# EVM User's Guide: MCF8315PWPEVM MCF8315PWPEVM Evaluation Module



### Description

The MCF8315PWPEVM is an evaluation module for the MCF8315 BLDC driver in the 24-pin HTSSOP (PWP) package. The MCF8315 is a 4.5V to 35V, 4A peak, sensorless FOC, integrated FET, and threephase BLDC motor driver IC.

This EVM allows quick evaluation and configuration of the MCF8315 device to optimize for your BLDC motor application.

# **Get Started**

- 1. Download the latest design files from the MCF8315PWPEVM tool page on ti.com.
- Download the latest version of the Motor Studio GUI and firmware from the Motor Studio tool page on ti.com.

### Features

- 4.5V to 35V operation with 4A peak current
- Onboard USB-to-I2C communication interface
- Sensorless Field Oriented Control (FOC)
- Low MOSFETs RDS(ON)(H+L) at TJ=25°C: 265mΩ(typ.)
- GUI software to simplify the MCx tuning process and performance evaluation

### Applications

- Brushless-DC (BLDC) Motor Modules
- Residential and Living Fans
- Air Purifiers and Humidifier Fans
- Washer and Dishwashers Pumps
- CPAP Machines



MCF8315PWPEVM Printed Circuit Board (PCB - Top View)



# 1 Evaluation Module Overview

### **1.1 Introduction**

This document is provided with the MCF8315PWPEVM evaluation module (EVM) as a supplement to the MCF8315 data sheet (MCF8315A Three-Phase Sensorless-FOC BLDC Motor Driver). This user's guide details the hardware setup instructions, GUI installation, and usage instructions. The MCF8315PWPEVM allows users to evaluate the performance of an MCF8315 motor driver in the 24-pin HTSSOP (PWP) package. This EVM can be configured using the accompanying Motor Studio GUI, which makes it easy to tune and optimize the device register settings for a specific motor.

The MCF8315PWPEVM includes an onboard FTDI chip to convert USB communication from the micro-USB connector into UART and an onboard MSP430FR2355 MCU to interface with the MCF8315. There are user-selectable jumpers, resistors, connectors, and test points available to configure and evaluate many features of the device.

#### WARNING

Voltages exceeding the standard EVM ratings as specified on the data sheet can cause personal injury, electrical shock hazard, damage to the EVM, or a combination.

Additionally, do not leave power connections to the EVM connected while not in operation.

| CAUTION |             |                                                                                                                      |  |  |
|---------|-------------|----------------------------------------------------------------------------------------------------------------------|--|--|
|         | Hot surface | Caution Hot Surface! Contact may cause burns.<br>Do not touch. Please take the proper precautions<br>when operating. |  |  |

#### 1.2 Kit Contents

| Item          | Description                          | Quantity |
|---------------|--------------------------------------|----------|
| MCF8315PWPEVM | MCF8315PWPEVM PCB                    |          |
| Вох           | Cardboard box                        | 1        |
| USB Cabel     | USB A Male-to-USB B Micro Male Cable | 1        |
| Foam          | Antistatic foam                      | 2        |
| Literature    | EVM disclaimers                      | 1        |

#### 1.3 Specification

The MCF8315PWPEVM can support voltages up to 40V and currents up to 4A. To prevent damage to both the IC and the EVM, please confirm that these voltage and current specifications are not exceeded.

#### **1.4 Device Information**

The MCF8315 is a 4.5V to 35V, 4A peak three-phase gate driver IC with integrated code-free sensorless field-oriented control (FOC) for motor drive applications. The internal sensorless FOC algorithm is highly configurable through register settings in a non-volatile EEPROM ranging from motor start-up behavior to closed loop operation, which allows for the device to operate stand-alone once the device has been configured.

The device provides three accurately trimmed and temperature-compensated half-bridge MOSFETS, gate drivers, a charge pump, a current sense amplifier, a linear regulator for the external load, and an adjustable buck regulator. The device can receive a speed command through a PWM input, analog voltage, variable frequency square wave, or I2C command. Internal protection functions are provided for undervoltage lockout, FET overcurrent, and overtemperature. The nFAULT pin indicates fault events detected by the protection features.

## 2 Hardware

### 2.1 Quick Start Guide

The MCF8315PWPEVM requires a power supply source, which has a recommended operating range from 4.5V to 35V. To set up and power the EVM, follow the sequence below:

- 1. Connect motor phases to A, B, and C on connector J8.
- 2. Do not turn on the power supply yet. Connect the motor supply to VBAT/VM and PGND on connector J7.
  - a. To enable reverse polarity protection and Pi filter, connect to VBAT. Note that when connecting to VBAT, VM will be VM 0.7V less, due to a diode drop in the reverse-polarity protection circuit.
  - b. To disable reverse-polarity protection and the Pi filter, connect to the VM.
- 3. Select J3 to 5V\_USB and J5 to 3V3COM to power MSP430 from the USB power supply.
- 4. Connect the micro-USB cable to the computer.
- 5. Turn the potentiometer fully clockwise to set the motor to zero speed upon power-up.
- 6. Flip the switch S1 to the right to configure BRAKE = RUN and switch S2 to the right to configure DRVOFF = Driver output ON
- 7. Turn on the motor power supply.
- 8. Use the Motor Studio GUI (as shown in Section 3) to configure and tune the device registers and spin up the motor.



