I P5866 JAJSMA3A – DECEMBER 2021 – REVISED SEPTEMBER 2024 # LP5866 6 × 18 LED マトリクス ドライバ、8 ビット アナログおよび 8/16 ビット PWM 調光付き # 1 特長 - LED マトリクスのトポロジ: - 108 の LED ドットのための 6 のスキャン スイッチを 備えた 18 の定電流シンク - 1~6 に構成できるスキャン スイッチ - 動作電圧範囲: - V_{CC}/V_{LFD} 範囲:2.7V~5.5V - 1.8V、3.3V、5V 互換のロジックピン - 18 個の高精度定電流シンク: - 電流シンクあたり 0.1mA~50mA (V_{CC} ≥ 3.3V) - デバイス間誤差:±3% (チャネル電流 = 50mA) - チャネル間誤差:±3% (チャネル電流 = 50mA) - 位相シフトによる過渡電力の平衡化 - 極めて低い消費電力: - シャットダウン モード: I_{CC} ≦ 1µA (EN = Low 時) - スタンバイ モード: I_{CC} ≤ 10µA (LP5866MDBT は 15μA) (EN = High かつ CHIP_EN = 0 (データ保 持) 時) - アクティブ モード: Icc = 4.3mA (標準値、チャネル 電流 = 5mA) - 柔軟な調光オプション: - 各 LED ドットを個別にオン / オフ制御 - アナログ調光法 (電流ゲイン制御) - すべての LED ドットに対するグローバル 3 ビッ 卜最大電流 (MC) 設定 - 3 グループの 7 ビット カラー電流 (CC) 設定 (赤、緑、青) - 各 LED ドットに対する個別の 8 ビットドット電 流 (DC) 設定 - 可聴ノイズが発生しない周波数を使った PWM 調 - すべての LED ドットに対するグローバル 8 ビッ トPWM 調光法 - LED ドットを任意に割り当てるための 3 つのプ ログラム可能な8ビットPWM調光法グループ - 各 LED ドットに対する個別の 8 ビットまたは 16 ビット PWM 調光法 - データ通信量を最小限に抑えるための完全にアドレス 指定可能な SRAM - 個別の LED ドット開放 / 短絡検出 - ゴースト除去および低輝度補償機能 - インターフェイス オプション - 1MHz (最大値) の I²C インターフェイス (IFS = Low 時) 12MHz (最大値) の SPI インターフェイス (IFS = High 時) # 2 アプリケーション - LED アニメーションおよび表示: - キーボード、マウス、ゲーム用アクセサリ - 大型およびスマート家電 - スマートスピーカ、有線/無線スピーカ - オーディオミキサ、DJ 機器、放送 - アクセス機器、スイッチ、サーバー - 光学モジュールの定電流シンク # 3 概要 電子デバイスはますます高性能になり、アニメーションや 表示のために大量の LED を使用する必要があります。小 型ソリューションサイズでユーザー体験を改善するには、 高性能 LED マトリクスドライバが必要です。 LP586x デバイス は、高性能 LED マトリクス ドライバ ファ ミリです。本デバイスは $N \times 18$ の LED ドットまたは $N \times 6$ の RGB LED をサポートするための N 個 (N = 1/2/4/6/8/11) のスイッチング MOSFET を備えた 18 個の 定電流シンクを内蔵しています。LP5866 は、最大 108 の LED ドットまたは 36 の RGB LED のための 6 つの MOSFET を内蔵しています。 LP5866 はアナログ調光法と PWM 調光法の両方をサポ ートしています。アナログ調光法の場合、各 LED ドットを 256 ステップで調整できます。 PWM 調光法の場合、内蔵 の 8 ビットまたは 16 ビット構成可能 PWM ジェネレータ が、滑らかで可聴ノイズの発生しない調光制御を実現しま す。各 LED ドットを 8 ビット グループ PWM に任意に割り 当てることで、調光制御を同時に実現することもできます。 LP5866 デバイスは、データ通信量を最小限に抑えるた めに、完全にアドレス指定可能な SRAM を実装していま す。上側と下側のゴーストを除去するため、ゴーストキャン セル回路を内蔵しています。LP5866 は LED 開放 / 短絡 検出機能もサポートしています。LP5866 では、1MHz (最 大値) の I²C と 12MHz (最大値) の SPI が使用できま す。 #### 製品情報 | 部品番号 | パッケージ ⁽¹⁾ | 本体サイズ (公称) | |--------|----------------------|------------------| | LP5866 | VQFN (40) | 5.00mm × 5.00 mm | | | TSSOP (38) | 9.70mm × 4.40 mm | 利用可能なすべてのパッケージについては、データシートの末尾 にある注文情報を参照してください。 概略回路図 # **Table of Contents** | 1 特長 | 1 | 7.4 Device Functional Modes | 25 | |---|---|---|------------------| | 2 アプリケーション | | 7.5 Programming | | | - ^ / / / · · · · · · · · · · · · · · · · | | 7.6 Register Maps | | | 4 Device Comparison | | 8 Application and Implementation | 41 | | 5 Pin Configuration and Functions | | 8.1 Application Information | <mark>4</mark> 1 | | 6 Specifications | | 8.2 Typical Application | 41 | | 6.1 Absolute Maximum Ratings | | 8.3 Power Supply Recommendations | 44 | | 6.2 ESD Ratings | | 8.4 Layout | 44 | | 6.3 Recommended Operating Conditions | | 9 Device and Documentation Support | 46 | | 6.4 Thermal Information | | 9.1ドキュメントの更新通知を受け取る方法 | 46 | | 6.5 Electrical Characteristics | | 9.2 サポート・リソース | 46 | | 6.6 Timing Requirements | | 9.3 Trademarks | 46 | | 6.7 Typical Characteristics | | 9.4 静電気放電に関する注意事項 | 46 | | 7 Detailed Description | | 9.5 用語集 | | | 7.1 Overview | | 10 Revision History | | | 7.2 Functional Block Diagram | | 11 Mechanical, Packaging, and Orderable | | | 7.3 Feature Description | | Information | 47 | | - | | | | # **4 Device Comparison** | PART NUMBER | MATERIAL | LED DOT NUMBER | PACKAGE ⁽²⁾ | SOFTWARE
COMPATIBLE | | |-------------|----------------------------|----------------|------------------------|------------------------|--| | LP5861 | LP5861RSMR | 18 × 1 = 18 | VQFN-32 | | | | LP5862 | LP5862RSMR | 18 × 2 = 36 | VQFN-32 | | | | LF3002 | LP5862DBTR | 10 ^ 2 - 30 | TSSOP-38 | | | | LP5864 | LP5864RSMR | 18 × 4 = 72 | VQFN-32 | | | | LF3004 | LP5864MRSMR ⁽¹⁾ | 10 ^ 4 - 72 | VQFN-32 | | | | | LP5866RKPR | | VQFN-40 | Yes | | | LP5866 | LP5866DBTR | 18 × 6 = 108 | TSSOP-38 | | | | | LP5866MDBTR ⁽¹⁾ | | 1330F-30 | | | | LP5868 | LP5868RKPR | 18 × 8 = 144 | VQFN-40 | | | | LP5860 | LP5860RKPR | 18 × 11 = 198 | VQFN-40 | | | | LF3000 | LP5860MRKPR ⁽¹⁾ | 10 ^ 11 - 190 | VQFN-40 | | | ⁽¹⁾ Extended temperature devices, supporting –55°C to approximately 125°C operating ambient temperature. ⁽²⁾ The same packages are hardware compatible. # **5 Pin Configuration and Functions** 図 5-1. LP5866 RKP Package 40-Pin VQFN With Exposed Thermal Pad Top View 5 図 5-2. LP5866 DBT Package 38-Pin TSSOP Top View 表 5-1. Pin Functions | | PIN | | | | | |------|----------|--------------|-----|--|--| | NAME | VQFN NO. | TSSOP
NO. | I/O | DESCRIPTION | | | CS0 | 1 | 15 | 0 | Current sink 0. If not used, this pin must be left floating. | | | CS1 | 2 | 16 | 0 | Current sink 1. If not used, this pin must be left floating. | | | CS2 | 3 | 17 | 0 | Current sink 2. If not used, this pin must be left floating. | | | CS3 | 4 | 18 | 0 | Current sink 3. If not used, this pin must be left floating. | | | CS4 | 5 | 19 | 0 | Current sink 4. If not used, this pin must be left floating. | | | CS5 | 6 | 20 | 0 | Current sink 5. If not used, this pin must be left floating. | | | CS6 | 7 | 21 | 0 | Current sink 6. If not used, this pin must be left floating. | | | CS7 | 8 | 22 | 0 | Current sink 7. If not used, this pin must be left floating. | | | CS8 | 9 | 23 | 0 | Current sink 8. If not used, this pin must be left floating. | | | SW0 | 10 | 24 | 0 | High-side PMOS switch output for scan line 0. If not used, this pin must be left floating. | | | SW1 | 11 | 25 | 0 | High-side PMOS switch output for scan line 1. If not used, this pin must be left floating. | | | SW2 | 12 | 26 | 0 | High-side PMOS switch output for scan line 2. If not used, this pin must be left floating. | | | SW3 | 13 | 31 | 0 | High-side PMOS switch output for scan line 3. If not used, this pin must be left floating. | | | SW4 | 14 | 32 | 0 | High-side PMOS switch output for scan line 4. If not used, this pin must be left floating. | | Copyright © 2024 Texas Instruments Incorporated 6 # 表 5-1. Pin Functions (続き) | | PIN | | | 23 3-1. 1 III I directions (Note:) | | |------------|---------------------------|--------------|---------|---|--| | NAME | VQFN NO. | TSSOP
NO. | I/O | DESCRIPTION | | | SW5 | 15 | 33 | 0 | High-side PMOS switch output for scan line 5. If not used, this pin must be left floating. | | | VLED | 16 | 30 | Power | Power input for high-side switches | | | NC | 17, 18, 19,
20, 21 | 27, 29 | _ | No internal connection | | | CS9 | 22 | 34 | 0 | Current sink 9. If not used, this pin must be left floating. | | | CS10 | 23 | 35 | 0 | Current sink 10. If not used, this pin must be left floating. | | | CS11 | 24 | 36 | 0 | Current sink 11. If not used, this pin must be left floating. | | | CS12 | 25 | 37 | 0 | Current sink 12. If not used, this pin must be left floating. | | | CS13 | 26 | 38 | 0 | Current sink 13. If not used, this pin must be left floating. | | | CS14 | 27 | 1 | 0 | Current sink 14. If not used, this pin must be left floating. | | | CS15 | 28 | 2 | 0 | Current sink 15. If not used, this pin must be left floating. | | | CS16 | 29 | 3 | 0 | Current sink 16. If not used, this pin must be left floating. | | | CS17 | 30 | 4 | 0 | Current sink 17. If not used, this pin must be left floating. | | | AGND | 31 | 5 | Ground | Analog ground. Must be connected to exposed thermal pad and common ground plane. | | | VCAP | 32 | 6 | 0 | Internal LDO output. A 1-µF capacitor must be connected between this pin with GND. Place the capacitor as close to the device as possible. | | | IFS | 33 | 7 | I | Interface type select. I ² C is selected when IFS is low. SPI is selected when IFS is high. A resistor must be connected between VIO and this pin. | | | VSYNC | 34 | 8 | I | External synchronize signal for display mode 2 and mode 3 | | | SCL_SCLK | 35 | 9 | I | I ² C clock input or SPI clock input. Pull up to VIO when configured as I ² C. | | | SDA_MOSI | 36 | 10 | I/O | I ² C data input or SPI leader output follower input. Pull up to VIO when configured as I ² C. | | | ADDR0_MISO | 37 | 11 | I/O | I ² C address select 0 or SPI leader input follower output | | | ADDR1_SS | 38 | 12 | ı | I ² C address select 1 or SPI follower select | | | VIO_EN | 39 | 13 | Power,I | Power supply for digital circuits and chip enable. A 1-nF capacitor must be connected between this pin with GND and be placed as close to the device as possible. | | | VCC | 40 | 14 | Power | Power supply for device. A 1-µF capacitor must be connected between this pin with GND and be placed as close to the device as possible. | | | GND | Exposed
Thermal
Pad | 1 | Ground | Must be connected to AGND and common ground plane | | # 6 Specifications ## **6.1 Absolute Maximum Ratings** over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |---|----------------------|-------------|-----|------| | Voltage on V _{CC} / V _{LED} / VIO / EN /
CS / SW / SDA / SCL / SCLK / MOSI /
MISO / SS / ADDR0 / ADDR1 /
VSYNC / IFS | | -0.3 | 6 | V | | Voltage on VCAP | | -0.3 | 2 | V | | T _J | Junction temperature | - 55 | 150 | °C | | T _{stg} | Storage temperature | -65 | 150 | °C | ⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. ### 6.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|--|---|-------|------| | V | V _(ESD) Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/
JEDEC JS-001, all pins ⁽¹⁾ | ±3000 | V | | V _(ESD) | Liectrostatic discriarge | Charged device model (CDM), per ANSI/ESDA/
JEDEC JS-002, all pins ⁽²⁾ | ±1000 | V | - (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. - (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. # **6.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM MAX | UNIT | |---|---|------|---------|------| | Input voltage on V _{CC} | Supply voltage | 2.7 | 5.5 | V | | Input voltage on V _{LED} | LED supply voltage | 2.7 | 5.5 | V | | Input voltage on VIO_EN | | 1.65 | 5.5 | V | | Voltage on SDA / SCL / SCLK / MOSI /
MISO / SS / ADDRx / VSYNC / IFS | | | VIO | V | | T _A | Operating ambient temperature | -40 | 85 | °C | | T _A | Operating ambient temperature, LP5866MDBT | -55 | 125 | °C | ### 6.4 Thermal Information | | | LP5866, | LP5866, LP5866M | | | | |-----------------------|--|------------|-----------------|------|--|--| | | THERMAL METRIC (1) | RKP (VQFN) | DBT (TSSOP) | UNIT | | | | | | 40 Pins | 38 Pins | | | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 31.4 | 67.0 | °C/W | | | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 22.9 | 20.1 | °C/W | | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 12.0 | 27.4 | °C/W | | | | Ψ_{JT} | Junction-to-top characterization parameter | 0.3 | 1.0 | °C/W | | | | Ψ_{JB} | Junction-to-board characterization parameter | 12.0 | 27.0 | °C/W | | | | R _{0JC(bot)} | Junction-to-case (bottom) thermal resistance | 3.5 | n/a | °C/W | | | For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 資料に関するフィードバック(ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated # **6.5 Electrical Characteristics** V_{CC} = 3.3 V, V_{LED} = 3.8 V, VIO = 1.8 V and T_A = -40 °C to +85 °C (T_A = -55 °C to +125 °C for LP5866MDBT); Typical values are at T_A = 25 °C (unless otherwise specified) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------|--|--|------------|------|-----|------| | Power su | upplies | | | | | | | V _{CC} | Device supply voltage | | 2.7 | | 5.5 | V | | V _{UVR} | Undervoltage restart | V _{CC} rising, Test mode | | | 2.5 | V | | V _{UVF} | Undervoltage shutdown | V _{CC} falling, Test mode | 1.9 | | | V | | V _{UV_HYS} | Undervoltage shutdown hysteresis | | | 0.3 | | V | | V _{CAP} | Internal LDO output | V _{CC} = 2.7 V to 5.5 V | | 1.78 | | V | | | Shutdown supply current I _{SHUTDOWN} | V_{EN} = 0 V, CHIP_EN = 0 (bit), measure the total current from V_{CC} and V_{LED} | | 0.1 | 1 | μA | | | | V_{EN} = 3.3 V, CHIP_EN = 0 (bit), measure the total current from V_{CC} and V_{LED} | | 5.5 | 10 | μA | | I _{CC} | Standby supply current I _{STANDBY} | V_{EN} = 3.3 V, CHIP_EN = 0 (bit), measure the total current from V_{CC} and V_{LED} , LP5866MDBT | | 5.5 | 15 | μΑ | | | Active mode supply current I _{NORMAL} | V_{EN} = 3.3 V, CHIP_EN = 1 (bit), all channels I _{OUT} = 5 mA (MC = 1, CC = 127, DC = 256), measure the current from V _{CC} | | 4.3 | 6 | mA | | V_{LED} | LED supply voltage | | 2.7 | | 5.5 | V | | V _{VIO} | VIO supply voltage | | 1.65 | | 5.5 | V | | I _{VIO} | VIO supply current | Interface idle | | | 5 | μA | | Output S | tages | | | | | | | laa | Constant current sink output range (CS0 | 2.7 <= V _{CC} < 3.3 V, PWM = 100% | 0.1 | | 40 | mA | | I _{CS} | - CS17) | V _{CC} >= 3.3 V PWM = 100% | 0.1 | | 50 | mA | | I_{LKG} | Leakage current (CS0 - CS17) | channels off, up_deghost = 0, V _{CS} = 5 V | | 0.1 | 1 | μΑ | | | Device to device current error, I _{ERR_DD} = (I _{AVE} - I _{SET}) / I _{SET} × 100% | All channels ON. Current set to 0.1 mA. MC = 0 CC = 42 DC = 25 PWM = 100% | -7 | | 7 | % | | | | All channels ON. Current set to 1 mA. MC = 2 CC = 127 DC = 25 PWM = 100% | -5 | | 5 | % | | I _{ERR_DD} | | All channels ON. Current set to 10 mA. MC = 2 CC = 127 DC = 255 PWM = 100% | -3.5 | | 3.5 | % | | | | All channels ON. Current set to 25 mA. MC = 7 CC = 64 DC = 255 PWM = 100% | -3.5 | | 3.5 | % | | | | All channels ON. Current set to 50 mA. MC = 7 CC = 127 DC = 255 PWM = 100% | -3 | | 3 | % | | | | All channels ON. Current set to 0.1 mA. MC = 0 CC = 42 DC = 25 PWM = 100% | -5.5 | | 5.5 | % | | | | All channels ON. Current set to 1 mA. MC = 2 CC = 127 DC = 25 PWM = 100% | – 5 | | 5 | % | | I _{ERR_CC} | Channel to channel current error,
I _{ERR_CC} = (I _{OUTX} - I _{AVE}) / I _{AVE} × 100% | All channels ON. Current set to 10 mA. MC = 2 CC = 127 DC = 255 PWM = 100% | -4 | | 4 | % | | | | All channels ON. Current set to 25 mA. MC = 7 CC = 64 DC = 255 PWM = 100% | -3.5 | | 3.5 | % | | | | All channels ON. Current set to 50 mA. MC = 7 CC = 127 DC = 255 PWM = 100% | -3 | | 3 | % | | f | LED DWM fraguency | PWM_Fre = 1, PWM = 100% | | 62.5 | | KHz | | † _{PWM} | LED PWM frequency | PWM Fre = 0, PWM = 100% | | 125 | | KHz | # 6.5 Electrical Characteristics (続き) V_{CC} = 3.3 V, V_{LED} = 3.8 V, VIO = 1.8 V and T_A = -40 °C to +85 °C (T_A = -55 °C to +125 °C for LP5866MDBT); Typical values are at T_A = 25 °C (unless otherwise specified) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------------|---|--|-----------|----------------------|-----------|------| | | | I _{OUT} = 50 mA, decreasing output voltage, when the LED current has dropped 5% | | | 0.45 | V | | V _{SAT} | Output saturation voltage | I _{OUT} = 30 mA, decreasing output voltage, when the LED current has dropped 5% | | | 0.4 | V | | | | I _{OUT} = 10 mA, decreasing output voltage, when the LED current has dropped 5% | | | 0.35 | V | | | | V _{LED} = 2.7 V, I _{SW} = 200 mA | | 450 | | mΩ | | R _{SW} | High-side PMOS ON resistance | V _{LED} = 3.8 V, I _{SW} = 200 mA | | 380 | | mΩ | | | | V _{LED} = 5 V, I _{SW} = 200 mA | | 310 | | mΩ | | Logic Inte | erfaces | | | | | | | V _{LOGIC_IL} | Low-level input voltage, SDA, SCL,
SCLK, MOSI, SS, ADDRx, VSYNC, IFS | | | C | 0.3 × VIO | V | | V _{LOGIC_IH} | High-level input voltage, SDA, SCL, SCLK, MOSI, SS, ADDRx, VSYNC, IFS | | 0.7 × VIO | | | V | | V _{EN_IL} | Low-level input voltage of EN | | | | 0.4 | V | | V _{EN_IH} | High-level input voltage of EN | When V _{CAP} powered up | 1.4 | | | V | | I _{LOGIC_I} | Input current, SDA, SCL, SCLK, MOSI, SS, ADDRx | | -1 | | 1 | μΑ | | V _{LOGIC_O} | Low-level output voltage, SDA, MISO | I _{PULLUP} = 3 mA | | | 0.4 | V | | V _{LOGIC_O} | High-level output voltage, MISO | I _{PULLUP} = –3 mA | 0.7 × VIO | | | V | | Protection | n Circuits | | | | | | | V _{LOD_TH} | Thershold for channel open detection | | | 0.25 | | V | | V _{LSD_TH} | Thershold for channel short detection | | \ | / _{LED} – 1 | | V | | T _{TSD} | Thermal-shutdown junction temperature | | | 150 | | °C | | T _{HYS} | Thermal shutdown temperature hysteresis | | | 15 | | °C | # 6.6 Timing Requirements | | | MIN | NOM | MAX | UNIT | |----------------------|---|------|------|-----|------| | MISC. Tim | ming Requirements | | | | | | fosc | Internal oscillator frequency | | 31.2 | | MHz | | f _{OSC_ERR} | Device to device oscillator frequency error | -3% | | 3% | | | t _{POR_H} | Wait time from UVLO disactive to device NORMAL | | | 500 | μs | | t _{CHIP_EN} | Wait time from setting Chip_EN (Register) =1 to device NORMAL | | | 100 | μs | | t _{RISE} | LED output rise time | | 10 | | ns | | t _{FALL} | LED output fall time | | 15 | | ns | | t _{VSYNC_H} | The minimum high-level pulse width of VSYNC | 200 | | | μs | | SPI timing | requirements | | | | | | f _{SCLK} | SPI Clock frequency | | | 12 | MHz | | 1 | Cycle time | 83.3 | | | ns | | 2 | SS active lead-time | 50 | | | ns | | 3 | SS active leg time | 50 | | | ns | | 4 | SS inactive time | 50 | | | ns | 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated 10 # 6.6 Timing Requirements (続き) | | | MIN | NOM MAX | UNIT | |-----------------------|--|----------|---------|------| | 5 | SCLK low time | 36 | | ns | | 6 | SCLK high time | 36 | | ns | | 7 | MOSI set-up time | 20 | | ns | | 8 | MOSI hold time | 20 | | ns | | 9 | MISO disable time | | 30 | ns | | 10 | MISO data valid time | | 35 | ns | | C _b | Bus capacitance | 5 | 40 | pF | | I ² C stan | ndard mode timing requirements | <u>'</u> | , | | | I ² C fast | mode timing requirements | | | | | f _{SCL} | I ² C clock frequency | 0 | 400 | KHz | | 1 | Hold time (repeated) START condition | 0.6 | | μs | | 2 | Clock low time | 1.3 | | μs | | 3 | Clock high time | 0.6 | | μs | | 4 | Setup time for a repeated START condition | 0.6 | | μs | | 5 | Data hold time | 0 | | μs | | 6 | Data setup time | 100 | | ns | | 7 | Rise time of
SDA and SCL | | 300 | ns | | 8 | Fall time of SDA and SCL | | 300 | ns | | 9 | Setup time for STOP condition | 0.6 | | μs | | 10 | Bus free time between a STOP and a START condition | 1.3 | | μs | | I ² C fast | mode plus timing requirements | 1 | 1 | | | f _{SCL} | I ² C clock frequency | 0 | 1000 | KHz | | 1 | Hold time (repeated) START condition | 0.26 | | μs | | 2 | Clock low time | 0.5 | | μs | | 3 | Clock high time | 0.26 | | μs | | 4 | Setup time for a repeated START condition | 0.26 | | μs | | 5 | Data hold time | 0 | | μs | | 6 | Data setup time | 50 | | ns | | 7 | Rise time of SDA and SCL | | 120 | ns | | 8 | Fall time of SDA and SCL | | 120 | ns | | 9 | Setup time for STOP condition | 0.26 | | μs | | 10 | Bus free time between a STOP and a START condition | 0.5 | | μs | 11 図 6-1. SPI Timing Parameters 図 6-2. I²C Timing Parameters # **6.7 Typical Characteristics** Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-40^{\circ}\text{C} < \text{TA} < +85^{\circ}\text{C}$), $V_{\text{CC}} = 3.3\text{V}$, $V_{\text{IO}} = 3.3$, $V_{\text{LED}} = 5\text{V}$, I_{LED} Peak = 50mA, $C_{\text{VLED}} = 1\mu\text{F}$, $C_{\text{VCC}} = 1\mu\text{F}$ # **6.7 Typical Characteristics (continued)** Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-40^{\circ}C < TA < +85^{\circ}C$), $V_{CC} = 3.3V$, $V_{IO} = 3.3$, $V_{LED} = 5V$, $I_{LED_Peak} = 50 \text{mA}$, $C_{VLED} = 1 \mu \text{F}$, $C_{VCC} = 1 \mu \text{F}$ # 7 Detailed Description #### 7.1 Overview The LP5866 is an 6×18 LED matrix driver. The device integrates 6 switching FETs with 18 constant current sinks. One LP5866 device can drive up to 108 LED dots or 36 RGB pixels by using time-multiplexing matrix scheme. The LP5866 supports both analog dimming and PWM dimming methods. For analog dimming, the current gain of each individual LED dot can be adjusted with 256 steps through 8-bits dot correction. For PWM dimming, the integrated 8-bits or 16-bits configurable, > 20kHz PWM generators for each LED dot enable smooth, vivid animation effects without audible noise. Each LED can also be mapped into a 8-bits group PWM to achieve the group control with minimum data traffic. The LP5866 device implements full addressable SRAM. The device supports entire SRAM data refresh and partial SRAM data update on demand to minimize the data traffic. The LP5866 implements the ghost cancellation circuit to eliminate both upside and downside ghosting. The LP5866 also uses low brightness compensation technology to support high density LED pixels. Both 1MHz (maximum) I²C and 12MHz (maximum) SPI interfaces are available in the LP5866. # 7.2 Functional Block Diagram 15 ### 7.3 Feature Description ### 7.3.1 Time-Multiplexing Matrix The LP5866 device uses time-multiplexing matrix scheme to support up to 108 LED dots with one chip. The device integrates 18 current sinks with 6 scan lines to drive $18 \times 6 = 108$ LED dots or $6 \times 6 = 36$ RGB pixels. In matrix control scheme, the device scans from Line 0 to Line 5 sequentially as shown in $\boxed{2}$ 7-1. Current gain and PWM duty registers are programmable for each LED dot to support individual analog and PWM dimming. 図 7-1. Scan Line Control Scheme There are 6 high-side p-channel MOSFETs (PMOS) integrated in LP5866 device. Users can flexibly set the active scan numbers from 1 to 6 by configuring the 'Max_Line_Num' in Dev_initial register. The time-multiplexing matrix timing sequence follows the \boxtimes 7-2. ☑ 7-2. Time-Multiplexing Matrix Timing Sequence One cycle time of the line switching can be calculated as below: $$t_{line\ switch} = t_{PWM} + t_{SW\ BLK} + 2 \times t_{phase\ shift}$$ (1) - t_{PWM} is the current sink active time, which equals to 8 us (PWM frequency set at 125 kHz) or 16 us (PWM frequency set at 62.5 kHz) by configuring 'PWM Fre' in Dev initial register. - t_{SW_BLK} is the switch blank time, which equals to 1 us or 0.5 us by configuring 'SW_BLK' in Dev_config1 register. - t_{phase_shift} is the PWM phase shift time, which equal to 0 or 125 ns by configuring 'PWM_Phase_Shift' in Dev_config1 register. Total display time for one complete sub-period is t_{sub_period} and it can be calculated by the following equation: $$t_{\text{sub_period}} = t_{\text{line_switch}} \times \text{Scan_line\#}$$ (2) • Scan line# is the scan line number determined by 'Max Line Num' in Dev initial register. The time-multiplexing matrix scheme time diagram is shown in 🗵 7-3. The t_{CS_ON_Shift} is the current sink turning on shift by configuring 'CS_ON_Shift' bit in Dev_config1 register. 図 7-3. Time-Multiplexing Matrix Timing Diagram The LP5866 device implements deghosting and low brightness compensation to remove the side effects of matrix topology: - Deghosting: Both upside deghosting and downside deghosting are implemented to eliminate the LED unexpected weak turn-on. - Upside_deghosting: discharge each scan line during its off state. By configuring the 'Up_Deghost' in Dev config3 register, the LP5866 discharges and clamps the scan line switch to a certain voltage. - Downside_deghosting: pre-charge each current sink voltage during its OFF state. The deghosting capability can be adjusted through the 'Down_Deghost' in Dev_config3 register. - Low Brightness Compensation: three groups compensation are implemented to overcome the color-shift and non-uniformity in low brightness conditions. The compensation capability can be through 'Comp Group1', 'Comp Group2', and 'Comp Group3' in Dev config2 register. - Compensation_group 1: CS0, CS3, CS6, CS9, CS12, CS15. - Compensation group 2: CS1, CS4, CS7, CS10, CS13, CS16. - Compensation_group 3: CS2, CS5, CS8, CS11, CS14, CS17. #### 7.3.2 Analog Dimming (Current Gain Control) Analog dimming of LP5866 is achieved by configuring the current gain control. There are several methods to control the current gain of each LED. - Global 3-bits Maximum Current (MC) setting without external resistor - · 3 groups of 7-bits Color Current (CC) setting - Individual 8-bit Dot Current (DC) setting ### Global 3-Bits Maximum Current (MC) Setting The MC is used to set the maximum current I_{OUT_MAX} for each current sink and this current is the maximum peak current for each LED dot. The MC can be set with 3 bits (8 steps) from 3 mA to 50 mA. When the device is powered on, the MC data is set to default value, which is 15 mA. For data refresh Mode 1, MC data is effective immediately after new data is updated. For Mode 2 and Mode 3, to avoid unexpected MC data change during high speed data refreshing, MC data must be changed when all channels are off and new MC data is only be updated when the 'Chip_EN' bit in Chip_en register is set to 0, and after the 'Chip_EN' returns to 1, the new MC data is effective. 'Down_Deghost' and 'Up_Deghost' in Dev_config3 work in the similar way with MC. Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 17 表 7-1. Maximum Current (MC) Register Setting | 3-BITS MAXIMUM_C | URRENT REGISTER | I _{OUT_MAX} | |------------------|-----------------|----------------------| | Binary | Decimal | mA | | 000 | 0 | 3 | | 001 | 1 | 5 | | 010 | 2 | 10 | | 011 (default) | 3 (default) | 15 (default) | | 100 | 4 | 20 | | 101 | 5 | 30 | | 110 | 6 | 40 | | 111 | 7 | 50 | ### 3 Groups of 7-Bits Color Current (CC) Setting The LP5866 device can adjust the output current of three color groups separately. For each color, the device has 7-bits data in 'CC_Group1', 'CC_Group2', and 'CC_Group3'. Thus, all color group currents can be adjusted in 128 steps from 0% to 100% of the maximum output current, I_{OUT_MAX}. The 18 current sinks have fixed mapping to the three color groups: - CC-Group 1: CS0, CS3, CS6, CS9, CS12, CS15. - CC-Group 2: CS1, CS4, CS7, CS10, CS13, CS16. - CC-Group 3: CS2, CS5, CS8, CS11, CS14, CS17. 表 7-2. 3 Groups of 7-bits Color Current (CC) Setting | | 27 210 Groups of 1 bits color current (co) cotting | | | | | | | | | |-------------------------|--|---|--|--|--|--|--|--|--| | 7-BITS CC_GROUP1/CC_GRO | DUP2/CC_GROUP3 REGISTER | RATIO OF OUTPUT CURRENT TO I _{OUT_MAX} | | | | | | | | | Binary | Decimal | % | | | | | | | | | 000 0000 | 0 | 0 | | | | | | | | | 000 0001 | 1 | 0.79 | | | | | | | | | 000 0010 | 2 | 1.57 | 100 0000 (default) | 64 (default) | 50.4 (default) | 111 1101 | 125 | 98.4 | | | | | | | | | 111 1110 | 126 | 99.2 | | | | | | | | | 111 1111 | 127 | 100 | | | | | | | | #### Individual 8-bit Dot Current (DC) Setting The LP5866 can individually adjust the output current of each LED by using dot current function through DC setting. The device allows the brightness deviations of the LEDs to adjusted be individually. Each output DC is programmed with a 8-bit depth, so the value can be adjusted with 256 steps within the range from 0% to 100% of ($I_{OUT\ MAX} \times CC/127$). 表 7-3. Individual 8-bit Dot Current (DC) Setting | 8-BIT DC | REGISTER | RATIO OF OUTPUT CURRENT TO I _{OUT_MAX} × CC/127 | | | | | |-----------|----------|--|--|--|--|--| | Binary | Decimal | % | | | | | | 0000 0000 | 0 | 0 | | | | | | 0000 0001 | 1 | 0.39 | | | | | | 0000 0010 | 2 | 0.78 | | | | | | | | | | | | | Copyright © 2024 Texas Instruments Incorporated | 致 7-3. Individual 0-bit Dot Odiffert (DO) Setting (MLC) | | | | | | | | | |---|---------------|--|--|--|--|--|--|--| | 8-BIT DC | REGISTER | RATIO OF OUTPUT CURRENT TO I _{OUT_MAX} × CC/127 | | | | | | | | Binary | Decimal | % | | | | | | | | 1000 0000 (default) | 128 (default) | 50.2 (default) | | | | | | | | | | | | | | | | | | 1111 1101 | 253 | 99.2 | | |
| | | | | 1111 1110 | 254 | 99.6 | | | | | | | | 1111 1111 | 255 | 100 | | | | | | | 表 7-3. Individual 8-bit Dot Current (DC) Setting (続き) In summary, the current gain of each current sink can be calculated as below: $$I_{OUT}$$ (mA) = $I_{OUT MAX} \times (CC/127) \times (DC/255)$ (3) For time-multiplexing scan scheme, if the scan number is N, each LED dot average current I_{AVG} is shown as below: $$I_{AVG}$$ (mA) = I_{OUT} / N = $I_{OUT\ MAX}$ × (CC/127) × (DC/255) / N (4) ### 7.3.3 PWM Dimming There are several methods to control the PWM duty cycle of each LED dot. #### Individual 8-bit / 16-bit PWM for Each LED Dot Every LED has an individual 8-bit or 16-bit PWM register that is used to change the LED brightness by PWM duty. The LP5866 uses an enhanced spectrum PWM (ES-PWM) algorithm to achieve 16-bit depth with high refresh rate, which can avoid flicker under a high speed camera. Comparing with conventional 8-bit PWM, 16-bit PWM can help to achieve ultimate high dimming resolution in LED animation applications. ### • 3 Programmable Groups of 8-bit PWM Dimming The group PWM Control is used to select LEDs into 1 to 3 groups where each group has a separate register for duty cycle control. Every LED has 2-bit selection in LED_DOT_GROUP Registers (x = 0, 1, ..., 29.) to select whether it belongs to one of the three groups or not: - 00: not a member of any group - 01: member of group 1 - 10: member of group 2 - 11: member of group 3 #### 8-bit PWM for Global Dimming The Global PWM Control function affects all LEDs simultaneously. The final PWM duty cycle can be calculated as below: The LP5866 supports 125-kHz or 62.5-kHz PWM output frequency. The PWM frequency is selected by configuring the 'PWM_Fre' in Dev_initial register. An internal 31.2-MHz oscillator is used for generating PWM outputs. The high-accuracy design of the oscillator ($f_{OSC_ERR} \le \pm 2\%$) enables a better synchronization if multiple LP5866 devices are connected together. A PWM phase-shifting scheme is implemented in each current sink to avoid the current overshot when turning on simultaneously. As the LED drivers are not activated simultaneously, the peak load current from the pre-stage power supply is significantly decreased. This scheme also reduces input-current ripple and ceramic-capacitor audible ringing. LED drivers are grouped into three different phases. By configuring the 'PWM_Phase_Shift' in Dev_config1 register, which is default off, the LP5866 supports $t_{phase\ shift}$ = 125-ns shifting time shown in \boxtimes 7-4. - Phase 1: CS0, CS3, CS6, CS9, CS12, CS15. - Phase 2: CS1, CS4, CS7, CS10, CS13, CS16. - Phase 3: CS2, CS5, CS8, CS11, CS14, CS17. 図 7-4. Phase Shift To avoid high current sinks output ripple during line switching, current sinks can be configured to turn on with 1 clock delay (62.5 ns or 31.25 ns according to the PWM frequency) after lines turn on, as shown in \boxtimes 7-3. This function can be configured by 'CS_ON_Shift' in Dev_config1 register. The LP5866 allows users to configure the dimming scale either exponentially (Gamma Correction) or linearly through the 'PWM_Scale_Mode' in Dev_config1 register. If a human-eye-friendly dimming curve is desired, using the internal fixed exponential scale is an easy approach. If a special dimming curve is desired, TI recommends using the linear scale with software correction. The LP5866 supports both linear and exponential dimming curves under 8-bit and 16-bit PWM depth. \boxtimes 7-5 is an example of 8-bit PWM depth. 図 7-5. Linear and Exponential Dimming Curves In summary, 🗵 7-6 illustrates the PWM control method: 図 7-6. PWM Control Scheme #### 7.3.4 ON and OFF Control The LP5866 device supports the individual ON and OFF control of each LED. For indication purpose, users can turn on and off the LED directly by writing 1-bit ON and OFF data to the corresponding Dot_onoffx (x = 0, 1, ..., 17) register. #### 7.3.5 Data Refresh Mode The LP5866 supports three data refresh modes: Mode 1, Mode 2, and Mode 3, by configuring 'Data_Ref_Mode' in Dev_initial register. **Mode 1**: 8-bit PWM data without VSYNC command. Data is sent out for display instantly after received. With Mode 1, users can refresh the corresponding dot data, only instead of updating the whole SRAM. It is called 'on demand data refresh', which can save the total data volume effectively. As shown in ☑ 7-7, the red LED dots can be refreshed after sending the corresponding data while the others kept the same with last frame. 図 7-7. On Demand Data Refresh - Mode 1 **Mode 2**: 8-bit PWM data with VSYNC command. Data is held and sent out simultaneously by frame after receiving the VSYNC command. **Mode 3**: 16-bit PWM data with VSYNC command. Data is held and sent out simultaneously by frame after receiving the VSYNC command. Frame control is implemented in Mode 2 and Mode 3. Instead of refreshing the output instantly after data is received (Mode 1), the device holds the data and refreshes the whole frame data by a fixed frame rate, f_{VSYNC}. Usually, 24Hz, 50Hz, 60Hz, 120Hz or even higher frame rate is selected to achieve vivid animation effects. Whole SRAM Data Refresh is shown in \boxtimes 7-8, a new frame is updated after receiving the VSYNC command. 図 7-8. Whole SRAM Data Refresh Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 21 Comparing with Mode 1, Mode 2 and Mode 3 provide a better synchronization when multiple LP5866 devices used together. A high-level pulse width longer than t_{SYNC_H} is required at the beginning of each VSYNC frame. \boxtimes 7-9 shows the VSYNC connections and \boxtimes 7-10 shows the timing requirements. 図 7-9. Multiple Devices Sync 図 7-10. VSYNC Timing Table 8-4 is the summary of the three data refresh modes. 表 7-4. Data Refresh Mode | MODE TYPE | PWM RESOLUTION | PWM OUTPUT | EXTERNAL VSYNC | |-----------|----------------|------------------------|----------------| | Mode 1 | 8 Bits | Data update instantly | No | | Mode 2 | 8 Bits | Data update by frame | Yes | | Mode 3 | 16 Bits | - Data update by frame | ies | ### 7.3.6 Full Addressable SRAM SRAM is implemented inside the LP5866 device to support data writing and reading at the same time. Although data refresh mechanisms are not the same for Mode 1 and Mode 2, and Mode 3, the data writing and reading follow the same method. Uses can update partial of the SRAM data only or the whole SRAM page simultaneously. The LP5866 supports auto-increment function to minimize data traffic and increase data transfer efficiency. Please note that 16-bit PWM (Mode 3) and 8-bit PWM (Mode 1 and Mode 2) are assigned with different SRAM addresses. ### 7.3.7 Protections and Diagnostics ### LED Open Detection The LP5866 includes LED open detection (LOD) for the fault caused by any opened LED dot. The threshold for LED open is 0.25V typical. LED open detection is only performed when PWM \geq 25 (Mode 1 and Mode 2) or PWM \geq 6400 (Mode 3) and voltage on CSn is detected lower than open threshold for continuously 4 subperiods. \boxtimes 7-11 shows the detection circuit of LOD function. When open fault is detected, 'Global_LOD' bit in Fault_state register is set to 1 and detailed fault state for each LED is also monitored in register Dot_lodx (x = 0, 1, ..., 17). All open fault indicator bits can be cleared by setting LOD_clear = 0Fh after the open condition is removed. LOD removal function can be enabled by setting 'LOD_removal' bit in Dev_config2 register to 1. This function turns off the current sink of the open channel when scanning to the line where the opened LED is included. 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyrig English Data Sheet: SNVSC36 図 7-11. LOD Circuits #### **LED Short Detection** The LP5866 includes LED short detection (LSD) for the fault caused by any shorted LED. Threshold for channel short is (VLED - 1) V typical. LED short detection only performed when PWM \geq 25 (Mode 1 and Mode 2) or PWM \geq 6400 (Mode 3) and voltage on CSn is detected higher than short threshold for continuously 4 subperiods. As there is parasitic capacitance for the current sink, to make sure the LSD result is correct, TI recommends to set the LED current higher than 0.5mA. ☑ 7-12 shows the detection circuit of LSD function. When short fault is detected, 'Global_LSD bit' in Fault_state register is set to 1 and detailed fault state for every channel can also be monitored in register Dot_lsdx (x = 0, 1, ..., 17). All short fault indicator bits can be cleared by setting LSD_clear = 0Fh after the short condition is removed. LSD removal function can be enabled by setting 'LSD_removal' bit in Dev_config2 register to 1. This function turns off the upside deghosting function of the scan line where short LED is included. 図 7-12. LSD Circuit #### Thermal Shutdown The LP5866 device implements thermal shutdown mechanism to protect the device from damage due to overheating. When the junction temperature rises to 160°C (typical) and above, the device switches into shutdown mode. The LP5866 exits thermal shutdown when the junction temperature of the device drops to 145°C (typical) and below. ### **UVLO** (Undervoltage Lockout) The LP5866 has an internal comparator that monitors the voltage at VCC. When VCC is below V_{UVF} , reset is active and the LP5866 enters INITIALIZATION state. #### 7.4 Device Functional Modes 図 7-13. Device Functional Modes - Shutdown: The device enters into shutdown mode from all states on VCC power up or EN pin is low. - Hardware POR: The device enters into hardware POR when Enable pin is high or VCC fall under V_{UVF} causing UVLO = H from all states. - Software reset: The device enters into software reset mode when VCC rise higher than V_{UVR} with the time t > t_{POR_H}. In this mode, all the registers are reset. Entry can also be from any state when the RESET (register) = FFh or UVLO is low. - Standby: The device enters the standby mode when Chip_EN (register) = 0. In this mode, the device
enters into low power mode, but the I²C/SPI are still available for Chip_EN only and the register data is retained. - Normal: The device enters the normal mode when 'Chip_EN' = 1 with the time t > t_{CHIP_EN}. - Thermal shutdown: The device automatically enters the thermal shutdown mode when the junction temperature exceeds 160°C (typical). If the junction temperature decreases below 145°C (typical), the device returns to the normal mode. 25 ### 7.5 Programming #### Interface Selection The LP5866 supports two communication interfaces: I²C and SPI. If IFS is high, it enters into SPI mode. If IFS is low, it enters into I²C mode. 表 7-5. Interface Selection | INTERFACE TYPE | ENTRY CONDITION | |------------------|-----------------| | l ² C | IFS = Low | | SPI | IFS = High | #### I²C Interface The LP5866 is compatible with I²C standard specification. the device supports both fast mode (400kHz maximum) and fast plus mode (1MHz maximum). #### I²C Data Transactions The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can only be changed when clock signal is LOW. START and STOP conditions classify the beginning and the end of the data transfer session. A START condition is defined as the SDA signal transitioning from HIGH to LOW while SCL line is HIGH. A STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The bus leader always generates START and STOP conditions. The bus is considered to be busy after a START condition and free after a STOP condition. During data transmission, the bus leader can generate repeated START conditions. First START and repeated START conditions are functionally equivalent. Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the leader. The leader releases the SDA line (HIGH) during the acknowledge clock pulse. The device pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The device generates an acknowledge after each byte has been received. There is one exception to the acknowledge after every byte rule. When the leader is the receiver, it must indicate to the transmitter an end of data by not acknowledging (negative acknowledge) the last byte clocked out of the follower. This negative acknowledge still includes the acknowledge clock pulse (generated by the leader), but the SDA line is not pulled down. #### I²C Data Format The address and data bits are transmitted MSB first with 8-bits length format in each cycle. Each transmission is started with Address Byte 1, which are divided into 5-bits of the chip address, 2 higher bits of the register address, and 1 read and write bit. The other 8 lower bits of register address are put in Address Byte 2. The device supports both independent mode and broadcast mode. The auto-increment feature allows writing and reading several consecutive registers within one transmission. If not consecutive, a new transmission must be started. 表 7-6. I²C Data Format | Address Byte 1 | | | Chip Address | Register | R/W | | | | | | |----------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--|--| | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | | Independent | 1 | 0 | 0 | ADDR1 | ADDR0 | 9 th bit | 8 th bit | R: 1 W: 0 | | | | Broadcast | 1 | 0 | 1 | 0 | 1 | 9 DIL | O., DIL | K. I W. U | | | | | Register Address | | | | | | | | | | | Address Byte 2 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | | | 7 th bit | 6 th bit | 5 th bit | 4 th bit | 3 th bit | 2 th bit | 1 th bit | 0 th bit | | | 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated ### 図 7-14. I²C Write Timing 図 7-15. I²C Read Timing ### **Multiple Devices Connection** The LP5866 enters into I^2C mode if IFS is connected to GND. The ADDR0/1 pin is used to select the unique I^2C follower address for each device. The SCL and SDA lines must each have a pullup resistor (4.7K Ω for 400kHz, 2K Ω for 1MHz) placed somewhere on the line and remain HIGH even when the bus is idle. VIO_EN can either be connected with VIO power supply or GPIO. TI suggests to put one 1nF cap as closer to VIO_EN pin as possible. Up to four LP5866 follower devices can share the same I^2C bus by the different ADDR configurations. ☑ 7-16. I²C Multiple Devices Connection ### **SPI Interface** The LP5866 is compatible with SPI serial-bus specification, and it operates as a follower. The maximum frequency supported by LP5866 is 12MHz. #### SPI Data Transactions MISO output is normally in a high impedance state. When the follower-select pin SS for the device is active (low) the MISO output is pulled low for read only. During write cycle MISO stays in high-impedance state. The follower-select signal SS must be low during the cycle transmission. SS resets the interface when high. Data is clocked in on the rising edge of the SCLK clock signal, while data is clocked out on the falling edge of SCLK. #### SPI Data Format 資料に関するフィードバック(ご意見やお問い合わせ)を送信 27 The address and data bits are transmitted MSB first with 8-bits length format in each cycle. Each transmission is started with Address Byte 1, which contains 8 higher bits of the register address. The Address Byte 2 is started with 2 lower bits of the register address and 1 read and write bit. The auto-increment feature allows writing and reading several consecutive registers within one transmission. If not consecutive, a new transmission must be started. 表 7-7. SPI Data Format | Address
Byte 1 | Register Address | | | | | | | | | | | |-------------------|--|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--|--|--| | | Bit 7 | Bit 6 | Bit 5 | Bit 4 Bit 3 | | Bit 2 | Bit 1 | Bit 0 | | | | | | 9 th bit | 8 th bit | 7 th bit | 6 th bit | 5 th bit | 4 th bit | 3 th bit | 2 th bit | | | | | Address
Byte 2 | Register | Register Address | | | | | | | | | | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | | | | 1 th bit 0 th bit R: 0 W: 1 Don't Care | | | | | | | | | | | 図 7-17. SPI Write Timing 図 7-18. SPI Read Timing ### **Multiple Devices Connection** The device enters into SPI mode if IFS is pulled high to VIO through a pullup resistor ($4.7K\Omega$ recommended). VIO_EN can either be connected with VIO power supply or GPIO. TI suggests to put one 1nF cap as closer to VIO_EN pin as possible. In SPI mode host can address as many devices as there are follower select pins on host. ☑ 7-19. SPI Multiple Devices Connection # 7.6 Register Maps This section provides a summary of the register maps. For detailed register functions and descriptions, please refer to *LP5866 11x18 LED Matrix Driver Register Maps*. 表 7-8. Register Section, Block Access Type Codes | zer er kegister esetten, zieek kesese Type esette | | | | | | | | |---|------|--|--|--|--|--|--| | Access Type | Code | Description | | | | | | | Read Type | | | | | | | | | R | R | Read | | | | | | | RC | R | Read | | | | | | | | С | to Clear | | | | | | | R-0 | R | Read | | | | | | | | -0 | Returns 0s | | | | | | | Write Type | | | | | | | | | W | W | Write | | | | | | | W0CP | W | W | | | | | | | | 0C | 0 to clear | | | | | | | | P | Requires privileged access | | | | | | | Reset or Default Value | | | | | | | | | -n | | Value after reset or the default value | | | | | | | Register
Acronym | Address | Туре | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Default | |---------------------|---------|------|----------|-----------|----------------------|----------|-------------|----|-----------------|-----------------|---------| | Chip_en | 000h | R/W | Reserved | served | | | | | | Chip_EN | 00h | | Dev_initial | 001h | R/W | Reserved | Max_Line_ | Max_Line_Num Data_Re | | | | Mode | PWM_Fre | 5Eh | | Dev_config1 | 002h | R/W | Reserved | Reserved | Reserved | Reserved | SW_BLK | _ | _ | CS_ON_
Shift | 00h | | Dev_config2 | 003h | R/W | Comp_Gro | up3 | Comp_Group2 | | Comp_Group1 | | LOD_rem
oval | LSD_rem
oval | 00h | 29 | Dev_config3 | 004h | R/W | Down_Deg | phost | Up_Degho | st | Maximum_ | Current | | Up_Degh
ost_enabl
e | 47h | |---------------|------|-----|--------------------------|-------------------------------------|--------------------------|-------------------------------------|-------------------------------------|--------------------------|--------------------------|---------------------------|-----| | Global_bri | 005h | R/W | PWM_Glob | VM_Global F | | | | | FFh | | | | Group0_bri | 006h | R/W | PWM_Gro | up1 | | | | | | | FFh | | Group1_bri | 007h | R/W | PWM_Gro | up2 | | | | | | | FFh | | Group2_bri | 008h | R/W | PWM_Gro | up3 | | | | | | | FFh | | R_current_set | 009h | R/W | Reserved | CC_Group | 1 | | | | | | 40h | | G_current_set | 00Ah | R/W | Reserved | CC_Group | 2 | | | | | | 40h | | B_current_set | 00Bh | R/W | Reserved | CC_Group | 3 | | | | | | 40h | | Dot_grp_sel0 | 00Ch | R/W | Dot L0-CS | 3 group | Dot L0-CS | 2 group | Dot L0-CS | 1 group | Dot L0-CS | 0 group | 00h | | Dot_grp_sel1 | 00Dh | R/W | Dot L0-CS | 7 group | Dot L0-CS | 6 group | Dot L0-CS | 5 group | Dot L0-CS | 4 group | 00h | | Dot_grp_sel2 | 00Eh | R/W | Dot L0-CS | 11 group | Dot L0-CS | 10 group | Dot L0-CS | 9 group | Dot L0-CS | 8 group | 00h | | Dot_grp_sel3 | 00Fh | R/W | Dot L0-CS | 15 group | Dot L0-CS | 14 group | Dot L0-CS | 13 group | Dot L0-CS | 12 group | 00h | | Dot_grp_sel4 | 010h | R/W | Reserved | | | | Dot L0-CS | 17 group | Dot L0-CS | 16 group | 00h | | Dot_grp_sel5 | 011h | R/W | Dot L1-CS | 3 group | Dot L1-CS | 2 group | Dot L1-CS | 1
group | Dot L1-CS | 0 group | 00h | | Dot_grp_sel6 | 012h | R/W | Dot L1-CS | 7 group | Dot L1-CS | 6 group | Dot L1-CS | 5 group | Dot L1-CS | 4 group | 00h | | Dot_grp_sel7 | 013h | R/W | Dot L1-CS | 11 group | Dot L1-CS | 10 group | Dot L1-CS | 9 group | Dot L1-CS | 8 group | 00h | | Dot_grp_sel8 | 014h | R/W | Dot L1-CS | 15 group | Dot L1-CS | 14 group | Dot L1-CS | 13 group | Dot L1-CS | 12 group | 00h | | Dot_grp_sel9 | 015h | R/W | Reserved | | | | Dot L1-CS17 group Dot L1-CS16 group | | | 16 group | 00h | | Dot_grp_sel10 | 016h | R/W | Dot L2-CS | 3 group | Dot L2-CS | 2 group | Dot L2-CS1 group Do | | Dot L2-CS | 0 group | 00h | | Dot_grp_sel11 | 017h | R/W | Dot L2-CS | Dot L2-CS7 group Dot L2-CS6 group | | Dot L2-CS5 group Dot L2-CS4 group | | | 4 group | 00h | | | Dot_grp_sel12 | 018h | R/W | Dot L2-CS | Dot L2-CS11 group Dot L2-CS10 group | | Dot L2-CS9 group Dot L2-CS8 group | | | 8 group | 00h | | | Dot_grp_sel13 | 019h | R/W | Dot L2-CS | Dot L2-CS15 group Dot L2-CS14 group | | Dot L2-CS13 group Dot L2-CS12 group | | | 12 group | 00h | | | Dot_grp_sel14 | 01Ah | R/W | Reserved | Reserved | | Dot L2-CS17 group Dot L2-CS16 group | | | 16 group | 00h | | | Dot_grp_sel15 | 01Bh | R/W | Dot L3-CS | 3 group | Dot L3-CS | 2 group | Dot L3-CS1 group Dot L3-CS0 group | | | 0 group | 00h | | Dot_grp_sel16 | 01Ch | R/W | Dot L3-CS | 7 group | Dot L3-CS | 6 group | Dot L3-CS5 group Dot L3-CS4 group | | | 4 group | 00h | | Dot_grp_sel17 | 01Dh | R/W | Dot L3-CS | 11 group | Dot L3-CS | 10 group | Dot L3-CS9 group Dot L3-CS8 group | | | 8 group | 00h | | Dot_grp_sel18 | 01Eh | R/W | Dot L3-CS | 15 group | Dot L3-CS | 14 group | Dot L3-CS13 group Dot L3-CS12 group | | | 12 group | 00h | | Dot_grp_sel19 | 01Fh | R/W | Reserved | | | | Dot L3-CS17 group Dot L3-CS16 group | | | 16 group | 00h | | Dot_grp_sel20 | 020h | R/W | Dot L4-CS | 3 group | Dot L4-CS | 2 group | Dot L4-CS1 group Dot L4-CS0 | | | 0 group | 00h | | Dot_grp_sel21 | 021h | R/W | Dot L4-CS | 7 group | Dot L4-CS | 6 group | Dot L4-CS5 group Dot L4-0 | | Dot L4-CS | 4 group | 00h | | Dot_grp_sel22 | 022h | R/W | Dot L4-CS | 11 group | Dot L4-CS | 10 group | Dot L4-CS | 9 group | Dot L4-CS | 8 group | 00h | | Dot_grp_sel23 | 023h | R/W | Dot L4-CS | 15 group | Dot L4-CS | 14 group | Dot L4-CS | 13 group | Dot L4-CS | 12 group | 00h | | Dot_grp_sel24 | 024h | R/W | Reserved | | | | Dot L4-CS | 17 group | Dot L4-CS | 16 group | 00h | | Dot_grp_sel25 | 025h | R/W | Dot L5-CS | 3 group | Dot L5-CS | 2 group | Dot L5-CS | 1 group | Dot L5-CS | 0 group | 00h | | Dot_grp_sel26 | 026h | R/W | Dot L5-CS | 7 group | Dot L5-CS | 6 group | Dot L5-CS | 5 group | Dot L5-CS | 4 group | 00h | | Dot_grp_sel27 | 027h | R/W | Dot L5-CS | 11 group | Dot L5-CS | 10 group | Dot L5-CS | 9 group | Dot L5-CS | 8 group | 00h | | Dot_grp_sel28 | 028h | R/W | Dot L5-CS | 15 group | Dot L5-CS | 14 group | Dot L5-CS | | Dot L5-CS | 12 group | 00h | | Dot_grp_sel29 | 029h | R/W | Reserved | | | | Dot L5-CS | | Dot L5-CS | 16 group | 00h | | Dot_onoff0 | 043h | R/W | Dot L0-
CS7 onoff | Dot L0-
CS6 onoff | Dot L0-
CS5 onoff | Dot L0-
CS4 onoff | Dot L0-
CS3 onoff | Dot L0-
CS2 onoff | Dot L0-
CS1 onoff | Dot L0-
CS0 onoff | FFh | | Dot_onoff1 | 044h | R/W | Dot L0-
CS15
onoff | Dot L0-
CS14
onoff | Dot L0-
CS13
onoff | Dot L0-
CS12
onoff | Dot L0-
CS11
onoff | Dot L0-
CS10
onoff | Dot L0-
CS9 onoff | Dot L0-
CS8 onoff | FFh | | Dot_onoff2 | 045h | R/W | Reserved | | | | • | • | Dot L0-
CS17
onoff | Dot L0-
CS16
onoff | 03h | 046h R/W Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-FFh Dot_onoff3 CS7 onoff CS6 onoff CS5 onoff CS4 onoff CS3 onoff CS2 onoff CS1 onoff CS0 onoff 047h R/W Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-FFh Dot I 1-Dot I 1-Dot I 1-Dot_onoff4 CS8 onoff CS15 **CS14** CS13 CS12 CS11 CS10 CS9 onoff onoff onoff onoff onoff onoff onoff 048h R/W 03h Dot_onoff5 Reserved Dot L1-Dot L1-CS17 CS16 onoff onoff Dot L2-Dot L2-FFh Dot_onoff6 049h R/W Dot L2-Dot L2-Dot L2-Dot L2-Dot L2-Dot L2-CS7 onoff CS6 onoff CS5 onoff CS4 onoff CS3 onoff CS2 onoff CS1 onoff CS0 onoff R/W Dot L2-Dot L2-Dot L2-Dot L2-Dot I 2-Dot I 2-Dot I 2-Dot_onoff7 04Ah Dot I 2-FFh CS15 CS14 CS13 CS12 CS11 CS10 CS9 onoff CS8 onoff onoff onoff onoff onoff onoff onoff Dot onoff8 04Bh R/W Reserved Dot L2-Dot L2-03h CS17 CS16 onoff onoff Dot_onoff9 04Ch R/W Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-FFh CS7 onoff CS6 onoff CS5 onoff CS4 onoff CS3 onoff CS2 onoff CS1 onoff CS0 onoff Dot L3-Dot L3-04Dh R/W Dot I 3-Dot I 3-Dot L3-Dot L3-Dot L3-Dot L3-FFh Dot_onoff10 CS15 CS14 CS13 CS12 CS11 CS10 CS9 onoff CS8 onoff onoff onoff onoff onoff onoff onoff Dot_onoff11 04Eh R/W Reserved Dot L3-Dot L3-03h CS17 CS16 onoff onoff 04Fh R/W Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-FFh Dot_onoff12 Dot L4-Dot L4-Dot I 4-CS7 onoff CS6 onoff CS5 onoff CS4 onoff CS3 onoff CS2 onoff CS1 onoff CS0 onoff Dot L4-Dot L4-FFh Dot_onoff13 050h R/W Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-CS15 CS14 CS13 CS12 CS11 CS10 CS9 onoff CS8 onoff onoff onoff onoff onoff onoff onoff Dot onoff14 051h R/W Reserved Dot L4-Dot L4-03h CS17 CS16 onoff onoff Dot onoff15 052h R/W Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-FFh CS4 onoff CS7 onoff CS6 onoff CS5 onoff CS3 onoff CS2 onoff CS1 onoff CS0 onoff R/W Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-FFh Dot_onoff16 053h CS15 CS14 CS13 CS12 CS11 CS10 CS9 onoff CS8 onoff onoff onoff onoff onoff onoff onoff Dot_onoff17 054h R/W Reserved Dot L5-Dot L5-03h CS17 CS16 onoff onoff R Fault_state 064h Reserved Global_L Global L 00h OD SD 065h R Dot I 0-Dot L0-Dot I 0-Dot I 0-Dot I 0-Dot I 0-Dot I 0-Dot I 0-00hDot_lod0 CS7 LOD CS6 LOD CS5 LOD CS4 LOD CS3 LOD CS2 LOD CS1 LOD CS0 LOD Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-Dot_lod1 066h R Dot L0-00h CS15 **CS14** CS13 CS12 CS11 CS10 CS9 LOD CS8 LOD LOD LOD LOD LOD LOD LOD Dot lod2 067h R Reserved Dot L0-Dot L0-00h CS17 CS16 I OD LOD 068h Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-00h Dot lod3 R Dot L1-Dot L1-CS5 LOD CS7 LOD CS6 LOD CS4 LOD CS3 LOD CS2 LOD CS0 LOD CS1 LOD 069h R Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-00h Dot_lod4 Dot L1-Dot L1-CS8 LOD CS15 CS14 CS13 CS12 **CS11** CS10 CS9 LOD LOD LOD LOD LOD LOD LOD Dot_lod5 06Ah R Reserved Dot L1-Dot L1-00h CS17 **CS16** LOD LOD | Dot_lod6 | 06Bh | R | Dot L2-
CS7 LOD | Dot L2-
CS6 LOD | Dot L2-
CS5 LOD | Dot L2-
CS4 LOD | Dot L2-
CS3 LOD | Dot L2-
CS2 LOD | Dot L2-
CS1 LOD | Dot L2-
CS0 LOD | 00h | |-----------|------|---|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-----| | Dot_lod7 | 06Ch | R | Dot L2-
CS15
LOD | Dot L2-
CS14
LOD | Dot L2-
CS13
LOD | Dot L2-
CS12
LOD | Dot L2-
CS11
LOD | Dot L2-
CS10
LOD | Dot L2-
CS9 LOD | Dot L2-
CS8 LOD | 00h | | Dot_lod8 | 06Dh | R | Reserved | | | | | | Dot L2-
CS17
LOD | Dot L2-
CS16
LOD | 00h | | Dot_lod9 | 06Eh | R | Dot L3-
CS7 LOD | Dot L3-
CS6 LOD | Dot L3-
CS5 LOD | Dot L3-
CS4 LOD | Dot L3-
CS3 LOD | Dot L3-
CS2 LOD | Dot L3-
CS1 LOD | Dot L3-
CS0 LOD | 00h | | Dot_lod10 | 06Fh | R | Dot L3-
CS15
LOD | Dot L3-
CS14
LOD | Dot L3-
CS13
LOD | Dot L3-
CS12
LOD | Dot L3-
CS11
LOD | Dot L3-
CS10
LOD | Dot L3-
CS9 LOD | Dot L3-
CS8 LOD | 00h | | Dot_lod11 | 070h | R | Reserved | | | | | | Dot L3-
CS17
LOD | Dot L3-
CS16
LOD | 00h | | Dot_lod12 | 071h | R | Dot L4-
CS7 LOD | Dot L4-
CS6 LOD | Dot L4-
CS5 LOD | Dot L4-
CS4 LOD | Dot L4-
CS3 LOD | Dot L4-
CS2 LOD | Dot L4-
CS1 LOD | Dot L4-
CS0 LOD | 00h | | Dot_lod13 | 072h | R | Dot L4-
CS15
LOD | Dot L4-
CS14
LOD | Dot L4-
CS13
LOD | Dot L4-
CS12
LOD | Dot L4-
CS11
LOD | Dot L4-
CS10
LOD | Dot L4-
CS9 LOD | Dot L4-
CS8 LOD | 00h | | Dot_lod14 | 073h | R | Reserved | | | | | Dot L4-
CS17
LOD | Dot L4-
CS16
LOD | 00h | | | Dot_lod15 | 074h | R | Dot L5-
CS7 LOD | Dot L5-
CS6 LOD | Dot L5-
CS5 LOD | Dot L5-
CS4 LOD | Dot L5-
CS3 LOD | Dot L5-
CS2 LOD | Dot L5-
CS1 LOD | Dot L5-
CS0 LOD | 00h | | Dot_lod16 | 075h | R | Dot L5-
CS15
LOD | Dot L5-
CS14
LOD | Dot L5-
CS13
LOD | Dot L5-
CS12
LOD | Dot L5-
CS11
LOD | Dot L5-
CS10
LOD | Dot L5-
CS9 LOD | Dot L5-
CS8 LOD | 00h | | Dot_lsd0 | 086h | R | Dot L0-
CS7 LSD | Dot L0-
CS6 LSD | Dot L0-
CS5 LSD | Dot L0-
CS4 LSD | Dot L0-
CS3 LSD | Dot L0-
CS2 LSD | Dot L0-
CS1 LSD | Dot L0-
CS0 LSD | 00h | | Dot_lsd1 | 087h | R | Dot L0-
CS15
LSD | Dot L0-
CS14
LSD | Dot L0-
CS13
LSD | Dot L0-
CS12
LSD | Dot L0-
CS11
LSD | Dot L0-
CS10
LSD | Dot L0-
CS9 LSD | Dot L0-
CS8 LSD | 00h | | Dot_lsd2 | 088h | R | Reserved | | | | | | Dot L0-
CS17
LSD | Dot L0-
CS16
LSD | 00h | | Dot_lsd3 | 089h | R | Dot L1-
CS7 LSD | Dot L1-
CS6 LSD | Dot L1-
CS5 LSD | Dot L1-
CS4 LSD | Dot L1-
CS3 LSD | Dot L1-
CS2 LSD | Dot L1-
CS1 LSD | Dot L1-
CS0 LSD | 00h | | Dot_lsd4 | 08Ah | R | Dot L1-
CS15
LSD | Dot L1-
CS14
LSD | Dot L1-
CS13
LSD | Dot L1-
CS12
LSD | Dot L1-
CS11
LSD | Dot L1-
CS10
LSD | Dot L1-
CS9 LSD | Dot L1-
CS8 LSD | 00h | | Dot_lsd5 | 08Bh | R | Reserved | | | | 1 | | Dot L1-
CS17
LSD | Dot L1-
CS16
LSD | 00h | | Dot_lsd6 | 08Ch | R | Dot L2-
CS7 LSD | Dot L2-
CS6 LSD | Dot L2-
CS5 LSD | Dot L2-
CS4 LSD | Dot L2-
CS3 LSD | Dot L2-
CS2 LSD | Dot L2-
CS1 LSD | Dot L2-
CS0 LSD | 00h | | Dot_lsd7 | 08Dh | R | Dot L2-
CS15
LSD | Dot L2-
CS14
LSD | Dot L2-
CS13
LSD | Dot L2-
CS12
LSD | Dot L2-
CS11
LSD | Dot
L2-
CS10
LSD | Dot L2-
CS9 LSD | Dot L2-
CS8 LSD | 00h | | Dot_lsd8 | 08Eh | R | Reserved | 1 | 1 | 1 | 1 | 1 | Dot L2-
CS17
LSD | Dot L2-
CS16
LSD | 00h | | Dot_lsd9 | 08Fh | R | Dot L3-
CS7 LSD | Dot L3-
CS6 LSD | Dot L3-
CS5 LSD | Dot L3-
CS4 LSD | Dot L3-
CS3 LSD | Dot L3-
CS2 LSD | Dot L3-
CS1 LSD | Dot L3-
CS0 LSD | 00h | | Dot_lsd10 | 090h | R | Dot L3-
CS15
LSD | Dot L3-
CS14
LSD | Dot L3-
CS13
LSD | Dot L3-
CS12
LSD | Dot L3-
CS11
LSD | Dot L3-
CS10
LSD | Dot L3-
CS9 LSD | Dot L3-
CS8 LSD | 00h | 091h R Reserved Dot L3-Dot L3-00hDot_lsd11 CS17 CS16 LSD LSD 092h Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-Dot Isd12 R Dot L4-00hCS7 LSD CS6 LSD CS5 LSD CS4 LSD CS3 LSD CS2 LSD CS1 LSD CS0 LSD 093h Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-00h Dot Isd13 R Dot L4-Dot L4-CS9 LSD CS8 LSD CS15 CS14 **CS13** CS12 **CS11** CS10 LSD LSD LSD LSD LSD LSD Dot_lsd14 094h R Dot L4-Dot L4-00h Reserved CS17 CS16 LSD LSD Dot Isd15 095h R Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-00h CS7 LSD CS6 LSD CS5 LSD CS4 LSD CS3 LSD CS2 LSD CS1 LSD CS0 LSD Dot Isd16 096h R Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-00h CS15 CS14 CS13 CS12 CS11 CS10 CS9 LSD CS8 LSD LSD LSD LSD LSD LSD LSD Dot_lsd17 097h R Reserved Dot L5-Dot L5-00h CS17 **CS16** LSD LSD LOD_clear 0A7h W Reserved LOD Clear 00h W 00h LSD clear 0A8h Reserved LSD Clear W Reset 0A9h Reset 00h DC₀ 100h R/W LED dot current setting for Dot L0-CS0 80h DC₁ 101h R/W 80h LED dot current setting for Dot L0-CS1 DC2 102h R/W LED dot current setting for Dot L0-CS2 80h DC3 103h R/W LED dot current setting for Dot L0-CS3 80h DC₄ 104h R/W LED dot current setting for Dot L0-CS4 80h DC5 105h R/W 80h LED dot current setting for Dot L0-CS5 80h DC₆ 106h R/W LED dot current setting for Dot L0-CS6 DC7 107h R/W LED dot current setting for Dot L0-CS7 80h DC8 108h R/W LED dot current setting for Dot L0-CS8 80h DC9 R/W 109h 80h LED dot current setting for Dot L0-CS9 **DC10** 10Ah R/W LED dot current setting for Dot L0-CS10 80h **DC11** 10Bh R/W LED dot current setting for Dot L0-CS11 80h DC12 R/W 10Ch 80h LED dot current setting for Dot L0-CS12 **DC13** 10Dh R/W LED dot current setting for Dot L0-CS13 80h **DC14** 10Eh R/W LED dot current setting for Dot L0-CS14 80h **DC15** 10Fh R/W 80h LED dot current setting for Dot L0-CS15 **DC16** 110h R/W LED dot current setting for Dot L0-CS16 80h **DC17** 111h R/W LED dot current setting for Dot L0-CS17 80h **DC18** 112h R/W LED dot current setting for Dot L1-CS0 80h DC19 R/W 113h LED dot current setting for Dot L1-CS1 80h DC20 114h R/W LED dot current setting for Dot L1-CS2 80h DC21 115h R/W LED dot current setting for Dot L1-CS3 80h **DC22** 116h R/W LED dot current setting for Dot L1-CS4 80h DC23 117h R/W 80h LED dot current setting for Dot L1-CS5 DC24 118h R/W LED dot current setting for Dot L1-CS6 80h DC25 119h R/W LED dot current setting for Dot L1-CS7 80h **DC26** R/W 11Ah LED dot current setting for Dot L1-CS8 80h **DC27** 11Bh R/W LED dot current setting for Dot L1-CS9 80h | | | | | , ,, | |------|------|-----|---|------| | DC28 | 11Ch | R/W | LED dot current setting for Dot L1-CS10 | 80h | | DC29 | 11Dh | R/W | LED dot current setting for Dot L1-CS11 | 80h | | DC30 | 11Eh | R/W | LED dot current setting for Dot L1-CS12 | 80h | | DC31 | 11Fh | R/W | LED dot current setting for Dot L1-CS13 | 80h | | DC32 | 120h | R/W | LED dot current setting for Dot L1-CS14 | 80h | | DC33 | 121h | R/W | LED dot current setting for Dot L1-CS15 | 80h | | DC34 | 122h | R/W | LED dot current setting for Dot L1-CS16 | 80h | | DC35 | 123h | R/W | LED dot current setting for Dot L1-CS17 | 80h | | DC36 | 124h | R/W | LED dot current setting for Dot L2-CS0 | 80h | | DC37 | 125h | R/W | LED dot current setting for Dot L2-CS1 | 80h | | DC38 | 126h | R/W | LED dot current setting for Dot L2-CS2 | 80h | | DC39 | 127h | R/W | LED dot current setting for Dot L2-CS3 | 80h | | DC40 | 128h | R/W | LED dot current setting for Dot L2-CS4 | 80h | | DC41 | 129h | R/W | LED dot current setting for Dot L2-CS5 | 80h | | DC42 | 12Ah | R/W | LED dot current setting for Dot L2-CS6 | 80h | | DC43 | 12Bh | R/W | LED dot current setting for Dot L2-CS7 | 80h | | DC44 | 12Ch | R/W | LED dot current setting for Dot L2-CS8 | 80h | | DC45 | 12Dh | R/W | LED dot current setting for Dot L2-CS9 | 80h | | DC46 | 12Eh | R/W | LED dot current setting for Dot L2-CS10 | 80h | | DC47 | 12Fh | R/W | LED dot current setting for Dot L2-CS11 | 80h | | DC48 | 130h | R/W | LED dot current setting for Dot L2-CS12 | 80h | | DC49 | 131h | R/W | LED dot current setting for Dot L2-CS13 | 80h | | DC50 | 132h | R/W | LED dot current setting for Dot L2-CS14 | 80h | | DC51 | 133h | R/W | LED dot current setting for Dot L2-CS15 | 80h | | DC52 | 134h | R/W | LED dot current setting for Dot L2-CS16 | 80h | | DC53 | 135h | R/W | LED dot current setting for Dot L2-CS17 | 80h | | DC54 | 136h | R/W | LED dot current setting for Dot L3-CS0 | 80h | | DC55 | 137h | R/W | LED dot current setting for Dot L3-CS1 | 80h | | DC56 | 138h | R/W | LED dot current setting for Dot L3-CS2 | 80h | | DC57 | 139h | R/W | LED dot current setting for Dot L3-CS3 | 80h | | DC58 | 13Ah | R/W | LED dot current setting for Dot L3-CS4 | 80h | | DC59 | 13Bh | R/W | LED dot current setting for Dot L3-CS5 | 80h | | DC60 | 13Ch | R/W | LED dot current setting for Dot L3-CS6 | 80h | | DC61 | 13Dh | R/W | LED dot current setting for Dot L3-CS7 | 80h | | DC62 | 13Eh | R/W | LED dot current setting for Dot L3-CS8 | 80h | | DC63 | 13Fh | R/W | LED dot current setting for Dot L3-CS9 | 80h | | DC64 | 140h | R/W | LED dot current setting for Dot L3-CS10 | 80h | | DC65 | 141h | R/W | LED dot current setting for Dot L3-CS11 | 80h | | DC66 | 142h | R/W | LED dot current setting for Dot L3-CS12 | 80h | | DC67 | 143h | R/W | LED dot current setting for Dot L3-CS13 | 80h | | DC68 | 144h | R/W | LED dot current setting for Dot L3-CS14 | 80h | | DC69 | 145h | R/W | LED dot current setting for Dot L3-CS15 | 80h | | DC70 | 146h | R/W | LED dot current setting for Dot L3-CS16 | 80h | | DC71 | 147h | R/W | LED dot current setting for Dot L3-CS17 | 80h | | DC72 | 148h | R/W | LED dot current setting for Dot L4-CS0 | 80h | | DC73 | 149h | R/W | LED dot current setting for Dot L4-CS1 | 80h | | DC74 | 14Ah | R/W | LED dot current setting for Dot L4-CS2 | 80h | www.ti.com/ja-jp | 1 | 1 | | | 1 | |-----------|------|-----|---|-----| | DC75 | 14Bh | R/W | LED dot current setting for Dot L4-CS3 | 80h | | DC76 | 14Ch | R/W | LED dot current setting for Dot L4-CS4 | 80h | | DC77 | 14Dh | R/W | LED dot current setting for Dot L4-CS5 | 80h | | DC78 | 14Eh | R/W | LED dot current setting for Dot L4-CS6 | 80h | | DC79 | 14Fh | R/W | LED dot current setting for Dot L4-CS7 | 80h | | DC80 | 150h | R/W | LED dot current setting for Dot L4-CS8 | 80h | | DC81 | 151h | R/W | LED dot current setting for Dot L4-CS9 | 80h | | DC82 | 152h | R/W | LED dot current setting for Dot L4-CS10 | 80h | | DC83 | 153h | R/W | LED dot current setting for Dot L4-CS11 | 80h | | DC84 | 154h | R/W | LED dot current setting for Dot L4-CS12 | 80h | | DC85 | 155h | R/W | LED dot current setting for Dot L4-CS13 | 80h | | DC86 | 156h | R/W | LED dot current setting for Dot L4-CS14 | 80h | | DC87 | 157h | R/W | LED dot current setting for Dot L4-CS15 | 80h | | DC88 | 158h | R/W | LED dot current setting for Dot L4-CS16 | 80h | | DC89 | 159h | R/W | LED dot current setting for Dot L4-CS17 | 80h | | DC90 | 15Ah | R/W | LED dot current setting for Dot L5-CS0 | 80h | | DC91 | 15Bh | R/W | LED dot current setting for Dot L5-CS1 | 80h | | DC92 | 15Ch | R/W | LED dot current setting for Dot L5-CS2 | 80h | | DC93 | 15Dh | R/W | LED dot current setting for Dot L5-CS3 | 80h | | DC94 | 15Eh | R/W | LED dot current setting for Dot L5-CS4 | 80h | | DC95 | 15Fh | R/W | LED dot current setting for Dot L5-CS5 | 80h | | DC96 | 160h | R/W | LED dot current setting for Dot L5-CS6 | 80h | | DC97 | 161h | R/W | LED dot current setting for Dot L5-CS7 | 80h | | DC98 | 162h | R/W | LED dot current setting for Dot L5-CS8 | 80h | | DC99 | 163h | R/W | LED dot current setting for Dot L5-CS9 | 80h | | DC100 | 164h | R/W | LED dot current setting for Dot L5-CS10 | 80h | | DC101 | 165h | R/W | LED dot current setting for Dot L5-CS11 | 80h | | DC102 | 166h | R/W | LED dot current setting for Dot L5-CS12 | 80h | | DC103 | 167h | R/W | LED dot current setting for Dot L5-CS13 | 80h | | DC104 | 168h | R/W | LED dot current setting for Dot L5-CS14 | 80h | | DC105 | 169h | R/W | LED dot current setting for Dot L5-CS15 | 80h | | DC106 | 16Ah | R/W | LED dot current setting for Dot L5-CS16 | 80h | | DC107 | 16Bh | R/W | LED dot current setting for Dot L5-CS17 | 80h | | pwm_bri0 | 200h | R/W | 8-bits PWM for Dot L0-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS0 | 00h | | pwm_bri1 | 201h | R/W | 8-bits PWM for Dot L0-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS0 | 00h | | pwm_bri2 | 202h | R/W | 8-bits PWM for Dot L0-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS1 | 00h | | pwm_bri3 | 203h | R/W | 8-bits PWM for Dot L0-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS1 | 00h | | pwm_bri4 | 204h | R/W | 8-bits PWM for Dot L0-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS2 | 00h | | pwm_bri5 | 205h | R/W | 8-bits PWM for Dot L0-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS2 | 00h | | pwm_bri6 | 206h | R/W | 8-bits PWM for Dot L0-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS3 | 00h | | pwm_bri7 | 207h | R/W | 8-bits PWM for Dot L0-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS3 | 00h | | pwm_bri8 | 208h | R/W | 8-bits PWM for Dot L0-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS4 | 00h | | pwm_bri9 | 209h | R/W | 8-bits PWM for Dot L0-CS9 OR 16-bits PWM higher 8 bits [15:8] for
Dot L0-CS4 | 00h | | pwm_bri10 | 20Ah | R/W | 8-bits PWM for Dot L0-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS5 | 00h | | pwm_bri11 | 20Bh | R/W | 8-bits PWM for Dot L0-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS5 | 00h | | pwm_bri12 | 20Ch | R/W | 8-bits PWM for Dot L0-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS6 | 00h | | pwm_bri13 | 20Dh | R/W | 8-bits PWM for Dot L0-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS6 | 00h | | pwm bri14 | 20Eh | R/W | 8-bits PWM for Dot L0-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS7 | 00h | |------------------------|---------------|------------|---|------------| | pwm_bri15 | 20Fh | R/W | 8-bits PWM for Dot L0-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS7 | 00h | | pwm_bri16 | 210h | R/W | 8-bits PWM for Dot L0-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS8 | 00h | | pwm_bri17 | 211h | R/W | 8-bits PWM for Dot L0-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS8 | 00h | | pwm_bri18 | 212h | R/W | 8-bits PWM for Dot L1-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS9 | 00h | | pwm_bri19 | 213h | R/W | 8-bits PWM for Dot L1-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS9 | 00h | | pwm_bri20 | 214h | R/W | 8-bits PWM for Dot L1-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS10 | 00h | | pwm_bri21 | 215h | R/W | 8-bits PWM for Dot L1-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS10 | 00h | | pwm_bri22 | 216h | R/W | 8-bits PWM for Dot L1-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS11 | 00h | | pwm_bri23 | 217h | R/W | 8-bits PWM for Dot L1-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS11 | 00h | | pwm_bri24 | 218h | R/W | 8-bits PWM for Dot L1-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS12 | 00h | | pwm_bri25 | 219h | R/W | 8-bits PWM for Dot L1-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS12 | 00h | | pwm_bri26 | 21Ah | R/W | 8-bits PWM for Dot L1-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS13 | 00h | | pwm_bri27 | 21Bh | R/W | 8-bits PWM for Dot L1-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS13 | 00h | | pwm_bri28 | 21Ch | R/W | 8-bits PWM for Dot L1-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS14 | 00h | | pwm_bri29 | 21Dh | R/W | 8-bits PWM for Dot L1-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS14 | 00h | | pwm_bri30 | 21Eh | R/W | 8-bits PWM for Dot L1-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS15 | 00h | | pwm_bri31 | 21Fh | R/W | 8-bits PWM for Dot L1-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS15 | 00h | | pwm_bri32 | 220h
221h | R/W | 8-bits PWM for Dot L1-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS16 | 00h
00h | | pwm_bri34 | 22111
222h | R/W | 8-bits PWM for Dot L1-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS16 8-bits PWM for Dot L1-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS17 | 00h | | pwm_bri35 | 223h | R/W | 8-bits PWM for Dot L1-CS17 OR 16-bits PWM higher 8 bits [1:0] for Dot L0-CS17 | 00h | | pwm_bri36 | 224h | R/W | 8-bits PWM for Dot L2-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS0 | 00h | | pwm_bri37 | 225h | R/W | 8-bits PWM for Dot L2-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS0 | 00h | | pwm_bri38 | 226h | R/W | 8-bits PWM for Dot L2-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS1 | 00h | | pwm_bri39 | 227h | R/W | 8-bits PWM for Dot L2-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS1 | 00h | | pwm_bri40 | 228h | R/W | 8-bits PWM for Dot L2-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS2 | 00h | | pwm_bri41 | 229h | R/W | 8-bits PWM for Dot L2-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS2 | 00h | | pwm_bri42 | 22Ah | R/W | 8-bits PWM for Dot L2-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS3 | 00h | | pwm_bri43 | 22Bh | R/W | 8-bits PWM for Dot L2-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS3 | 00h | | pwm_bri44 | 22Ch | R/W | 8-bits PWM for Dot L2-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS4 | 00h | | pwm_bri45 | 22Dh | R/W | 8-bits PWM for Dot L2-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS4 | 00h | | pwm_bri46 | 22Eh | R/W | 8-bits PWM for Dot L2-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS5 | 00h | | pwm_bri47 | 22Fh | R/W | 8-bits PWM for Dot L2-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS5 | 00h | | pwm_bri48 | 230h | R/W | 8-bits PWM for Dot L2-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS6 | 00h | | pwm_bri49 | 231h | R/W | 8-bits PWM for Dot L2-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS6 | 00h | | pwm_bri50 | 232h | R/W | 8-bits PWM for Dot L2-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS7 | 00h | | pwm_bri51 | 233h | R/W | 8-bits PWM for Dot L2-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS7 | 00h | | pwm_bri52 | 234h | R/W | 8-bits PWM for Dot L2-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS8 | 00h | | pwm_bri53 | 235h | R/W | 8-bits PWM for Dot L2-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS8 | 00h | | pwm_bri54 | 236h | R/W | 8-bits PWM for Dot L3-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS9 | 00h | | pwm_bri55 | 237h
238h | R/W | 8-bits PWM for Dot L3-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS9 | 00h
00h | | pwm_bri56 | 239h | R/W
R/W | 8-bits PWM for Dot L3-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS10 8-bits PWM for Dot L3-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS10 | 00h | | pwm_bri57
pwm_bri58 | 23Ah | R/W | 8-bits PWM for Dot L3-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS10 | 00h | | pwm_bri59 | 23Bh | R/W | 8-bits PWM for Dot L3-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS11 | 00h | | pwm_bri60 | 23Ch | R/W | 8-bits PWM for Dot L3-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS12 | 00h | R/W pwm_bri61 23Dh 8-bits PWM for Dot L3-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS12 00h pwm_bri62 23Eh R/W 8-bits PWM for Dot L3-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS13 00h pwm bri63 23Fh R/W 8-bits PWM for Dot L3-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS13 00hpwm_bri64 240h R/W 8-bits PWM for Dot L3-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS14 00h pwm bri65 241h R/W 8-bits PWM for Dot L3-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS14 00h 242h R/W 8-bits PWM for Dot L3-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS15 00h pwm bri66 243h R/W 00h pwm_bri67 8-bits PWM for Dot L3-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS15 pwm_bri68 244h R/W 8-bits PWM for Dot L3-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS16 00h pwm bri69 245h R/W 8-bits PWM for Dot L3-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS16 00h 246h R/W 8-bits PWM for Dot L3-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS17 00h pwm bri70 8-bits PWM for Dot L3-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS17 pwm bri71 247h R/W 00h pwm_bri72 248h R/W 8-bits PWM for Dot L4-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS0 00h pwm bri73 249h R/W 8-bits PWM for Dot L4-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS0 00h pwm_bri74 24Ah R/W 8-bits PWM for Dot L4-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS1 00h pwm_bri75 24Bh R/W 8-bits PWM for Dot L4-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS1 00h pwm bri76 24Ch R/W 8-bits PWM for Dot L4-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS2 00h pwm bri77 24Dh R/W 8-bits PWM for Dot L4-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS2 00h R/W 24Eh 8-bits PWM for Dot L4-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS3 00hpwm bri78 R/W pwm_bri79 24Fh 8-bits PWM for Dot L4-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS3 00h pwm bri80 250h R/W 8-bits PWM for Dot L4-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS4 00h 251h R/W 00h pwm_bri81 8-bits PWM for Dot L4-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS4 R/W pwm_bri82 252h 8-bits PWM for Dot L4-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS5 00h R/W 00h pwm bri83 253h 8-bits PWM for Dot L4-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS5 R/W pwm bri84 254h 8-bits PWM for Dot L4-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS6 00h 255h R/W 8-bits PWM for Dot L4-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS6 00h pwm_bri85 pwm bri86 256h R/W 8-bits PWM for Dot L4-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS7 00h pwm_bri87 257h R/W 8-bits PWM for Dot L4-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS7 00h pwm bri88 258h R/W 8-bits PWM for Dot L4-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS8 00h R/W 00h pwm_bri89 259h 8-bits PWM for Dot L4-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS8 pwm bri90 25Ah R/W 8-bits PWM for Dot L5-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS9 00h 8-bits PWM for Dot L5-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS9 pwm bri91 25Bh R/W 00h R/W 25Ch 8-bits PWM for Dot L5-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS10 00h pwm_bri92 25Dh R/W 8-bits PWM for Dot L5-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS10 pwm bri93 00h pwm_bri94 25Eh R/W 8-bits PWM for Dot L5-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS11 00h pwm bri95 25Fh R/W 8-bits PWM for Dot L5-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS11 00h R/W 8-bits PWM for Dot L5-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS12 pwm_bri96 260h 00h pwm bri97 261h R/W 8-bits PWM for Dot L5-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS12 00h R/W pwm bri98 262h 8-bits PWM for Dot L5-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS13 00h263h R/W 8-bits PWM for Dot L5-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS13 pwm_bri99 00h pwm_bri100 264h R/W 8-bits PWM for Dot L5-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS14 00h pwm bri101 265h R/W 8-bits PWM for Dot L5-CS11 OR 16-bits PWM
higher 8 bits [15:8] for Dot L2-CS14 00h pwm_bri102 266h R/W 8-bits PWM for Dot L5-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS15 00h pwm_bri103 267h R/W 8-bits PWM for Dot L5-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS15 00h pwm_bri104 268h R/W 8-bits PWM for Dot L5-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS16 00h pwm bri105 269h R/W 8-bits PWM for Dot L5-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS16 00h 00h R/W pwm bri106 26Ah 8-bits PWM for Dot L5-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS17 26Bh R/W 8-bits PWM for Dot L5-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS17 pwm_bri107 00h English Data Sheet: SNVSC36 | pwm_bri108 | 26Ch | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS0 | 00h | |--------------------------|--------------|------------|--|------------| | pwm_bri109 | 26Dh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS0 | 00h | | pwm_bri110 | 26Eh | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS1 | 00h | | pwm_bri111 | 26Fh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS1 | 00h | | pwm_bri112 | 270h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS2 | 00h | | pwm_bri113 | 271h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS2 | 00h | | pwm_bri114 | 272h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS3 | 00h | | pwm_bri115 | 273h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS3 | 00h | | pwm_bri116 | 274h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS4 | 00h | | pwm_bri117 | 275h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS4 | 00h | | pwm_bri118 | 276h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS5 | 00h | | pwm_bri119 | 277h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS5 | 00h | | pwm_bri120 | 278h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS6 | 00h | | pwm_bri121 | 279h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS6 | 00h | | pwm_bri122 | 27Ah | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS7 | 00h | | pwm_bri123 | 27Bh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS7 | 00h | | pwm_bri124 | 27Ch | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS8 | 00h | | pwm_bri125 | 27Dh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS8 | 00h | | pwm_bri126 | 27Eh | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS9 | 00h | | pwm_bri127 | 27Fh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS9 | 00h | | pwm_bri128 | 280h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS10 | 00h | | pwm_bri129 | 281h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS10 | 00h | | pwm_bri130 | 282h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS11 | 00h | | pwm_bri131 | 283h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS11 | 00h | | pwm_bri132 | 284h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS12 | 00h | | pwm_bri133 | 285h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS12 | 00h | | pwm_bri134 | 286h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS13 | 00h | | pwm_bri135 | 287h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS13 | 00h | | pwm_bri136 | 288h
289h | R/W
R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS14 | 00h
00h | | pwm_bri137 | 28Ah | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS14 | 00h | | pwm_bri138
pwm_bri139 | 28Bh | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS15 16-bits PWM higher 8 bits [15:8] for Dot L3-CS15 | 00h | | pwm_bri140 | 28Ch | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS16 | 00h | | pwm_bri141 | 28Dh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS16 | 00h | | pwm_bri142 | 28Eh | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS17 | 00h | | pwm_bri143 | 28Fh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS17 | 00h | | pwm_bri144 | 290h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS0 | 00h | | pwm_bri145 | 291h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS0 | 00h | | pwm_bri146 | 292h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS1 | 00h | | pwm_bri147 | 293h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS1 | 00h | | pwm_bri148 | 294h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS2 | 00h | | pwm_bri149 | 295h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS2 | 00h | | pwm_bri150 | 296h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS3 | 00h | | pwm_bri151 | 297h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS3 | 00h | | pwm_bri152 | 298h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS4 | 00h | | pwm_bri153 | 299h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS4 | 00h | | pwm_bri154 | 29Ah | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS5 | 00h | www.ti.com/ja-jp | mmm.coomaja jp | | | JAJONIAGA - DEGENDEN 2021 - NEVIGED GELL | | |--------------------------|--------------|------------|--|------------| | pwm_bri155 | 29Bh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS5 | 00h | | pwm_bri156 | 29Ch | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS6 | 00h | | pwm_bri157 | 29Dh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS6 | 00h | | pwm_bri158 | 29Eh | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS7 | 00h | | pwm_bri159 | 29Fh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS7 | 00h | | pwm_bri160 | 2A0h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS8 | 00h | | pwm_bri161 | 2A1h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS8 | 00h | | pwm_bri162 | 2A2h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS9 | 00h | | pwm_bri163 | 2A3h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS9 | 00h | | pwm_bri164 | 2A4h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS10 | 00h | | pwm_bri165 | 2A5h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS10 | 00h | | pwm_bri166 | 2A6h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS11 | 00h | | pwm_bri167 | 2A7h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS11 | 00h | | pwm_bri168 | 2A8h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS12 | 00h | | pwm_bri169 | 2A9h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS12 | 00h | | pwm_bri170 | 2AAh | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS13 | 00h | | pwm_bri171 | 2ABh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS13 | 00h | | pwm_bri172 | 2ACh | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS14 | 00h | | pwm_bri173 | 2ADh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS14 | 00h | | pwm_bri174 | 2AEh | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS15 | 00h | | pwm_bri175 | 2AFh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS15 | 00h | | pwm_bri176 | 2B0h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS16 | 00h | | pwm_bri177 | 2B1h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS16 | 00h | | pwm_bri178 | 2B2h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L4-CS17 | 00h | | pwm_bri179 | 2B3h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L4-CS17 | 00h | | pwm_bri180 | 2B4h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS0 | 00h | | pwm_bri181 | 2B5h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L5-CS0 | 00h | | pwm_bri182 | 2B6h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS1 | 00h | | pwm_bri183 | 2B7h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L5-CS1 | 00h | | pwm_bri184 | 2B8h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS2 | 00h | | pwm_bri185 | 2B9h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L5-CS2 | 00h | | pwm_bri186 | 2BAh | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS3 | 00h | | pwm_bri187 | 2BBh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L5-CS3 | 00h | | pwm_bri188 | 2BCh | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS4 | 00h | | pwm_bri189 | 2BDh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L5-CS4 | 00h | | pwm_bri190 | 2BEh | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS5 | 00h | | pwm_bri191 | 2BFh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L5-CS5 | 00h | | pwm_bri192 | 2C0h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS6 | 00h | | pwm_bri193 | 2C1h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L5-CS6 | 00h | | pwm_bri194 | 2C2h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS7 | 00h | | pwm_bri195 | 2C3h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L5-CS7 | 00h | | pwm_bri196 | 2C4h
2C5h | R/W
R/W | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS8 16-bits PWM higher 8 bits [15:8] for Dot L5-CS8 | 00h
00h | | pwm_bri197
pwm_bri198 | 2C5h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS9 | 00h | | pwm_bri199 | 2C7h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L5-CS9 | 00h | | <u> </u> | | _ | | | | pwm_bri200 | 2C8h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS10 | 00h | | pwm_bri201 | 2C9h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L5-CS10 | 00h | | pwm_bri202 | 2CAh | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS11 | 00h | |------------|---|-----|--|-----| | pwm_bri203 | 2CBh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L5-CS11 | 00h | | pwm_bri204 | 2CCh | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS12 | 00h | | pwm_bri205 | 2CDh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L5-CS12 | 00h | | pwm_bri206 | 2CEh | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS13 | 00h | | pwm_bri207 | 2CFh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L5-CS13 | 00h | | pwm_bri208 | 2D0h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS14 | 00h | | pwm_bri209 | 2D1h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L5-CS14 | 00h | | pwm_bri210 | 2D2h R/W 16-bits PWM lower 8 bits [7:0] for Dot L5-CS15 | | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS15 | 00h | | pwm_bri211 | 2D3h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L5-CS15 | 00h | | pwm_bri212 |
2D4h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS16 | 00h | | pwm_bri213 | 2D5h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L5-CS16 | 00h | | pwm_bri214 | 2D6h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L5-CS17 | 00h | | pwm_bri215 | 2D7h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L5-CS17 | 00h | English Data Sheet: SNVSC36 # 8 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. # **8.1 Application Information** The LP5866 integrates 18 constant current sinks with 6 switching FETs and one LP5866 can drive up to 108 LED dots or 36 RGB pixels and achieve great dimming effect. In smart home, gaming keyboards, and other human-machine interaction applications, the device can greatly improve user experience with a small amount of components. # 8.2 Typical Application # 8.2.1 Application ☑ 8-1 shows an example of typical application, which uses one LP5866 to drive 36 common-anode RGB LEDs through I²C communication. 図 8-1. Typical Application – LP5866 Driving 36 RGB LEDs (108 LED Dots) #### 8.2.2 Design Requirements 表 8-1. Design Parameters | PARAMETER | VALUE | |--|------------------| | VCC / VIO | 3.3V | | VLED | 5V | | RGB LED count | 36 | | Scan number | 6 | | Interface | I ² C | | LED maximum average current (red, green, blue) | 4mA, 3mA, 2mA | | LED maximum peak current (red, green, blue) | 24mA, 18mA, 12mA | #### 8.2.3 Detailed Design Procedure LP5866 requires an external capacitor C_{VCAP} , whose value is $1\mu F$ connected from V_{CAP} to GND for proper operation of internal LDO. The capacitor must be placed as close to the device as possible. TI recommends $1\mu F$ capacitors be placed between VCC / VLED with GND, and a 1nF capacitor placed between VIO with GND. Place the capacitors as close to the device as possible. Pull-up resistors $R_{pull-up}$ are a requirement for SCL and SDA when using I²C as communication method. In typical applications, TI recommends 1.8k Ω to 4.7k Ω resistors. To decrease thermal dissipation from device to ambient, resistors R_{CS} can optionally be placed in serial with the LED. Voltage drop on these resistors must left enough margins for VSAT to ensure the device works normally. #### 8.2.3.1 Program Procedure When selecting data refresh Mode 1, outputs are refreshed instantly after data is received. When selecting data refresh Mode 2/3, VSYNC signal is required for synchronized display. Programming flow is shown as \boxtimes 8-2. To display full pixel of last frame, VSYNC pulse must be sent to the device after the end of last PWM. Time between two pulses t_{SYNC} must be larger than the whole PWM time of all Dots t_{frame} . Common selection like 60Hz, 90Hz, 120Hz or even higher refresh frequency can be supported. High pulse width longer than t_{SYNC_H} is required at the beginning of each VSYNC frame, and data must not be write to PWM registers during high pulse width. 図 8-2. Program Procedure Copyright © 2024 Texas Instruments Incorporated # 8.2.4 Application Performance Plots The following figures show the application performance plots. 図 8-3. Scan Lines and Current Sinks Waveforms of SW0, SW1, CS0, CS1 PWM frequency = 62.5kHz 図 8-4. Scan Lines and Current Sinks Waveforms of SW0, SW1, CS0, CS1 PWM frequency = 125kHz 図 8-6. Scan Lines Switching Waveforms of SW0, **SW1. SW2** Switch blank time $t_{SW\ BLK}$ = 1 μs 図 8-7. Scan Lines Switching Waveforms of SW0, **SW1, SW2** PWM_Phase_Shift = 0h 図 8-8. PWM Phase Shift Disabled # 8.3 Power Supply Recommendations ## 8.3.1 Power Supply Recommendations #### **VDD Input Supply Recommendations** LP5866 is designed to operate from a 2.7V to 5.5V VDD voltage supply. This input supply must be well regulated and can provide the peak current required by the LED matrix. The resistance of the VDD supply rail must be low enough such that the input current transient does not cause the LP5866 VDD supply voltage to drop below the maximum POR voltage. #### 8.3.2 Power Supply Recommendations #### **VIO Input Supply Recommendations** LP5866 is designed to operate with a 1.65V to 5.5V VIO_EN voltage supply. The VIO_EN supply must be well regulated and can provide the peak current required by the LED configuration without voltage drop under load transients like start-up or rapid brightness change. # 8.3.3 Power Supply Recommendations # **VLED Input Supply Recommendations** LP5866 is designed to operate with a 2.7V to 5.5V VLED voltage supply. The VLED supply must be well regulated and can provide the peak current required by the LED configuration without voltage drop, under load transients like start-up or rapid brightness change. The resistance of the input supply rail must be low enough so that the input current transient does not cause the VLED supply voltage to drop below LED V_f + VSAT voltage. #### 8.4 Layout # 8.4.1 Layout Guidelines the below guidelines for layout design can help to get a better on-board performance. - The decoupling capacitors C_{VCC} and C_{VLED} for power supply must be close to the chip to have minimized the impact of high-frequency noise and ripple from power. C_{VCAP} for internal LDO must be put as close to chip as possible. GND plane connections to C_{VLED} and GND pins must be on TOP layer copper with multiple vias connecting to system ground plane. C_{VIO} for internal enable block also must be put as close to chip as possible. - The exposed thermal pad must be well soldered to the board, which can have better mechanical reliability. The action can optimize heat transfer so that increasing thermal performance. AGND pin must be connected to thermal pad and system ground. - The major heat flow path from the package to the ambient is through copper on the PCB. Several methods can help thermal performance. Below exposed thermal pad of IC, putting much vias through the PCB to other Copyright © 2024 Texas Instruments Incorporated ground layer can dissipate more heat. Maximizing the copper coverage on the PCB can increase the thermal conductivity of the board. • Low inductive and resistive path of switch load loop can help to provide a high slew rate. Therefore, path of VLED – SWx must be short and wide and avoid parallel wiring and narrow trace. Transient current in SWx pins is much larger than CSy pins, so that trace for SWx must be wider than CSy. # 8.4.2 Layout Example 図 8-10. LP5866 Layout Example 45 # 9 Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. # 9.1 ドキュメントの更新通知を受け取る方法 ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知]をク リックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。変更の詳細に ついては、改訂されたドキュメントに含まれている改訂履歴をご覧ください。 # 9.2 サポート・リソース テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパ ートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要 な支援を迅速に得ることができます。 リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕 様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツ ルメンツの使用条件を参照してください。 #### 9.3 Trademarks テキサス・インスツルメンツ E2E™ is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 # 9.4 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うこと を推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずか に変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 ### 9.5 用語集 テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。 # 10 Revision History 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | Changes from Revision * (December 2021) to Revision A (September 2024) | Page | |--|------| | Updated DBT package information | | | Updated thermal information of DBT package | | | Updated I ² C Timing Requirements | 8 | | Added I ² C Standard Mode Timing Requirements | 8 | | Added timing parameters diagrams | 12 | | Updated application design parameters | | | | | Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 # 11 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 47 Product Folder Links: LP5866 # 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated www.ti.com 11-Apr-2023 #### PACKAGING INFORMATION | Orderable Device |
Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|-------------------------|---------| | | | | | | | | (6) | | | | | | LP5866DBTR | ACTIVE | TSSOP | DBT | 38 | 2000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | LP5866DBT | Samples | | LP5866MDBTR | ACTIVE | TSSOP | DBT | 38 | 2000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | 5866MDBT | Samples | | LP5866RKPR | ACTIVE | VQFN | RKP | 40 | 3000 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | LP5866 | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. # **PACKAGE OPTION ADDENDUM** www.ti.com 11-Apr-2023 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # **PACKAGE MATERIALS INFORMATION** www.ti.com 9-Aug-2022 # TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | # QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | LP5866DBTR | TSSOP | DBT | 38 | 2000 | 330.0 | 16.4 | 6.9 | 10.2 | 1.8 | 12.0 | 16.0 | Q1 | | LP5866MDBTR | TSSOP | DBT | 38 | 2000 | 330.0 | 16.4 | 6.9 | 10.2 | 1.8 | 12.0 | 16.0 | Q1 | | LP5866RKPR | VQFN | RKP | 40 | 3000 | 330.0 | 12.4 | 5.3 | 5.3 | 1.1 | 8.0 | 12.0 | Q2 | www.ti.com 9-Aug-2022 # *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-------------|--------------|-----------------|------|------|-------------|------------|-------------| | LP5866DBTR | TSSOP | DBT | 38 | 2000 | 367.0 | 367.0 | 38.0 | | LP5866MDBTR | TSSOP | DBT | 38 | 2000 | 367.0 | 367.0 | 38.0 | | LP5866RKPR | VQFN | RKP | 40 | 3000 | 367.0 | 367.0 | 35.0 | 5 x 5, 0.4 mm pitch PLASTIC QUAD FLATPACK - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. **Instruments** www.ti.com PLASTIC QUAD FLATPACK- NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance. PLASTIC QUAD FLATPACK- NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLATPACK- NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. SMALL OUTLINE PACKAGE #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-153. SMALL OUTLINE PACKAGE NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE PACKAGE NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. # 重要なお知らせと免責事項 TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated