










**SN74HCS245** 

JAJSNS0A - JANUARY 2022 - REVISED OCTOBER 2022

# SN74HCS2453ステート出力およびシュミット・トリガ入力搭載、オクタル・ バス・トランシーバ

### 1 特長

- 広い動作電圧範囲:2V~6V
- シュミット・トリガ入力により低速の入力信号またはノイ ズの多い入力信号に対応
- 低い消費電力

Texas

INSTRUMENTS

- I<sub>CC</sub>:100nA (標準値)
- 入力リーク電流:±100nA (標準値)
- 6V で±7.8mA の出力駆動能力
- 拡張周囲温度範囲:-40℃~+125℃、T<sub>Δ</sub>

# 2 アプリケーション

- デジタル信号のイネーブルまたはディスエーブル
- 低速またはノイズの多い信号の除去
- コントローラ・リセット時の信号保持
- スイッチのデバウンス

# 3 概要

SN74HCS245 は、3 ステート出力とシュミット・トリガ入力 を備えたオクタル・バス・トランシーバです。8 つのチャネ ルはすべて、方向 (DIR) ピンと出力イネーブル (OE) ピン により制御されます。

| パッケージ情報      |                      |                 |  |  |  |
|--------------|----------------------|-----------------|--|--|--|
| 部品番号         | パッケージ <sup>(1)</sup> | 本体サイズ (公称)      |  |  |  |
| SN74HCS245   | RKS (VQFN、20)        | 4.50mm × 2.50mm |  |  |  |
| 511741103243 | DGS (SOT、20)         | 5.10mm × 3.00mm |  |  |  |

利用可能なパッケージについては、このデータシートの末尾にあ (1) る注文情報を参照してください。

|                                                        | Low Power                | Noise Rejection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Supports Slow Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input Voltage<br>Waveforms                             | Input Voltage            | the details of the second seco | and the second s |
| Standard<br>CMOS Input<br>Response<br>Waveforms        | Input Voltage            | Output<br>Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Output<br>Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Schmitt-trigger<br>CMOS Input<br>Response<br>Waveforms | Ortreut<br>Input Voltage | Output<br>Outrade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Output<br>Current Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

シュミット・トリガ入力の利点



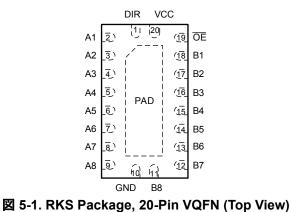
英語版のTI製品についての情報を翻訳したこの資料は、製品の概要を確認する目的で便宜的に提供しているものです。該当する正式な英語版の最新情報は、 🐼 www.ti.com で閲覧でき、その内容が常に優先されます。 TI では翻訳の正確性および妥当性につきましては一切保証いたしません。 実際の設計などの前には、必ず 最新版の英語版をご参照くださいますようお願いいたします。



# **Table of Contents**

| 1 特長                                 | 1              |
|--------------------------------------|----------------|
| 2 アプリケーション                           |                |
| 3 概要                                 | 1              |
| 4 Revision History                   |                |
| 5 Pin Configuration and Functions    | 3              |
| 6 Specifications                     | 4              |
| 6.1 Absolute Maximum Ratings         |                |
| 6.2 ESD Ratings                      | 4              |
| 6.3 Recommended Operating Conditions | 4              |
| 6.4 Thermal Information              | 4              |
| 6.5 Electrical Characteristics       | <mark>5</mark> |
| 6.6 Switching Characteristics        | <mark>5</mark> |
| 6.7 Operating Characteristics        | <mark>6</mark> |
| 6.8 Typical Characteristics          | <mark>6</mark> |
| 7 Parameter Measurement Information  | 7              |
| 8 Detailed Description               | <mark>8</mark> |
| 8.1 Overview                         |                |
| 8.2 Functional Block Diagram         |                |

| 8.3 Feature Description                               | 8    |
|-------------------------------------------------------|------|
| 8.4 Device Functional Modes                           |      |
| 9 Application and Implementation                      | . 11 |
| 9.1 Application Information                           | 11   |
| 9.2 Typical Application                               | . 11 |
| 10 Power Supply Recommendations                       | 14   |
| 11 Layout                                             | .14  |
| 11.1 Layout Guidelines                                | . 14 |
| 11.2 Layout Example                                   | . 14 |
| 12 Device and Documentation Support                   |      |
| 12.1 Documentation Support                            | . 15 |
| 12.2 Receiving Notification of Documentation Updates. | . 15 |
| 12.3 サポート・リソース                                        | . 15 |
| 12.4 Trademarks                                       | .15  |
| 12.5 Electrostatic Discharge Caution                  | .15  |
| 12.6 Glossary                                         | .15  |
| 13 Mechanical, Packaging, and Orderable               |      |
| Information                                           | . 16 |
|                                                       |      |


### **4 Revision History**

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

| C | hanges from Revision * (January 2022) to Revision A (October 2022) | Page |
|---|--------------------------------------------------------------------|------|
| • | 事前情報から量産データに変更                                                     | 1    |
| • | Added DGS package pinout diagram                                   | 3    |
| • | Added DGS (SOT) Thermal Information                                | 4    |
|   |                                                                    |      |



### **5** Pin Configuration and Functions



| DIR 🗖 | 1  | 20 V <sub>cc</sub> |
|-------|----|--------------------|
| A1 🗖  | 2  | 19 <u> </u>        |
| A2 🗖  | 3  | 18 🗖 🗖 B1          |
| A3 🗆  | 4  | 17 🗔 B2            |
| A4 🗖  | 5  | 16 🗖 B3            |
| A5 🗖  | 6  | 15 🗔 B4            |
| A6 🗖  | 7  | 14 🗖 B5            |
| A7 🗖  | 8  | 13 🗖 B6            |
| A8 🗖  | 9  | 12 🗖 B7            |
| GND 🗖 | 10 | 11 🗖 B8            |

### 図 5-2. DGS Package, 20-Pin SOT (Top View)

|                 |      |     | 表 5-1. Pin Functions                                                                                  |  |  |  |  |
|-----------------|------|-----|-------------------------------------------------------------------------------------------------------|--|--|--|--|
|                 | PIN  |     | DESCRIPTION                                                                                           |  |  |  |  |
| NAME            | NO.  |     | DESCRIPTION                                                                                           |  |  |  |  |
| DIR             | 1    | I   | Direction control input (L = B $\rightarrow$ A, H = A $\rightarrow$ B)                                |  |  |  |  |
| A1              | 2    | I/O | Channel 1 output/input A                                                                              |  |  |  |  |
| A2              | 3    | I/O | Channel 2 output/input A                                                                              |  |  |  |  |
| A3              | 4    | I/O | Channel 3 output/input A                                                                              |  |  |  |  |
| A4              | 5    | I/O | Channel 4 output/input A                                                                              |  |  |  |  |
| A5              | 6    | I/O | Channel 5 output/input A                                                                              |  |  |  |  |
| A6              | 7    | I/O | Channel 6 output/input A                                                                              |  |  |  |  |
| A7              | 8    | I/O | Channel 7 output/input A                                                                              |  |  |  |  |
| A8              | 9    | I/O | Channel 8 output/input A                                                                              |  |  |  |  |
| GND             | 10   | G   | Ground                                                                                                |  |  |  |  |
| B8              | 11   | I/O | Channel 8 input/output B                                                                              |  |  |  |  |
| B7              | 12   | I/O | Channel 7 input/output B                                                                              |  |  |  |  |
| B6              | 13   | I/O | Channel 6 input/output B                                                                              |  |  |  |  |
| B5              | 14   | I/O | Channel 5 input/output B                                                                              |  |  |  |  |
| B4              | 15   | I/O | Channel 4 input/output B                                                                              |  |  |  |  |
| B3              | 16   | I/O | Channel 3 input/output B                                                                              |  |  |  |  |
| B2              | 17   | I/O | Channel 2 input/output B                                                                              |  |  |  |  |
| B1              | 18   | I/O | Channel 1 input/output B                                                                              |  |  |  |  |
| OE              | 19   | I   | Output enable, active low                                                                             |  |  |  |  |
| V <sub>CC</sub> | 20   | Р   | Positive supply                                                                                       |  |  |  |  |
| Thermal Pad     | J(2) | _   | The thermal pad can be connect to GND or left floating. Do not connect to any other signal or supply. |  |  |  |  |

(1) I = Input, O = Output, I/O = Input or Output, G = Ground, P = Power.

(2) RKS Package Only

### 6 Specifications

#### 6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                  |                                                  |                                                            | MIN  | MAX | UNIT |
|------------------|--------------------------------------------------|------------------------------------------------------------|------|-----|------|
| V <sub>cc</sub>  | Supply voltage                                   |                                                            | -0.5 | 7   | V    |
| I <sub>IK</sub>  | Input clamp current <sup>(2)</sup>               | $V_{\rm I}$ < -0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V |      | ±20 | mA   |
| I <sub>OK</sub>  | Output clamp current <sup>(2)</sup>              | $V_{\rm I}$ < -0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V |      | ±20 | mA   |
| lo               | Continuous output current                        | $V_{O} = 0$ to $V_{CC}$                                    |      | ±35 | mA   |
|                  | Continuous current through V <sub>CC</sub> or GN | D                                                          |      | ±70 | mA   |
| TJ               | Junction temperature <sup>(3)</sup>              |                                                            |      | 150 | °C   |
| T <sub>stg</sub> | Storage temperature                              |                                                            | -65  | 150 | °C   |

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) Specified by design.

#### 6.2 ESD Ratings

|                    |                                                                   |                                                                        | VALUE | UNIT |
|--------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|-------|------|
|                    | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup> | ±4000                                                                  | V     |      |
| V <sub>(ESD)</sub> |                                                                   | Charged-device model (CDM), pper ANSI/ESDA/JEDEC JS-002 <sup>(2)</sup> | ±1500 | v    |

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

#### 6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

|                 |                     | MIN | NOM | MAX             | UNIT |
|-----------------|---------------------|-----|-----|-----------------|------|
| V <sub>CC</sub> | Supply voltage      | 2   | 5   | 6               | V    |
| VI              | Input voltage       | 0   |     | V <sub>CC</sub> | V    |
| Vo              | Output voltage      | 0   |     | V <sub>CC</sub> | V    |
| T <sub>A</sub>  | Ambient temperature | -40 |     | 125             | °C   |

#### 6.4 Thermal Information

| THERMAL METRIC <sup>(1)</sup> |                                              | SN74H      | ICS245    |      |  |
|-------------------------------|----------------------------------------------|------------|-----------|------|--|
|                               |                                              | RKS (VQFN) | DGS (SOT) | UNIT |  |
|                               |                                              | 20 PINS    | 20 PINS   |      |  |
| R <sub>θJA</sub>              | Junction-to-ambient thermal resistance       | 75.6       | 124.3     | °C/W |  |
| R <sub>0JC(top)</sub>         | Junction-to-case (top) thermal resistance    | 75.9       | 62.7      | °C/W |  |
| $R_{\theta JB}$               | Junction-to-board thermal resistance         | 49.6       | 79.1      | °C/W |  |
| $\Psi_{JT}$                   | Junction-to-top characterization parameter   | 11.0       | 7.8       | °C/W |  |
| $\Psi_{JB}$                   | Junction-to-board characterization parameter | 48.9       | 78.7      | °C/W |  |
| R <sub>0JC(bot)</sub>         | Junction-to-case (bottom) thermal resistance | 32.0       | N/A       | °C/W |  |

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.



#### **6.5 Electrical Characteristics**

over operating free-air temperature range; typical values measured at  $T_A = 25^{\circ}C$  (unless otherwise noted).

|                                                                                | PARAMETER                                                | TEST CC                               | NDITIONS                       | V <sub>cc</sub> | MIN | TYP   | MAX                      | UNIT       |                       |                  |  |  |
|--------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|--------------------------------|-----------------|-----|-------|--------------------------|------------|-----------------------|------------------|--|--|
|                                                                                |                                                          |                                       |                                | 2 V             | 0.7 |       | 1.5                      |            |                       |                  |  |  |
| $V_{T^+}$                                                                      | Positive switching threshold                             |                                       |                                | 4.5 V           | 1.7 |       | 3.15                     | V          |                       |                  |  |  |
|                                                                                |                                                          |                                       |                                | 6 V             | 2.1 |       | 4.2                      |            |                       |                  |  |  |
|                                                                                |                                                          |                                       |                                | 2 V             | 0.3 |       | 1.0                      |            |                       |                  |  |  |
| V <sub>T-</sub>                                                                | Negative switching threshold                             |                                       |                                | 4.5 V           | 0.9 |       | 2.2                      | V          |                       |                  |  |  |
|                                                                                |                                                          |                                       |                                | 6 V             | 1.2 |       | 3.0                      |            |                       |                  |  |  |
| ΔV <sub>T</sub> Hysteresis (V <sub>T+</sub> - V <sub>T-</sub> ) <sup>(1)</sup> |                                                          |                                       | 2 V                            | 0.2             |     | 1.0   |                          |            |                       |                  |  |  |
|                                                                                | $\Delta V_{T} \qquad Hysteresis (V_{T+} - V_{T-})^{(1)}$ |                                       |                                | 4.5 V           | 0.4 |       | 1.4                      | V          |                       |                  |  |  |
|                                                                                |                                                          |                                       |                                | 6 V             | 0.6 |       | 1.6                      |            |                       |                  |  |  |
|                                                                                |                                                          |                                       |                                |                 |     |       | I <sub>OH</sub> = -20 μA | 2 V to 6 V | V <sub>CC</sub> – 0.1 | $V_{CC} - 0.002$ |  |  |
| V <sub>OH</sub>                                                                | High-level output voltage                                | $V_{I} = V_{IH} \text{ or } V_{IL}$   | I <sub>OH</sub> = -6 mA        | 4.5 V           | 4.0 | 4.3   |                          | V          |                       |                  |  |  |
|                                                                                |                                                          |                                       | I <sub>OH</sub> = -7.8 mA      | 6 V             | 5.4 | 5.75  |                          |            |                       |                  |  |  |
|                                                                                |                                                          |                                       | I <sub>OL</sub> = 20 μA        | 2 V to 6 V      |     | 0.002 | 0.1                      |            |                       |                  |  |  |
| $V_{OL}$                                                                       | Low-level output voltage                                 | $V_{I} = V_{IH} \text{ or } V_{IL}$   | I <sub>OL</sub> = 6 mA         | 4.5 V           |     | 0.18  | 0.30                     | V          |                       |                  |  |  |
|                                                                                |                                                          |                                       | I <sub>OL</sub> = 7.8 mA       | 6 V             |     | 0.22  | 0.33                     |            |                       |                  |  |  |
| I <sub>I</sub>                                                                 | Input leakage current                                    | $V_{I} = V_{CC} \text{ or } 0$        | $V_{I} = V_{CC} \text{ or } 0$ | 6 V             |     | ±100  | ±1000                    | nA         |                       |                  |  |  |
| I <sub>oz</sub>                                                                | Off-State (High-Impedance<br>State) Output Current       | $V_{O} = V_{CC} \text{ or } 0$        | $V_{O} = V_{CC} \text{ or } 0$ | 6 V             |     | 0.01  | 2                        | μA         |                       |                  |  |  |
| I <sub>CC</sub>                                                                | Supply current                                           | $V_{I} = V_{CC} \text{ or } 0, I_{C}$ | <sub>D</sub> = 0               | 6 V             |     | 0.1   | 2                        | μA         |                       |                  |  |  |
| Ci                                                                             | Input capacitance                                        |                                       |                                | 2 V to 6 V      |     |       | 5                        | pF         |                       |                  |  |  |

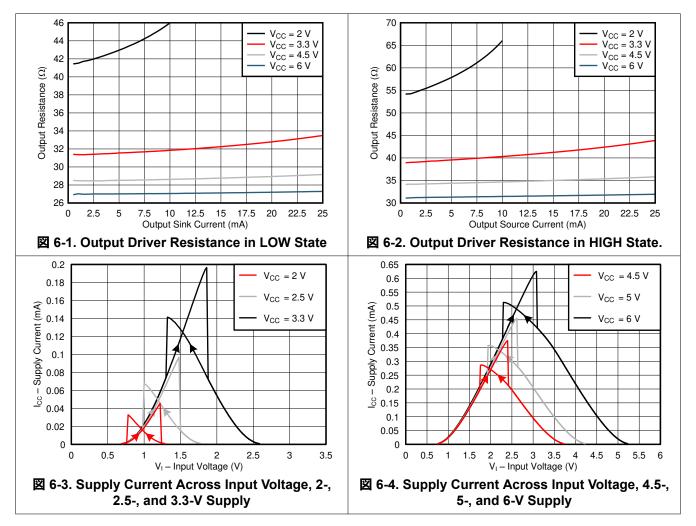
(1) Specified by design.

#### 6.6 Switching Characteristics

over operating free-air temperature range; typical values measured at  $T_A = 25$ °C (unless otherwise noted). See *Parameter Measurment Information*.  $C_L = 50$  pF.

|                  |                   |        | то         |                 | Opera | ating   | free-air | temperat | ure (T <sub>A</sub> | )   |    |
|------------------|-------------------|--------|------------|-----------------|-------|---------|----------|----------|---------------------|-----|----|
|                  | PARAMETER         | FROM   |            | V <sub>cc</sub> | 25°   | °C      |          | -40°     | UNIT                |     |    |
|                  |                   |        |            |                 | MIN T | MIN TYP |          | MIN TYP  |                     | MAX |    |
|                  |                   |        |            | 2 V             |       | 21      | 32       |          |                     | 49  |    |
| t <sub>pd</sub>  | Propagation delay | A or B | B or A     | 4.5 V           |       | 8       | 13       |          | 15                  |     | ns |
|                  |                   |        |            | 6 V             |       | 7       | 11       |          |                     | 13  |    |
|                  |                   | OE     | A or B     | 2 V             |       | 52 77   |          |          | 95                  |     |    |
| t <sub>en</sub>  | Enable time       |        |            | 4.5 V           |       | 30      |          | 38       | 38                  | ns  |    |
|                  |                   |        |            | 6 V             |       | 16      | 24       |          |                     | 31  |    |
|                  |                   |        | A or B     | 2 V             |       | 36      | 54       |          |                     | 63  |    |
| t <sub>dis</sub> | Disable time      | OE     |            | 4.5 V           |       | 16      | 24       |          | 30                  |     | ns |
|                  |                   |        |            | 6 V             |       | 14      | 21       |          |                     | 25  |    |
|                  |                   |        | Any output | 2 V             |       |         | 13       |          |                     | 16  |    |
| tt               | Transition-time   |        |            | 4.5 V           |       |         | 7        |          |                     | 9   | ns |
|                  |                   |        |            | 6 V             |       |         | 6        |          |                     | 8   |    |