Figure 2-1. Reference for Quick Start Guide

### 2.2 Hardware Setup

The hardware required to run the motor is the MCF8315PWPEVM, a micro-USB cable, and a power supply with a DC output from 4.5V to 35V. Follow these steps to start up the MCF8315PWPEVM:

3

Hardware



- 1. Connect the DC power supply to header J7. Connect to VBAT and PGND to utilize the reverse polarity protection and the pi filter to the EVM. Otherwise, connect to VM and PGND to bypass the reverse polarity protection and pi filter.
- 2. Apply user-configurable jumper settings. See Section 2.7 section for more information.
- 3. If needed, flash program into the MCU as described in Section 3.2.2. Disconnect the 4-pin JTAG connections.
- 4. Turn on the DC power supply and power up the PCB.
- 5. Connect a Micro-USB cable to the MCF8315PWPEVM and computer.
- 6. Launch Motor Studio GUI

If using the MCF8315PWPEVM with an external microcontroller, then remove all shunt jumpers from jumper bridge J6. Connect with external jumpers to the left side of the jumper bridge from the external MCU.

### 2.3 Hardware Connections Overview – MCF8315PWPEVM

Figure 2-2 shows the major blocks of MCF8315PWPEVM evaluation module. The MCF8315PWPEVM is designed for an input supply from 4.5V to 35V. The MCF8315 includes three integrated half-bridges and implements a sensorless FOC algorithm to spin a motor with up to 4A peak current. It also integrates an adjustable buck regulator.



Figure 2-2. MCF8315PWPEVM Major Hardware Blocks

### 2.4 Connection Details

Figure 2-3 shows the connections made to the MCF8315PWPEVM to spin a 3-phase sensorless Brushless-DC motor.

A 4.5V to 35V power supply or battery is connected to the VBAT or VM and PGND terminals on connector J7. There is a reverse polarity protection and Pi filter implemented on the VBAT and PGND terminals. To bypass the reverse polarity protection and Pi filter, connect the power supply to the VM terminal or VM test point on the board and PGND.

The three phases of the BLDC motor connect directly to the A, B, and C terminals of the screw terminal connector J8 provided on the MCF8315PWPEVM.





Figure 2-3. Connections from Motor to MCF8315PWPEVM

Figure 2-4 shows where the micro-USB cable is plugged into the MCF8315PWPEVM to provide communication between the evaluation module and GUI. The USB data and 5V power from the USB are converted into UART data and 3.3V power to power the MSP430FR2355 microcontroller. The 5V from the USB power is limited to 500mA and the 3.3V from the FTDI chip is limited to 30mA. If the user wishes to supply more current to these rails, they may use the 5V\_SEL jumper J3 and 3V3\_SEL jumper J5 to connect external power rails.



Figure 2-4. Micro-USB Connector and UART for MCF8315PWPEVM



### 2.5 MSP430FR2355 Microcontroller & User Interface

The MCF8315PWPEVM includes the MSP430FR2355 low-power MCU (as shown in Figure 2-5) to communicates via I2C with the MCF8315.

In order to program the MSP430FR2355, an external MSP430 FET programmer must be connected to the Spy-Bi-Wire (SBW) interface connector J4. Many MSP430 LaunchPad<sup>™</sup> provide an onboard eZ-FET Debug Probe that can be jumper-wired to the MCF8315PWPEVM to flash the firmware into the MSP430FR2355 microcontroller.

The user can use the Reset (RST) button at any time to reset and restart the MCU program. Two active-low LEDs, D6 and D7, can be used for debug purposes as well.

Finally, a shunt jumper bridge on the 32-pin connector J6 ties all signals between the microcontroller and MCF8315. These jumpers can be inserted or removed as needed in order to isolate the microcontroller from the gate driver. This allows for microcontroller signal debugging or using the MCF8315PWPEVM as a standalone gate driver with an external microcontroller.



Figure 2-5. MSP430FR2355 MCU and User Interface on MCF8315PWPEVM

### 2.6 LED Lights

The MCF8315PWPEVM has 5 status LEDs that provide the status of power supplies and functionalities of the evaluation module. By default, the VM LED and Internal Buck regulator LED will light up when the board is powered and the D7 LED will light up when the firmware on the MSP430FR2355 microcontroller runs. Table 2-1 shows LED descriptions including those that are on during power up in bold and Figure 2-6 shows the locations of the LEDs.

| Designator | Name           | Color | Description                                            |  |  |  |
|------------|----------------|-------|--------------------------------------------------------|--|--|--|
| D1         | Buck Regulator | Green | Internal buck regulator is voltage output              |  |  |  |
| D2         | nFAULT         | Red   | Lights up when fault condition has occurred on MCF8315 |  |  |  |
| D3         | VM             | Green | Motor power is supplied to the board                   |  |  |  |
| D6         | MSP_LED1       | Red   | Blinks when UART/I2C transactions occur                |  |  |  |
| D7         | MSP_LED2       | Green | MSP430FR2355 Power indicator                           |  |  |  |

nFAULT

#### Table 2-1. Description of MCF8315PWPEVM LEDs (default in bold after powerup)





#### 2.7 User-Configurable Settings

The MCF8315PWPEVM includes a variety of user-selectable jumpers, switches, and resistors on the entirety of the evaluation board to configure settings. Table 2-2 summarizes all of these configurable settings.

| Iable                                                                      | Table 2-2. Description of Oser-Selectable Settings on MCI 0515F WF LVM (Default in Dold) |                                 |            |                    |               |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------|------------|--------------------|---------------|--|
| Designator                                                                 | Jumper Setting<br>Name                                                                   | Description                     | Layer      | Position           | Function      |  |
| L1/L2/R7 Buck Regulator User populates L1, L2<br>mode choose switching com | Buck Regulator                                                                           | User populates L1, L2, or R7 to | Тор        | L1 = 47uH Inductor | Inductor Mode |  |
|                                                                            | choose switching component for                                                           | Bottom                          | L2 = 22 µH | Inductor Mode      |               |  |
|                                                                            |                                                                                          |                                 | Bottom     | R7 = 22 Ω          | Resistor Mode |  |

| Table 2-2. Descrip | ption of User-Selectable | Settings on MCF8315P | WPEVM (Default in Bold) |
|--------------------|--------------------------|----------------------|-------------------------|
|                    |                          |                      |                         |



| Designator | Jumper Setting<br>Name | Description                        | Layer    | Position    | Function                            |
|------------|------------------------|------------------------------------|----------|-------------|-------------------------------------|
| J5         | 3V3_SEL                | Select 3.3 V for MCU power         | Тор      | J5 = 3V3EXT | External                            |
|            |                        |                                    |          | J5 = 3V3COM | From FTDI (30 mA)                   |
| J3         | 5V_SEL                 | Select 5 V for FTDI power          | Тор      | J3 = 5V_EXT | External                            |
|            |                        |                                    |          | J3 = 5V_USB | From USB power<br>(500 mA)          |
| J1         | SPEED_SEL              | Selects SPEED input source         | Тор      | J1 = EXT    | External<br>EXT_SPEED test<br>point |
|            |                        |                                    |          | J1 = POT    | From<br>Potentiometer R4            |
|            |                        |                                    | J1 = PWM |             | On-board PWM from<br>MSP430         |
| J6         | MSP to MCx Shunt       | Connects signals from MCU and user | Тор      | DRVOFF_SW   | DRVOFF                              |
|            | jumper bridge          | switches to MCx8315 when jumpers   |          | NC          | NC                                  |
|            |                        | are inserted                       |          | BRAKE_SW    | BRAKE                               |
|            |                        |                                    |          | SPEED_IN    | SPEED                               |
|            |                        |                                    |          | MSP_SCL     | SCL                                 |
|            |                        |                                    |          | MSP_SDA     | SDA                                 |
|            |                        |                                    |          | MSP_CLK     | NC                                  |
|            |                        |                                    |          | MSP_STE     | NC                                  |
|            |                        |                                    |          | MSP_A3      | NC                                  |
|            |                        |                                    |          | MSP_A2      | NC                                  |
|            |                        |                                    |          | MSP_A1      | NC                                  |
|            |                        |                                    |          | MSP_P3.2    | NC                                  |
|            |                        |                                    |          | MSP_nFAULT  | nFAULT                              |
|            |                        |                                    |          | MSP_FG      | FGOUT                               |
|            |                        |                                    |          | NC          | VBK                                 |
|            |                        |                                    |          | AGND        | AGND                                |
| S1         | BRAKE                  | Turns on all low-side MOSFETs      | Тор      | Left        | Brake enabled                       |
|            |                        |                                    |          | Right       | Brake disabled                      |
| S2         | DRVOFF                 | Disables gate drivers              | Тор      | Left        | MCF8315 FETs disabled               |
|            |                        |                                    |          | Right       | MCF8315 FETs<br>enabled             |

#### Table 2-2. Description of User-Selectable Settings on MCF8315PWPEVM (Default in Bold) (continued)



# 3 Software

### 3.1 Motor Studio GUI Application

The Motor Studio GUI simplifies the tuning process of the MCF8315 by offering guided tuning instructions, a virtual oscilloscope for real-time variable monitoring, and more. The latest version of the Motor Studio GUI can be downloaded on ti.com.

#### 3.1.1 Downloading and Running Motor Studio GUI

The Motor Studio GUI can be used to interface with and configure the MCF8315.

- 1. Connect the MCF8315PWPEVM as described in Section 2.2.
- 2. Download the latest version of the Motor Studio GUI.
- 3. Once the Motor Studio GUI is installed, run the Motor Studio GUI application.
- 4. Click the red Setup Now button under Hardware Setup on the bottom right side of the window.
- 5. After setting up the hardware settings of the MCF8315PWPEVM, click on the *Quick Spin* option to begin configuring the device.



#### Figure 3-1. Motor Studio GUI Home Page

Once the GUI is loaded, follow the Quick Spin page of the GUI to spin up the motor.

#### 3.2 MSP430FR2355 Interface Firmware

The MCF8315PWPEVM includes a USB-to-UART-to-I2C interface, using an MSP430FR2355 microcontroller, that serves as a communication bridge between a host PC and the MCF8315 device for configuring various device settings and reading fault diagnostic information.

By default, the onboard MSP430 microcontroller already contains the MSP430FR2355 Motor Studio firmware needed to communicate with the Motor Studio GUI. If there is a firmware update or the GUI does not connect to the EVM, then the user must flash the firmware code into the MSP430 by following the steps outlined in Section 3.2.2.

Flashing the firmware code onto the MSP430 requires an integrated development environment (IDE) and an eZ-FET Debug Probe. The following example uses the Code Composer Studio<sup>™</sup>(CCS) IDE and the MSP-EXP430FR2355 LaunchPad<sup>™</sup> Development Kit to provide the eZ-FET Debug Probe.



#### 3.2.1 Downloading Code Composer Studio and Importing MSP430FR2355 Interface Firmware Code

- 1. Download and extract the MSP430FR2355 Motor Studio firmware to a location on your computer.
- 2. Download the latest version of Code Composer Studio. This will set up a ti folder in the directory C:\ti.
  - a. Accept all agreements, default install locations, and hit "Next" to proceed through menus.
  - b. In the *Selected Components* window, make sure to check *MSP430 Low-Power MCUs* to install the required packages for the MSP430 Launchpad Evaluation Kits.
- After installing, run CCS and select a folder or the default to use as the workspace to store any new projects. The location and naming convention can be changed based on the user's preference. Click the OK button to accept.
- 4. In CCS, click on the Project tab and select *Import CCS Projects*. Click on *Browse*.
- 5. Select the folder created in step 1 by extracting the Motor Studio firmware.
- 6. Import the project "MCx8315EVM\_MSP430FR2355\_Firmware" into your workspace as shown in Figure 3-2.

| 🕒 Project Explorer ×                                    | ■ main.c ×                                                                                                                                         |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| MCxGUI_Comm_Bridge_MSP430FR2355_v0.0.9 [Active - Debug] | 1/*COPYRIGHT,BSD                                                                                                                                   |
| > 🗱 Binaries                                            | 2 * Copyright (c) 2018, Texas Instruments Incorporated                                                                                             |
| > 🔊 Includes                                            | 3 " All rights reserved.                                                                                                                           |
| > 🗁 Debug                                               | 5 * Redistribution and use in source and binary forms, with or without                                                                             |
| > 💩 driverlib                                           | 6 * modification, are permitted provided that the following conditions                                                                             |
| > 😁 jsmn                                                | 7 * are met:                                                                                                                                       |
| > 💩 targetConfigs                                       | 8 * Padietnibutions of source code must retain the above convolutiont                                                                              |
| > lok_msp430fr2355.cmd                                  | 10 * notice, this list of conditions and the following disclaimer.                                                                                 |
| > 🗟 main.c                                              | 11 *                                                                                                                                               |
|                                                         | 12 * * Redistributions in binary form must reproduce the above copyright                                                                           |
|                                                         | 13 notice, this list of conditions and the following disclaimer in the<br>documentation and/on other materials provided with the disclaimer in the |
|                                                         | 15 *                                                                                                                                               |
|                                                         | 16 * * Neither the name of Texas Instruments Incorporated nor the names of                                                                         |
|                                                         | 17 * its contributors may be used to endorse or promote products derived                                                                           |
|                                                         | 18 - Trom this software without specific prior written permission.                                                                                 |
|                                                         | 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"                                                                   |
|                                                         | 21 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,                                                                         |
|                                                         | 22 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR                                                                        |
|                                                         | 23 * CONTRIBUTORS FITABLE FOR ANY DIFFET INDIFFET INCOMING OWNER OF                                                                                |
|                                                         | 25 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,                                                                           |
|                                                         | 26 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;                                                                   |
|                                                         | 27 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,                                                                      |
|                                                         | 28 * WHEIMER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR<br>29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE |
|                                                         | 30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                                                                                            |
|                                                         | 31 */COPYRIGHT*/                                                                                                                                   |
|                                                         | 32 //***********************************                                                                                                           |
|                                                         | 34// MSP430FR2355 firmware for compatibility with Motor Studio                                                                                     |
|                                                         | 35//                                                                                                                                               |
|                                                         | 36 // E. Chen                                                                                                                                      |
|                                                         | 37// Texas Instruments Inc.                                                                                                                        |
|                                                         | 39//***********************************                                                                                                            |
|                                                         | 40                                                                                                                                                 |
|                                                         | 41#include <driverlib.h></driverlib.h>                                                                                                             |
|                                                         | 42#include <stdint.h></stdint.h>                                                                                                                   |
|                                                         | 44#include <stdio.h></stdio.h>                                                                                                                     |
|                                                         | 45#include <stdlib.h></stdlib.h>                                                                                                                   |
|                                                         | 46#include <string.h></string.h>                                                                                                                   |
|                                                         | 4/#include <jsmn.n></jsmn.n>                                                                                                                       |
|                                                         | 49/* Constants */                                                                                                                                  |
|                                                         | 50#define MAX_STR_LEN 256                                                                                                                          |
|                                                         | 51#define INTER_BYTE_DELAY 2800 // at least 100 us                                                                                                 |
|                                                         | 52 HOFTINE 124_11/1C/UT 65535                                                                                                                      |

### Figure 3-2. MSP430FR2355 Interface Firmware Code in Code Composer Studio

#### 3.2.2 Using the eZ-FET to Program the MSP430FR2355

The MSP430FR2355 on the MCF8315EVM comes pre-programmed with the firmware necessary for communicating with the Motor Studio GUI and the MCF8315. To reprogram or flash custom code on the MSP430FR2355, you will need an external MSP430 LaunchPad<sup>™</sup> that includes the eZ-FET Debug Probe. In this example, we use the <u>MSP-EXP430FR2355 LaunchPad Development Kit</u> to provide the debug probe.

The eZ-FET Debug Probe on the MSP430FR2355 LaunchPad uses a SPI-by-Wire JTAG interface to program the MSP430FR2355 MCU on the MCF8315PWPEVM. Consult the MSP430 LaunchPad Development Kits for MSP430 LaunchPads that include an onboard eZ-FET Debug Probe.

- 1. Remove the GND, 3V3, SBWTDIO, and SBWTCK jumpers from the MSP430 LaunchPad.
- 2. Connect the top pins on the eZ-FET side of the LaunchPad of the GND, 3V3, SBWTCK, and SBWTDIO signals to their respective pins on J4 of the MCF8315PWPEVM as shown in Table 3-1 and Figure 3-3.
- 3. Connect a micro-USB cable to the MSP430 LaunchPad and the PC.
- 4. Click on the Build Project icon or CTRL+B to ensure the project builds successfully. Accept any updates if needed from the Console.
- 5. Click on Debug Project to set up a debug session and press the Play button to run the code.
- 6. Stop the debug session, close Code Composer Studio, disconnect the SPI-by-Wire jumpers and unplug the micro-USB cable from the MSP430 LaunchPad.



| Table 3-1. SFT-DI-WITE Connections Needed to Frogram MSF430FR2335 |                                             |  |  |  |  |  |
|-------------------------------------------------------------------|---------------------------------------------|--|--|--|--|--|
| MSP430 LaunchPad <sup>™</sup> (eZ-FET Debug Probe Side) (J101)    | MCF8315PWPEVM 4-pin SPI-by-Wire Header (J4) |  |  |  |  |  |
| GND                                                               | GND                                         |  |  |  |  |  |
| 3V3                                                               | 3.3V                                        |  |  |  |  |  |
| SBWTDIO                                                           | SBWTDIO                                     |  |  |  |  |  |
| SBWTCK                                                            | SBWTCK                                      |  |  |  |  |  |

Tabla 2\_1 SPY-BI-Wire Connections Needed to Program MSP430ER2355



Figure 3-3. MSP430 LaunchPad<sup>™</sup> eZ-FET Probe Connected to MCF8315PWPEVM

# 4 Hardware Design Files

### 4.1 Schematics

#### 4.1.1 Main Supply and Pi Filter



Figure 4-1. Main Supply and Pi Filter Schematic

### 4.1.2 Connectors and Interface



Figure 4-2. Connectors and Interface Schematic

### 4.1.3 USB to UART





### 4.1.4 MCU Programming and Debug







### 4.1.5 MSP430FR2355 MCU





#### 4.1.6 MCF8315 3-Phase Sensorless FOC Integrated Driver



Figure 4-6. MCF8315 3-Phase Sensorless FOC Integrated Driver Schematic



#### 4.1.7 Buck Regulator



Figure 4-7. Buck Regulator Schematic



#### 4.1.8 Status LEDs



Figure 4-8. Status LEDs Schematic

### 4.1.9 Switches and Speed Input







### 4.2 PCB Layouts









Figure 4-11. EVM Top Overlay



Figure 4-12. EVM Top Layer





Figure 4-13. EVM Signal Layer 1



Figure 4-14. EVM Signal Layer 2





Figure 4-15. EVM Bottom Layer



### Figure 4-16. EVM Bottom Overlay



### 4.3 Bill of Materials (BOM)

| Designator  | Quantity | Value   | Description                                                                 | PackageReferenc<br>e | PartNumber               | Manufacturer     |
|-------------|----------|---------|-----------------------------------------------------------------------------|----------------------|--------------------------|------------------|
| !PCB1       | 1        |         | Printed Circuit<br>Board                                                    |                      | MD097A                   | Any              |
| C1          | 1        | 1uF     | CAP, CERM, 1<br>μF, 16 V,+/- 10%,<br>X7R, AEC-Q200<br>Grade 1, 0603         | 0603                 | EMK107B7105KA<br>HT      | Taiyo Yuden      |
| C2          | 1        | 10uF    | CAP, CERM, 10<br>uF, 63 V, +/- 10%,<br>X7R, 1210                            | 1210                 | GRM32ER71J106<br>KA12L   | MuRata           |
| C3          | 1        | 0.1uF   | CAP, CERM, 0.1<br>uF, 100 V, +/-<br>10%, X7R, 0603                          | 0603                 | GRM188R72A104<br>KA35D   | MuRata           |
| C4          | 1        | 22uF    | CAP, CERM, 22<br>uF, 10 V, +/- 10%,<br>X7R, 1206                            | 1206                 | GRM31CR71A226<br>KE15L   | MuRata           |
| C5, C6      | 2        | 1uF     | CAP, CERM, 1<br>μF, 6.3 V,+/- 10%,<br>X7R, AEC-Q200<br>Grade 1, 0603        | 0603                 | C0603C105K9RA<br>CAUTO   | Kemet            |
| C7          | 1        | 0.047uF | CAP, CERM,<br>0.047 uF, 50 V, +/-<br>10%, X7R, 0402                         | 0402                 | C1005X7R1H473<br>K050BB  | ТDК              |
| C8, C9, C11 | 3        | 0.1uF   | CAP, CERM, 0.1<br>uF, 10 V, +/- 10%,<br>X7R, 0603                           | 0603                 | 0603ZC104KAT2A           | AVX              |
| C10         | 1        | 4.7uF   | CAP, CERM, 4.7<br>uF, 10 V, +/- 20%,<br>X7R, 0603                           | 0603                 | GRM188Z71A475<br>ME15D   | MuRata           |
| C12         | 1        | 1000pF  | CAP, CERM, 1000<br>pF, 16 V, +/- 10%,<br>X7R, 0603                          | 0603                 | 8.85012E+11              | Wurth Elektronik |
| C13         | 1        | 1uF     | CAP, CERM, 1 uF,<br>50 V, +/- 10%,<br>X7R, 0805                             | 0805                 | 8.85012E+11              | Wurth Elektronik |
| C14         | 1        | 330uF   | CAP, AL, 330 uF,<br>63 V, +/- 20%,<br>AEC-Q200 Grade<br>2, TH               | D12.5xL20mm          | ELXZ630ELL331<br>MK20S   | Chemi-Con        |
| C15, C22    | 2        | 1uF     | CAP, CERM, 1 uF,<br>100 V, +/- 10%,<br>X7R, 1206                            | 1206                 | CL31B105KCHNN<br>NE      | Samsung          |
| C16, C21    | 2        | 0.1uF   | CAP, CERM, 0.1<br>uF, 100 V, +/-<br>10%, X7S, AEC-<br>Q200 Grade 1,<br>0603 | 0603                 | CGA3E3X7S2A10<br>4K080AB | TDK              |



| Designator       | Quantity | Value  | Description                                                                  | PackageReferenc<br>e                                                 | PartNumber               | Manufacturer                   |
|------------------|----------|--------|------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|--------------------------------|
| C17, C20         | 2        | 0.01uF | CAP, CERM, 0.01<br>uF, 100 V, +/-<br>10%, X7R, AEC-<br>Q200 Grade 1,<br>0603 | 0603                                                                 | CGA3E2X7R2A10<br>3K080AA | TDK                            |
| C18, C19         | 2        | 1000pF | CAP, CERM, 1000<br>pF, 100 V, +/-<br>10%, X7R, AEC-<br>Q200 Grade 1,<br>0603 | 0603                                                                 | CGA3E2X7R2A10<br>2K080AA | TDK                            |
| D1, D3           | 2        | Green  | LED, Green, SMD                                                              | LED_0805                                                             | LTST-C170KGKT            | Lite-On                        |
| D2               | 1        | Red    | LED, Red, SMD                                                                | Red 0805 LED                                                         | LTST-C170KRKT            | Lite-On                        |
| D4               | 1        | 40V    | Diode, Schottky,<br>40 V, 0.75 A, AEC-<br>Q101, SOD-323                      | SOD-323                                                              | BAT165E6327HT<br>SA1     | Infineon<br>Technologies       |
| D5               | 1        | 90V    | Diode, Switching,<br>90 V, 0.1 A,<br>SOD-523F                                | SOD-523F                                                             | CDSU101A                 | Comchip<br>Technology          |
| D6               | 1        | Red    | LED, Red, SMD                                                                | Red LED,<br>1.6x0.8x0.8mm                                            | LTST-C190KRKT            | Lite-On                        |
| D7               | 1        | Green  | LED, Green, SMD                                                              | 1.6x0.8x0.8mm                                                        | LTST-C190KGKT            | Lite-On                        |
| FID1, FID2, FID3 | 3        |        | Fiducial mark.<br>There is nothing to<br>buy or mount.                       | N/A                                                                  | N/A                      | N/A                            |
| H1, H2, H3, H4   | 4        |        | Machine Screw,<br>Round, #4-40 x<br>1/4, Nylon, Philips<br>panhead           | Screw                                                                | NY PMS 440 0025<br>PH    | B&F Fastener<br>Supply         |
| H5, H6, H7, H8   | 4        |        | Standoff, Hex,<br>0.5"L #4-40 Nylon                                          | Standoff                                                             | 1902C                    | Keystone                       |
| J1               | 1        |        | Header, 100mil,<br>3x2, Gold, TH                                             | 3x2 Header                                                           | TSW-103-07-G-D           | Samtec                         |
| J2               | 1        |        | Receptacle, USB<br>2.0, Micro B,<br>5 Position, R/A,<br>SMT                  | Receptacle, USB<br>2.0, Micro B,<br>5 Pos, 0.65mm<br>Pitch, R/A, SMT | 1051640001               | Molex                          |
| J3, J5           | 2        |        | Header, 100mil,<br>3x1, Gold, TH                                             | PBC03SAAN                                                            | PBC03SAAN                | Sullins Connector<br>Solutions |
| J4               | 1        |        | Header, 100mil,<br>4x1, Gold, TH                                             | 4x1 Header                                                           | TSW-104-07-G-S           | Samtec                         |
| J6               | 1        |        | Header, 100mil,<br>16x2, Gold, TH                                            | 16x2 Header                                                          | TSW-116-07-G-D           | Samtec                         |
| J7, J8           | 2        |        | Terminal Block,<br>5.08 mm, 3x1,<br>Brass, TH                                | 3x1 5.08 mm<br>Terminal Block                                        | ED120/3DS                | On-Shore<br>Technology         |



| Designator           | Quantity | Value   | Description                                                                                          | PackageReferenc<br>e            | PartNumber             | Manufacturer  |
|----------------------|----------|---------|------------------------------------------------------------------------------------------------------|---------------------------------|------------------------|---------------|
| L3                   | 1        |         | Inductor, Ferrite<br>Bead, Ferrite, 3<br>A, 120 ohm, AEC-<br>Q200 Grade 1,<br>SMD                    | 0603                            | BLM18SG121TZ1<br>D     | MuRata        |
| L4                   | 1        | 1uH     | 1 μH Shielded<br>- Inductor 19 A<br>3.1mOhm Max<br>Nonstandard                                       | SMD2                            | HCM1A1104V2-1<br>R0-R  | Eaton         |
| LBL1                 | 1        |         |                                                                                                      | PCB Label 0.650 x<br>0.200 inch | THT-14-423-10          | Brady         |
| Q1                   | 1        | 80 V    | Transistor, NPN,<br>80 V, 1.5 A, AEC-<br>Q101, SOT-23                                                | SOT-23                          | FMMT620TA              | Diodes Inc.   |
| Q2                   | 1        |         | N-Channel 40V<br>8A (Ta) 15W (Tc)<br>Surface Mount<br>DFN2020MD-6                                    | SOT1220                         | BUK9D23-40EX           | Nexperia      |
| R1, R2, R5, R6       | 4        | 10k     | Res Thin Film<br>0603 10K<br>Ohm 0.1%<br>1/10W ±10ppm/°C<br>Molded SMD SMD<br>Punched Carrier<br>T/R | 0603                            | ERA-3ARB103V           | Panasonic     |
| R3, R11, R12         | 3        | 0       | RES, 0, 5%,<br>0.1 W, AEC-Q200<br>Grade 0, 0603                                                      | 0603                            | ERJ-3GEY0R00V          | Panasonic     |
| R4                   | 1        | 25 kohm | Trimmer<br>Potentiometer,<br>25kohm, 0.5W, TH                                                        | 9.53x8.89mm                     | 3352T-1-253LF          | Bourns        |
| R7                   | 1        | 22      | RES, 22, 5%,<br>1.5 W, AEC-Q200<br>Grade 0, 2512                                                     | 2512                            | CRCW251222R0J<br>NEGHP | Vishay-Dale   |
| R8                   | 1        | 5.1k    | RES, 5.1 k, 5%,<br>0.1 W, AEC-Q200<br>Grade 0, 0603                                                  | 0603                            | CRCW06035K10J<br>NEA   | Vishay-Dale   |
| R9, R10, R19,<br>R20 | 4        | 10k     | RES, 10 k, 5%,<br>0.1 W, AEC-Q200<br>Grade 0, 0603                                                   | 0603                            | CRCW060310K0J<br>NEA   | Vishay-Dale   |
| R13, R14             | 2        | 1.00k   | RES, 1.00 k, 1%, 0.1 W, 0603                                                                         | 0603                            | RC0603FR-071KL         | Yageo         |
| R15                  | 1        | 4.70k   | RES, 4.70 k,<br>0.1%, 0.1 W, 0603                                                                    | 0603                            | RT0603BRD074K<br>7L    | Yageo America |
| R16                  | 1        | 47k     | RES, 47 k, 5%,<br>0.1 W, 0603                                                                        | 0603                            | RC0603JR-0747K<br>L    | Yageo         |
| R17, R18             | 2        | 470     | RES, 470, 5%, 0.1<br>W, 0603                                                                         | 0603                            | RC0603JR-07470<br>RL   | Yageo         |

| Designator                                                                                                                                                               | Quantity | Value | Description                                                                                                | PackageReferenc<br>e                     | PartNumber          | Manufacturer            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------|-------------------------|
| R21                                                                                                                                                                      | 1        | 0     | RES, 0, 5%, 0.25<br>W, AEC-Q200<br>Grade 0, 1206                                                           | 1206                                     | RCA12060000ZS<br>EA | Vishay-Dale             |
| S1, S2                                                                                                                                                                   | 2        |       | SWITCH<br>TOGGLE SPDT<br>0.4VA 28V                                                                         | 6.8x23.1x8.8mm                           | B12AP               | NKK Switches            |
| S3                                                                                                                                                                       | 1        |       | Switch, Tactile,<br>SPST, 12 V, SMD                                                                        | SMD, 6x3.9mm                             | 4.34121E+11         | Wurth Elektronik        |
| SH-J1, SH-J2,<br>SH-J3, SH-J4,<br>SH-J5, SH-J6,<br>SH-J7, SH-J8,<br>SH-J9, SH-J10,<br>SH-J11, SH-J12,<br>SH-J13, SH-J14,<br>SH-J15, SH-J16,<br>SH-J17, SH-J18,<br>SH-J19 | 19       | 1x2   | Shunt, 100mil,<br>Gold plated, Black                                                                       | Shunt                                    | SNT-100-BK-G        | Samtec                  |
| TP1, TP2, TP3,<br>TP11, TP12, TP13                                                                                                                                       | 6        |       | Test Point,<br>Miniature, White,<br>TH                                                                     | White Miniature<br>Testpoint             | 5002                | Keystone<br>Electronics |
| TP4, TP5, TP6,<br>TP7, TP8, TP9,<br>TP10, TP14,<br>TP15, TP16,<br>TP17, TP18                                                                                             | 12       |       | Test Point,<br>Miniature, Red,<br>TH                                                                       | Red Miniature<br>Testpoint               | 5000                | Keystone<br>Electronics |
| TP19, TP20                                                                                                                                                               | 2        |       | Test Point,<br>Compact, Red, TH                                                                            | Red Compact<br>Testpoint                 | 5005                | Keystone<br>Electronics |
| TP21, TP26,<br>TP27, TP28, TP29                                                                                                                                          | 5        |       | Test Point,<br>Miniature, Black,<br>TH                                                                     | Black Miniature<br>Testpoint             | 5001                | Keystone<br>Electronics |
| TP22, TP23,<br>TP24, TP25                                                                                                                                                | 4        |       | 1mm Uninsulated<br>Shorting Plug,<br>10.16mm spacing,<br>TH                                                | Shorting Plug,<br>10.16mm spacing,<br>TH | D3082-05            | Harwin                  |
| U1                                                                                                                                                                       | 1        |       | Sensorless Field<br>Oriented Control<br>(FOC) Integrated<br>FET BLDC Driver,<br>HTSSOP24                   | HTSSOP24                                 | MCF8315C1VPW<br>PR  | Texas Instruments       |
| U2                                                                                                                                                                       | 1        |       | UART Interface IC<br>USB Full Speed<br>to Serial UART IC,<br>Includes Oscillator<br>and EEPROM,<br>SSOP-28 | SSOP28                                   | FT232RNL-REEL       | FTDI                    |



| Designator | Quantity | Value | Description                                                                                                        | PackageReferenc<br>e        | PartNumber           | Manufacturer      |
|------------|----------|-------|--------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|-------------------|
| U3         | 1        |       | 4-Channel ESD<br>Protection Array<br>for High-Speed<br>Data Interfaces,<br>DRY0006A<br>(USON-6)                    | DRY0006A                    | TPD4E004DRYR         | Texas Instruments |
| U4         | 1        |       | CPU16<br>MSP430 <sup>™</sup> FRAM<br>Microcontroller IC<br>16-Bit 24MHz<br>32KB (32K x 8)<br>FRAM 48-LQFP<br>(7x7) | LQFP48                      | MSP430FR2355T<br>PTR | Texas Instruments |
| ¥1         | 1        |       | Resonator, 4 MHz,<br>39 pF, AEC-Q200<br>Grade 1, SMD                                                               | 4.5x1.2x2 mm                | CSTCR4M00G55<br>B-R0 | MuRata            |
| L1         | 0        | 47uH  | Inductor, Shielded,<br>Powdered Iron, 47<br>uH, 0.39 A, 2.3<br>ohm, AEC-Q200<br>Grade 1, SMD                       | SMD, 2-Leads,<br>Body 3x3mm | 78438335470          | Wurth Elektronik  |
| L2         | 0        | 22uH  | Inductor, Shielded,<br>Powdered Iron, 22<br>uH, 0.6 A, 1.04<br>ohm, AEC-Q200<br>Grade 1, SMD                       | SMD, 2-Leads,<br>Body 3x3mm | 78438335220          | Wurth Elektronik  |



# **5** Additional Information

### Trademarks

LaunchPad<sup>™</sup>, Code Composer Studio<sup>™</sup>, and MSP-EXP430FR2355 LaunchPad<sup>™</sup> are trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated