrator. The external capacitor charges through $R_A + R_B$ and discharges through R_B . Thus the duty cycle may be precisely set by the ratio of these two resistors. Figure 14. Astable In this mode of operation, the capacitor charges and discharges between $1/3~V_{CC}$ and $2/3~V_{CC}$. As in the triggered mode, the charge and discharge times, and therefore the frequency are independent of the supply voltage. Figure 15 shows the waveforms generated in this mode of operation. # **Device Functional Modes (continued)** $$\begin{split} &V_{CC}=5~V\\ &TIME=20\mu s/DIV.\\ &R_A=3.9~k\Omega\\ &R_B=3~k\Omega \end{split}$$ $C = 0.01 \ \mu F$ Top Trace: Output 5V/Div. Bottom Trace: Capacitor Voltage 1V/Div. Figure 15. Astable Waveforms The charge time (output high) is given by: $$t_1 = 0.693 (R_A + R_B) C$$ (1) And the discharge time (output low) by: $$t_2 = 0.693 (R_B) C$$ (2) Thus the total period is: $$T = t_1 + t_2 = 0.693 (R_A + 2R_B) C$$ (3) The frequency of oscillation is: $$f = \frac{1}{T} = \frac{1.44}{(R_A + 2R_B)C}$$ (4) Figure 16 may be used for quick determination of these RC values. The duty cycle is: $$D = \frac{R_B}{R_A + 2R_B} \tag{5}$$ Figure 16. Free Running Frequency # TEXAS INSTRUMENTS ## 8 Application and Implementation #### NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. #### 8.1 Application Information The LM555-MIL timer can be used a various configurations, but the most commonly used configuration is in monostable mode. A typical application for the LM555-MIL timer in monostable mode is to turn on an LED for a specific time duration. A pushbutton is used as the trigger to output a high pulse when trigger pin is pulsed low. This simple application can be modified to fit any application requirement. #### 8.2 Typical Application Figure 17 shows the schematic of the LM555-MIL that flashes an LED in monostable mode. Figure 17. Schematic of Monostable Mode to Flash an LED #### 8.2.1 Design Requirements The main design requirement for this application requires calculating the duration of time for which the output stays high. The duration of time is dependent on the R and C values (as shown in Figure 17) and can be calculated by: $$t = 1.1 \times R \times C$$ seconds (6) #### 8.2.2 Detailed Design Procedure To allow the LED to flash on for a noticeable amount of time, a 5 second time delay was chosen for this application. By using Equation 6, RC equals 4.545. If R is selected as 100 k Ω , C = 45.4 μ F. The values of R = 100 k Ω and C = 47 μ F was selected based on standard values of resistors and capacitors. A momentary push button switch connected to ground is connected to the trigger input with a 10-K current limiting resistor pullup to the supply voltage. When the push button is pressed, the trigger pin goes to GND. An LED is connected to the output pin with a current limiting resistor in series from the output of the LM555-MIL to GND. The reset pin is not used and was connected to the supply voltage. #### 8.2.2.1 Frequency Divider The monostable circuit of Figure 11 can be used as a frequency divider by adjusting the length of the timing cycle. Figure 18 shows the waveforms generated in a divide by three circuit. #### **Typical Application (continued)** $V_{CC} = 5 V$ $R_A = 9.1 \text{ k}\Omega$ $C = 0.01 \mu F$ Top Trace: Input 4 V/Div. TIME = $20 \mu s/DIV$. Middle Trace: Output 2V/Div. Bottom Trace: Capa citor 2V/Div. Figure 18. Frequency Divider #### 8.2.2.2 Additional Information Lower comparator storage time can be as long as 10 µs when pin 2 is driven fully to ground for triggering. This limits the monostable pulse width to 10 μ s minimum. Delay time reset to output is 0.47 μs typical. Minimum reset pulse width must be 0.3 μs, typical. Pin 7 current switches within 30 ns of the output (pin 3) voltage. #### 8.2.3 Application Curves The data shown below was collected with the circuit used in the typical applications section. The LM555-MIL was configured in the monostable mode with a time delay of 5.17 s. The waveforms correspond to: - Top Waveform (Yellow) Capacitor voltage - Middle Waveform (Green) Trigger - Bottom Waveform (Purple) Output As the trigger pin pulses low, the capacitor voltage starts charging and the output goes high. The output goes low as soon as the capacitor voltage reaches 2/3 of the supply voltage, which is the time delay set by the R and C value. For this example, the time delay is 5.17 s. # **Typical Application (continued)** Figure 19. Trigger, Capacitor Voltage, and Output Waveforms in Monostable Mode www.tij.co.jp 9 Power Supply Recommendations The LM555-MIL requires a voltage supply within 4.5 V to 16 V. Adequate power supply bypassing is necessary to protect associated circuitry. The minimum recommended capacitor value is 0.1 μ F in parallel with a 1- μ F electrolytic capacitor. Place the bypass capacitors as close as possible to the LM555-MIL and minimize the trace length. # 10 Layout ## 10.1 Layout Guidelines Standard PCB rules apply to routing the LM555-MIL. The 0.1-µF capacitor in parallel with a 1-µF electrolytic capacitor should be as close as possible to the LM555-MIL. The capacitor used for the time delay should also be placed as close to the discharge pin. A ground plane on the bottom layer can be used to provide better noise immunity and signal integrity. Figure 20 is the basic layout for various applications. - C1 based on time delay calculations - C2 0.01-μF bypass capacitor for control voltage pin - C3 0.1-µF bypass ceramic capacitor - C4 1-µF electrolytic bypass capacitor - R1 based on time delay calculations - U1 LMC555 #### 10.2 Layout Example Figure 20. Layout Example # TEXAS INSTRUMENTS ### 11 デバイスおよびドキュメントのサポート #### 11.1 ドキュメントの更新通知を受け取る方法 ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の隅にある「通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。 # 11.2 コミュニティ・リソース The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™オンライン・コミュニティ *TIのE2E(Engineer-to-Engineer)コミュニティ。*エンジニア間の共同作業を促進するために開設されたものです。e2e.ti.comでは、他のエンジニアに質問し、知識を共有し、アイディアを検討して、問題解決に役立てることができます。 設計サポート *TIの設計サポート* 役に立つE2Eフォーラムや、設計サポート・ツールをすばやく見つけることができます。技術サポート用の連絡先情報も参照できます。 #### 11.3 商標 E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. #### 11.4 静電気放電に関する注意事項 すべての集積回路は、適切なESD保護方法を用いて、取扱いと保存を行うようにして下さい。 静電気放電はわずかな性能の低下から完全なデバイスの故障に至るまで、様々な損傷を与えます。高精度の集積回路は、損傷に対して敏感であり、極めてわずかなパラメータの変化により、デバイスに規定された仕様に適合しなくなる場合があります。 #### 11.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. #### 12 メカニカル、パッケージ、および注文情報 以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスについて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。 # PACKAGE OPTION ADDENDUM 10-Dec-2020 #### **PACKAGING INFORMATION** | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|------------|--------------|--------------------|------|----------------|--------------|-------------------------------|------------------|--------------|-------------------------|---------| | LM555-MWC | ACTIVE | WAFERSALE | YS | 0 | 1 | RoHS & Green | Call TI | Level-1-NA-UNLIM | -40 to 85 | | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### 重要なお知らせと免責事項 TI は、技術データと信頼性データ(データシートを含みます)、設計リソース(リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションが適用される各種規格や、その他のあらゆる安全性、セキュリティ、またはその他の要件を満たしていることを確実にする責任を、お客様のみが単独で負うものとします。上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TIの製品は、TIの販売条件(www.tij.co.jp/ja-jp/legal/termsofsale.html)、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供 する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用されるTI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 Copyright © 2020, Texas Instruments Incorporated 日本語版 日本テキサス・インスツルメンツ株式会社