#### 6.7 Operating Characteristics

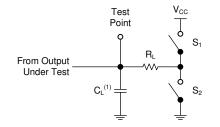
over operating free-air temperature range; typical values measured at T<sub>A</sub> = 25°C (unless otherwise noted).

| PARAMETER       |                                        | TEST CONDITIONS | V <sub>cc</sub> | MIN | TYP MAX | UNIT |
|-----------------|----------------------------------------|-----------------|-----------------|-----|---------|------|
| C <sub>pd</sub> | Power dissipation capacitance per gate | No load         | 2 V to 6 V      |     | 40      | pF   |

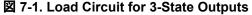
#### 6.8 Typical Characteristics

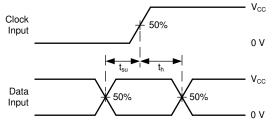
T<sub>A</sub> = 25°C



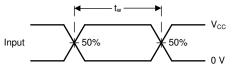



#### 7 Parameter Measurement Information

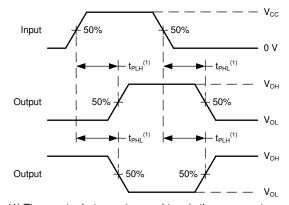

Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>t</sub> < 2.5 ns.

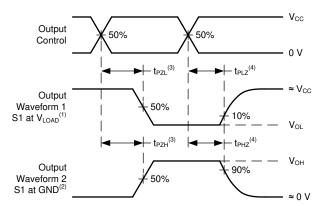

For clock inputs, f<sub>max</sub> is measured when the input duty cycle is 50%.

The outputs are measured one at a time with one input transition per measurement.



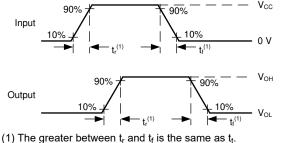

(1)  $C_{\text{L}}$  includes probe and test-fixture capacitance.




27-3. Voltage Waveforms, Setup and Hold Times




**図** 7-2. Voltage Waveforms, Pulse Duration







(1) The greater between t<sub>PLH</sub> and t<sub>PHL</sub> is the same as t<sub>pd</sub>.
 **27-4. Voltage Waveforms Propagation Delays**

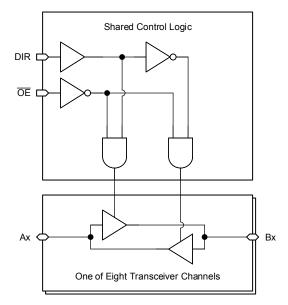


☑ 7-6. Voltage Waveforms, Input and Output Transition Times



### 8 Detailed Description

#### 8.1 Overview


The SN74HCS245 contains 8 individual high speed CMOS transceivers with Schmitt-trigger inputs and 3-state outputs.

Each transceiver includes one buffer oriented from Ax to Bx and one from Bx to Ax, with at least one output disabled at all times. The direction (DIR) pin controls which buffer is active. The buffer that is not active has the output placed into the high-impedance state.

The output enable ( $\overline{OE}$ ) controls all outputs in the device. When the  $\overline{OE}$  pin is in the low state, the appropriate outputs as determined by the direction (DIR) pin are enabled. When the  $\overline{OE}$  pin is in the high state, all outputs of the device are disabled. All disabled outputs are placed into the high-impedance state.

To ensure the high-impedance state during power up or power down, the  $\overline{OE}$  pin should be tied to V<sub>CC</sub> through a pull-up resistor; the minimum value of the resistor is determined by the current sinking capability of the driver and the leakage of the pin as defined in the *Electrical Characteristics* table. Typically a 10-k $\Omega$  resistor will be sufficient.

#### 8.2 Functional Block Diagram



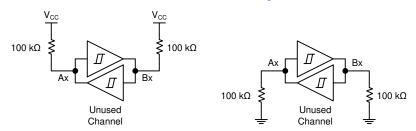


#### 8.3 Feature Description

#### 8.3.1 CMOS IOs

This device includes CMOS IOs. These pins can be configured as either an input or an output. The output has the balanced 3-state architecture, and the input has the Schmitt-trigger architecture.

The three states that these outputs can be in are driving high, driving low, and high impedance. The term "balanced" indicates that the device can sink and source similar currents. The drive capability of this device may create fast edges into light loads so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the output power of the device to be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the *Absolute Maximum Ratings* must be followed at all times.


When the pin is configured as an input, the output is placed into a high-impedance state and it will neither source nor sink current, with the exception of minor leakage current as defined in the *Electrical Characteristics* table. In the high-impedance state, the output voltage is not controlled by the device and is dependent on external



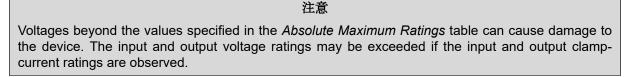
factors. If no other drivers are connected to the node, then this is known as a floating node and the voltage is unknown. Because this pin also includes an input, the voltage should always be defined.

The Schmitt-trigger input architecture provides hysteresis as defined by  $\Delta V_T$  in the *Electrical Characteristics* table, which makes this device extremely tolerant to slow or noisy inputs. While the inputs can be driven much slower than standard CMOS inputs, it is still recommended to properly terminate unused inputs. Driving the inputs with slow transitioning signals will increase dynamic current consumption of the device. For additional information regarding Schmitt-trigger inputs, please see Understanding Schmitt Triggers.

Unused transceiver channels should be terminated as shown in Figure 8-2.



**図** 8-2. Proper termination of unused transceiver channels


#### 8.3.2 CMOS Schmitt-Trigger Inputs

This device includes inputs with the Schmitt-trigger architecture. These inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in the *Electrical Characteristics* table from the input to ground. The worst case resistance is calculated with the maximum input voltage, given in the *Absolute Maximum Ratings* table, and the maximum input leakage current, given in the *Electrical Characteristics* table, using Ohm's law ( $R = V \div I$ ).

The Schmitt-trigger input architecture provides hysteresis as defined by  $\Delta V_T$  in the *Electrical Characteristics* table, which makes this device extremely tolerant to slow or noisy inputs. While the inputs can be driven much slower than standard CMOS inputs, it is still recommended to properly terminate unused inputs. Driving the inputs with slow transitioning signals will increase dynamic current consumption of the device. For additional information regarding Schmitt-trigger inputs, please see *Understanding Schmitt Triggers*.

#### 8.3.3 Clamp Diode Structure

As shown in 🗵 8-3, the inputs and outputs to this device have both positive and negative clamping diodes.



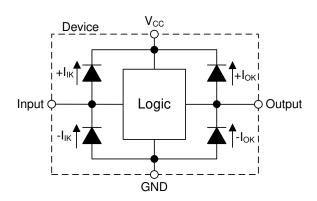



図 8-3. Electrical Placement of Clamping Diodes for Each Input and Output



#### 8.4 Device Functional Modes

Function Table lists the functional modes of the SN74HCS245.

| 衣 o-1. Function Table |                    |                        |   |  |  |  |  |  |  |
|-----------------------|--------------------|------------------------|---|--|--|--|--|--|--|
| INPU                  | ITS <sup>(1)</sup> | OUTPUTS <sup>(2)</sup> |   |  |  |  |  |  |  |
| ŌE                    | DIR                | Α                      | В |  |  |  |  |  |  |
| L                     | L                  | В                      | Z |  |  |  |  |  |  |
| L                     | Н                  | Z                      | A |  |  |  |  |  |  |
| Н                     | Х                  | Z                      | Z |  |  |  |  |  |  |

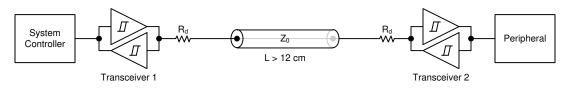
#### 表 8-1. Function Table

(1) H = High voltage level, L = Low voltage level, X = Don't care

(2) A = Logic value at 'A' input, B = Logic value at 'B' input, Z = High impedance



### 9 Application and Implementation


注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

#### 9.1 Application Information

The SN74HCS245 can be used to drive signals over relatively long traces or transmission lines. In order to reduce ringing caused by impedance mismatches between the driver, transmission line, and receiver, a series damping resistor placed in series with the transmitter's output can be used. The figure in the *Application Curve* section shows the received signal with three separate resistor values. Just a small amount of resistance can make a significant impact on signal integrity in this type of application.

#### 9.2 Typical Application



**図** 9-1. Application block diagram

#### 9.2.1 Design Requirements

- All signals in the system operate at 5 V
- Avoid unstable state by not having LOW signals on both inputs
- Q output is HIGH when S is LOW
  - Q output remains HIGH until  $\overline{R}$  is LOW

#### 9.2.1.1 Power Considerations

Ensure the desired supply voltage is within the range specified in the *Recommended Operating Conditions*. The supply voltage sets the device's electrical characteristics as described in the *Electrical Characteristics* section.

The positive voltage supply must be capable of sourcing current equal to the total current to be sourced by all outputs of the SN74HCS245 plus the maximum static supply current,  $I_{CC}$ , listed in the *Electrical Characteristics*, and any transient current required for switching. The logic device can only source as much current that is provided by the positive supply source. Be sure to not exceed the maximum total current through V<sub>CC</sub> listed in the *Absolute Maximum Ratings*.

The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the SN74HCS245 plus the maximum supply current,  $I_{CC}$ , listed in the *Electrical Characteristics*, and any transient current required for switching. The logic device can only sink as much current that can be sunk into its ground connection. Be sure to not exceed the maximum total current through GND listed in the *Absolute Maximum Ratings*.

The SN74HCS245 can drive a load with a total capacitance less than or equal to 50 pF while still meeting all of the data sheet specifications. Larger capacitive loads can be applied; however, it is not recommended to exceed 50 pF.

The SN74HCS245 can drive a load with total resistance described by  $R_L \ge V_O / I_O$ , with the output voltage and current defined in the *Electrical Characteristics* table with  $V_{OH}$  and  $V_{OL}$ . When outputting in the HIGH state, the output voltage in the equation is defined as the difference between the measured output voltage and the supply voltage at the V<sub>CC</sub> pin.

Total power consumption can be calculated using the information provided in *CMOS Power Consumption and Cpd Calculation*.

Thermal increase can be calculated using the information provided in *Thermal Characteristics of Standard Linear and Logic (SLL) Packages and Devices.* 

注意 The maximum junction temperature,  $T_{J(max)}$  listed in the *Absolute Maximum Ratings*, is an additional limitation to prevent damage to the device. Do not violate any values listed in the *Absolute Maximum Ratings*. These limits are provided to prevent damage to the device.

#### 9.2.1.2 Input Considerations

Input signals must cross  $V_{t-(min)}$  to be considered a logic LOW, and  $V_{t+(max)}$  to be considered a logic HIGH. Do not exceed the maximum input voltage range found in the *Absolute Maximum Ratings*.

Unused inputs must be terminated to either  $V_{CC}$  or ground. The unused inputs can be directly terminated if the input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input will be used sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used for a default state of LOW. The drive current of the controller, leakage current into the SN74HCS245 (as specified in the *Electrical Characteristics*), and the desired input transition rate limits the resistor size. A 10-k $\Omega$  resistor value is often used due to these factors.

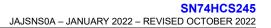
The SN74HCS245 has no input signal transition rate requirements because it has Schmitt-trigger inputs.

Another benefit to having Schmitt-trigger inputs is the ability to reject noise. Noise with a large enough amplitude can still cause issues. To know how much noise is too much, please refer to the  $\Delta V_{T(min)}$  in the *Electrical Characteristics*. This hysteresis value will provide the peak-to-peak limit.

Unlike what happens with standard CMOS inputs, Schmitt-trigger inputs can be held at any valid value without causing huge increases in power consumption. The typical additional current caused by holding an input at a value other than  $V_{CC}$  or ground is plotted in the *Typical Characteristics*.

Refer to the *Feature Description* section for additional information regarding the inputs for this device.

#### 9.2.1.3 Output Considerations

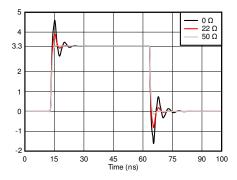

The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will decrease the output voltage as specified by the  $V_{OH}$  specification in the *Electrical Characteristics*. The ground voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output voltage as specified by the  $V_{OL}$  specification in the *Electrical Characteristics*.

Push-pull outputs that could be in opposite states, even for a very short time period, should never be connected directly together. This can cause excessive current and damage to the device.

Two channels within the same device with the same input signals can be connected in parallel for additional output drive strength.

Unused outputs can be left floating. Do not connect outputs directly to  $V_{CC}$  or ground.

Refer to the *Feature Description* section for additional information regarding the outputs for this device.






#### 9.2.2 Detailed Design Procedure

- Add a decoupling capacitor from V<sub>CC</sub> to GND. The capacitor needs to be placed physically close to the device and electrically close to both the V<sub>CC</sub> and GND pins. An example layout is shown in the *Layout* section.
- Ensure the capacitive load at the output is ≤ 50 pF. This is not a hard limit; it will, however, ensure optimal
  performance. This can be accomplished by providing short, appropriately sized traces from the
  SN74HCS245 to one or more of the receiving devices.
- 3. Ensure the resistive load at the output is larger than  $(V_{CC} / I_{O(max)}) \Omega$ . This will ensure that the maximum output current from the *Absolute Maximum Ratings* is not violated. Most CMOS inputs have a resistive load measured in M $\Omega$ ; much larger than the minimum calculated previously.
- 4. Thermal issues are rarely a concern for logic gates; the power consumption and thermal increase, however, can be calculated using the steps provided in the application report, *CMOS Power Consumption and Cpd Calculation*.

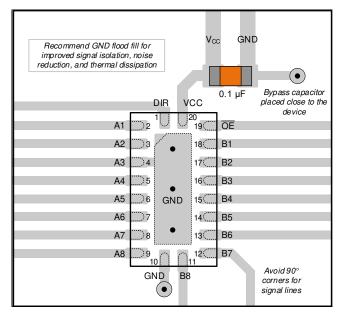
#### 9.2.3 Application Curves



**2** 9-2. Simulated Signal Integrity at the Reciever With Different Damping Resistor (R<sub>d</sub>) Values



### **10 Power Supply Recommendations**


The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each  $V_{CC}$  terminal should have a good bypass capacitor to prevent power disturbance. A 0.1-µF capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1-µF and 1-µF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results, as shown in given example layout image.

#### 11 Layout

#### **11.1 Layout Guidelines**

When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or  $V_{CC}$ , whichever makes more sense for the logic function or is more convenient.

#### 11.2 Layout Example



**II-1.** Example layout for the SN74HCS245 in the RKS package.



### **12 Device and Documentation Support**

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

#### **12.1 Documentation Support**

#### 12.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, HCMOS Design Considerations application report (SCLA007)
- Texas Instruments, CMOS Power Consumption and Cpd Calculation application report (SDYA009)
- Texas Instruments, Designing With Logic application report

#### **12.2 Receiving Notification of Documentation Updates**

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

#### 12.3 サポート・リソース

TI E2E<sup>™</sup> サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接 得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得るこ とができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。

#### 12.4 Trademarks

TI E2E<sup>™</sup> is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

#### **12.5 Electrostatic Discharge Caution**



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

#### 12.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.



### 13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.



#### PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2) | Lead finish/<br>Ball material<br>(6) | MSL Peak Temp<br>(3) | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|---------------|--------------|--------------------|------|----------------|-----------------|--------------------------------------|----------------------|--------------|-------------------------|---------|
| SN74HCS245DGSR   | ACTIVE        | VSSOP        | DGS                | 20   | 5000           | RoHS & Green    | NIPDAU                               | Level-1-260C-UNLIM   | -40 to 125   | HS245                   | Samples |
| SN74HCS245RKSR   | ACTIVE        | VQFN         | RKS                | 20   | 3000           | RoHS & Green    | NIPDAU                               | Level-1-260C-UNLIM   | -40 to 125   | HCS245                  | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

**LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

**RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

<sup>(6)</sup> Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

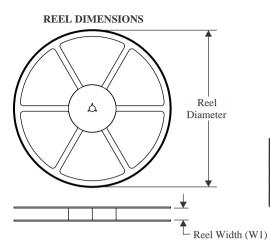
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

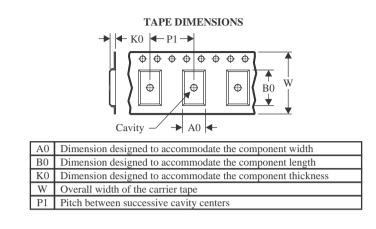


www.ti.com

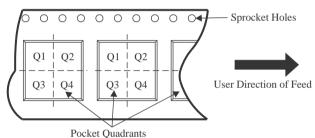
#### OTHER QUALIFIED VERSIONS OF SN74HCS245 :

• Automotive : SN74HCS245-Q1


NOTE: Qualified Version Definitions:


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects




www.ti.com

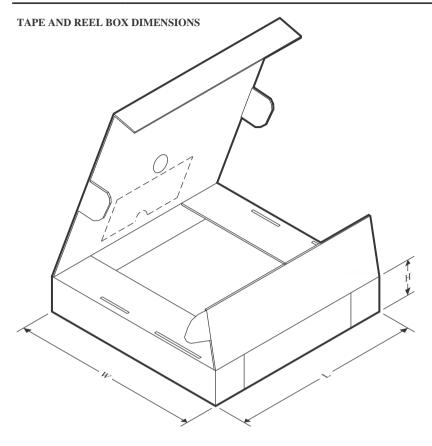
### TAPE AND REEL INFORMATION





#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




| *All dimensions are nominal |       |                    |    |      |                          |                          |            |            |            |            |           |                  |
|-----------------------------|-------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | 0     | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| SN74HCS245DGSR              | VSSOP | DGS                | 20 | 5000 | 330.0                    | 16.4                     | 5.4        | 5.4        | 1.45       | 8.0        | 16.0      | Q1               |
| SN74HCS245RKSR              | VQFN  | RKS                | 20 | 3000 | 180.0                    | 12.4                     | 2.8        | 4.8        | 1.2        | 4.0        | 12.0      | Q1               |



www.ti.com

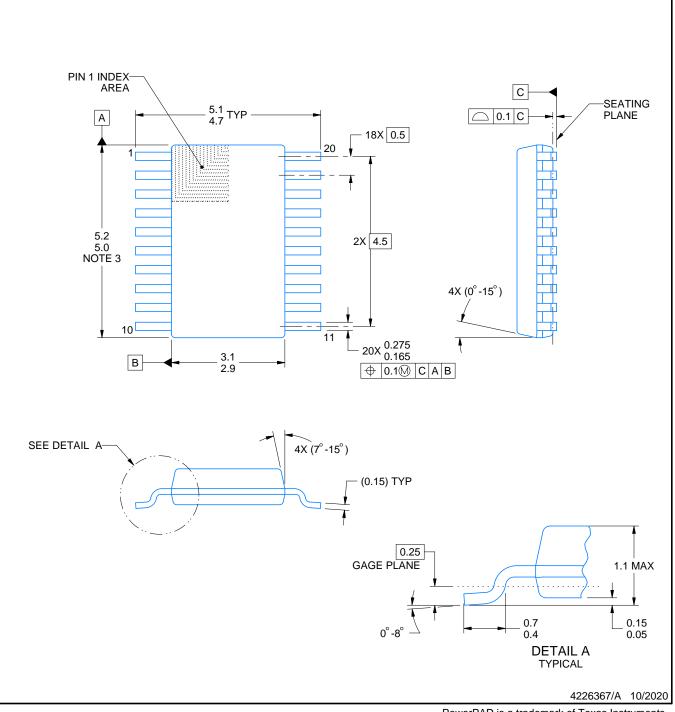
# PACKAGE MATERIALS INFORMATION

24-Dec-2022



\*All dimensions are nominal

| Device         | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN74HCS245DGSR | VSSOP        | DGS             | 20   | 5000 | 356.0       | 356.0      | 35.0        |
| SN74HCS245RKSR | VQFN         | RKS             | 20   | 3000 | 210.0       | 185.0      | 35.0        |


# **DGS0020A**



# **PACKAGE OUTLINE**

# VSSOP - 1.1 mm max height

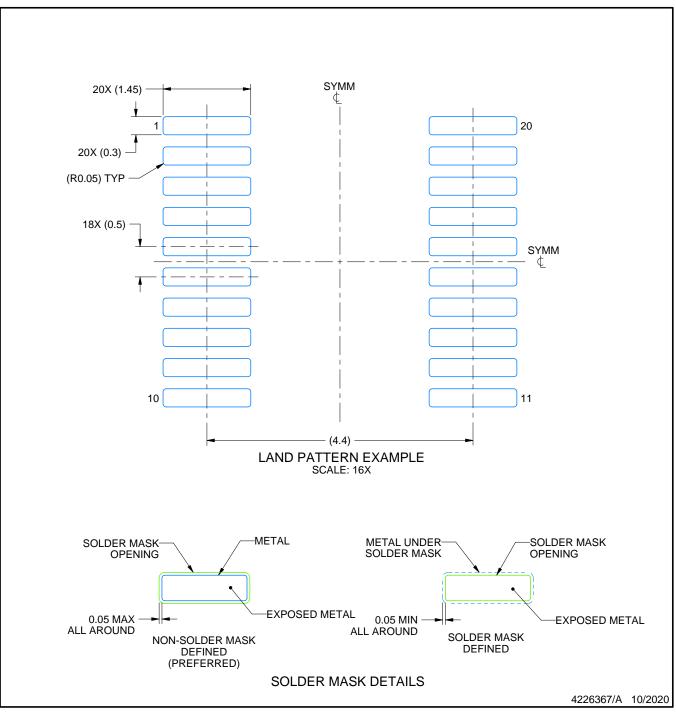
SMALL OUTLINE PACKAGE



NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. No JEDEC registration as of September 2020.
- 5. Features may differ or may not be present.




# DGS0020A

# **EXAMPLE BOARD LAYOUT**

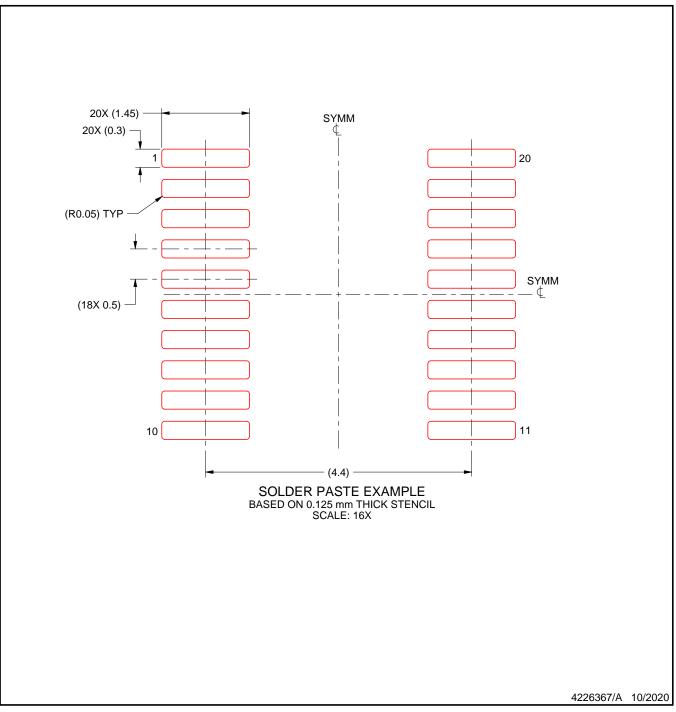
### VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.
- 10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.




# DGS0020A

# **EXAMPLE STENCIL DESIGN**

### VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

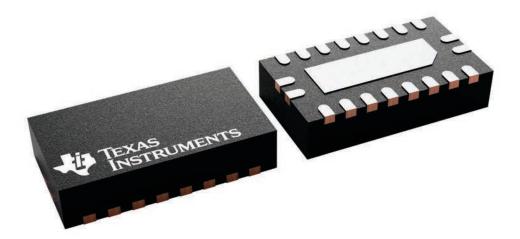


NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.



# **RKS 20**


2.5 x 4.5, 0.5 mm pitch

# **GENERIC PACKAGE VIEW**

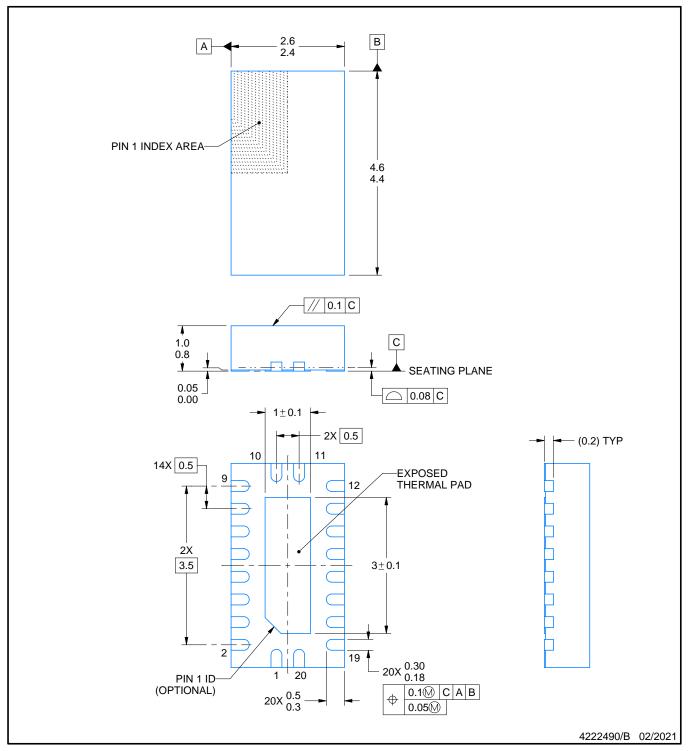
### VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.






# **RKS0020A**



# **PACKAGE OUTLINE**

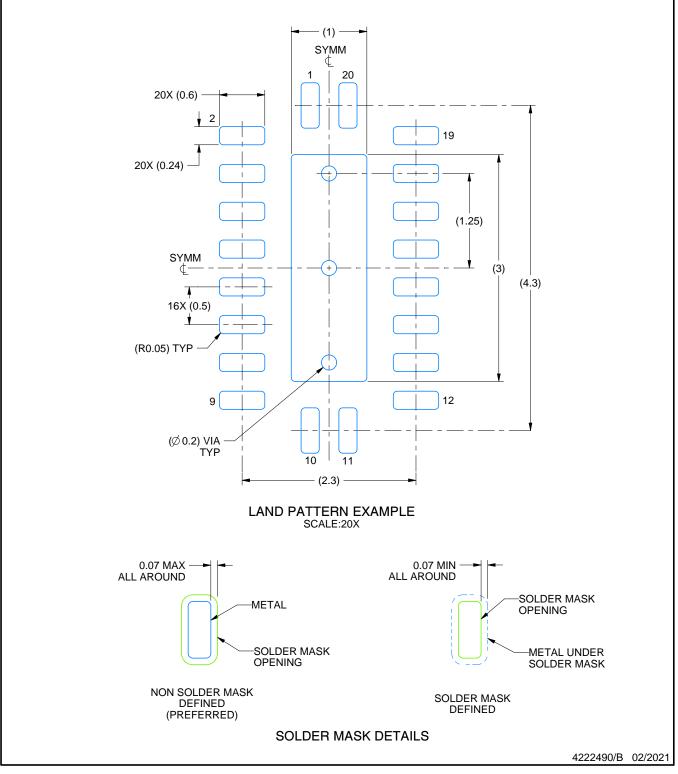
### VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD



#### NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.




# **RKS0020A**

# **EXAMPLE BOARD LAYOUT**

### VQFN - 1 mm max height

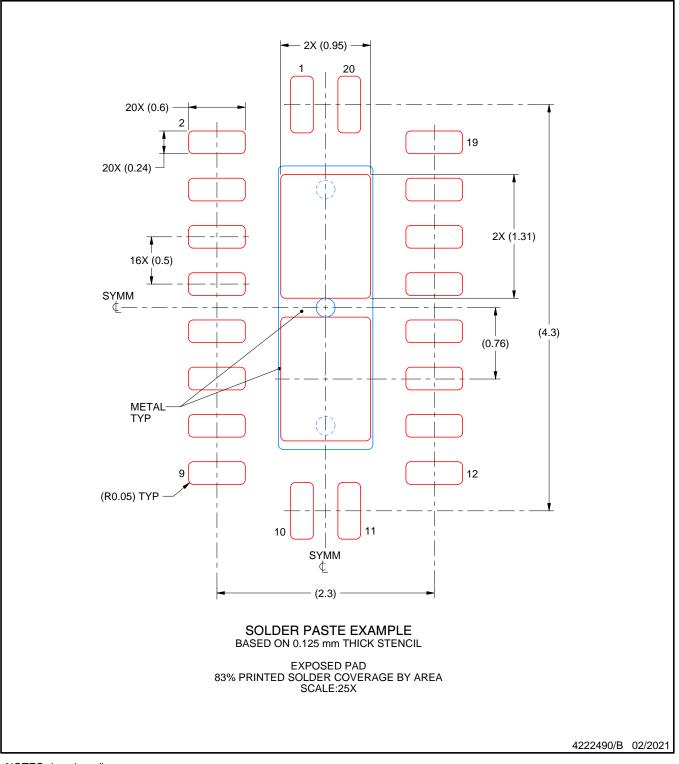
PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.




# **RKS0020A**

# **EXAMPLE STENCIL DESIGN**

### VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



#### 重要なお知らせと免責事項

TIは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや 設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供してお り、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的に かかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプ リケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載す ることは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを 自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供され ています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありま せん。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated